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A B S T R A C T

Schizophrenia is a disease with disruptions in thought, emotion, and behavior. The dysconnectivity hypothesis
suggests these disruptions are due to aberrant brain connectivity. Many studies have identified connectivity
differences but few have been able to unify gray and white matter findings into one model. Here we develop an
extension of the Network-Based Statistic (NBS) called NBSm (Multimodal Network-based statistic) to compare
functional and anatomical networks in schizophrenia. Structural, resting functional, and diffusion magnetic
resonance imaging data were collected from 29 chronic patients with schizophrenia and 29 healthy controls.
Images were preprocessed, and average time courses were extracted for 90 regions of interest (ROI). Functional
connectivity matrices were estimated by pairwise correlations between wavelet coefficients of ROI time series.
Following diffusion tractography, anatomical connectivity matrices were estimated by white matter streamline
counts between each pair of ROIs. Global and regional strength were calculated for each modality. NBSm was
used to find significant overlap between functional and anatomical components that distinguished health from
schizophrenia. Global strength was decreased in patients in both functional and anatomical networks. Regional
strength was decreased in all regions in functional networks and only one region in anatomical networks. NBSm
identified a distinguishing functional component consisting of 46 nodes with 113 links (p < 0.001), a distin-
guishing anatomical component with 47 nodes and 50 links (p = 0.002), and a distinguishing intermodal
component with 26 nodes (p < 0.001). NBSm is a powerful technique for understanding network-based group
differences present in both anatomical and functional data. In light of the dysconnectivity hypothesis, these
results provide compelling evidence for the presence of significant overlapping anatomical and functional dis-
ruption in people with schizophrenia.

1. Introduction

Schizophrenia is characterized by a host of observable abnormalities
in integrated thought, emotion, and behavior. Lack of integration is
hypothesized to stem from multiple abnormalities in the underlying
brain circuitry, collectively referred to as dysconnectivity. The hypoth-
esis that dysconnectivity drives psychiatric symptoms in schizophrenia
is supported by neuroimaging studies utilizing both functional magnetic
resonance imaging (fMRI) and diffusion tensor imaging (Friston, 1998;
Volkow et al., 1988; Weinberger et al., 1992). Dysconnectivity can

manifest separately as either differences in coherent brain activity
(functional connectivity) or brain wiring (anatomical connectivity)
(Camchong et al., 2011; Skudlarski et al., 2010).

While dysconnectivity can accompany many different disease states,
the specific connectivity abnormalities identified in schizophrenia pa-
tients remain far from understood. Anatomical connectivity estimated
from white matter tracts is altered in schizophrenia in a range of dis-
parate cortical structures including frontal regions (Kong et al., 2011),
thalamo-frontal connections (Oh et al., 2009), temporal-frontal con-
nections (van den Heuvel et al., 2010), and temporal tracts (Phillips
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et al., 2009). Alterations in functional connectivity have similarly been
identified across a range of brain states, affecting the default mode
network (DMN) at rest (Whitfield-Gabrieli et al., 2009; Woodward
et al., 2011), multiple cognitive control networks (Repovs et al., 2011),
and several independent brain regions (Zhou et al., 2007). However,
the focus of much of this previous work has been limited to a few se-
lected regions or tracts and to a single imaging modality, potentially
hampering a broader understanding of a distributed pathophysiology.

Anatomical and functional connectivity are inherently related
(Schneider et al., 2007; Skudlarski et al., 2010). Evidence suggests that
anatomical connectivity patterns underlie resting-state and task-based
functional connectivity patterns (Hermundstad et al., 2013; Honey
et al., 2009; Teipel et al., 2010). A simultaneous examination of whole-
brain anatomical and functional connectivity in a single cohort is ne-
cessary for a more comprehensive understanding of putative alterations
in brain architecture that underlie abnormal cognition and behavior in
schizophrenia.

Multimodal techniques in depression (Hermundstad et al., 2013)
and schizophrenia (Jeong et al., 2009; Pomarol-Clotet et al., 2010;
Skudlarski et al., 2010) have provided a holistic characterization of
these diseases inaccessible from either modality alone. However, the
translational impact of these studies has likely been hampered by in-
consistent results. Several whole-brain connectivity studies have iden-
tified anatomical and functional abnormalities in frontal regions in
schizophrenia patients: two studies examining the resting state and one
study examining task-based states (Camchong et al., 2011; Jeong et al.,
2009; Pomarol-Clotet et al., 2010). Zhou et al. (2008) report converging
anatomical and functional connectivity abnormalities between the
hippocampus and the rest of the brain in people with schizophrenia
(Zhou et al., 2008). The use of divergent analysis methods makes uni-
fying these findings difficult. Skudlarski et al. (2010) described one
method to address this challenge and report convergent findings across
multiple imaging modalities.

An important challenge for multimodal studies is the identification
of methodological approaches capable of unifying disparate types of
data. Networks provide a mathematical framework to describe inter-
actions between system entities and can therefore be particularly useful
in this context. A powerful and versatile approach, network science can
be used to examine the relationships between entities as varied as
routers in the internet, friends in a social network, or regions in the
human brain (Honey et al., 2007). The network being studied is defined
as a graph in which the system's components are represented as nodes
in the graph and interactions between the system's components are
represented as edges in the graph. This information is encoded in a
mathematical data structure called a connectivity matrix, which is
composed of rows, columns, and cells, similar to a spreadsheet. Rows
and columns represent nodes and cell values represent edges con-
necting these nodes.

Graph theory has been applied with increasing success to neuroi-
maging data (Bullmore and Sporns, 2009; Bullmore and Bassett, 2011).
Specifically, it is used to quantify the organization of the brain and
estimate its information-processing efficiency. In addition to facilitating
the examination of healthy brain function, graph theory also provides a
means to examine altered brain function in psychiatric disease (Fornito
et al., 2012). As a unified approach, network theory can be applied to
both anatomical and functional data to derive estimates of connectivity.
Its application to schizophrenia in particular has uncovered decreased
functional connectivity with increased variation between frontal and
temporal regions (Bassett et al., 2012; Lynall et al., 2010; van den
Heuvel et al., 2010; Yu et al., 2011; Zalesky et al., 2010). Its application
to diffusion imaging has uncovered anatomical connectivity differences
between regions including medial frontal, parietal/occipital, and the
left temporal lobe (Zalesky et al., 2011).

Statistical inference of significant group differences in network di-
agnostics of brain connectivity has remained challenging. A common
strategy to construct a graph is to threshold a connectivity matrix to

retain only the very strongest and/or most statistically significant edges
(Bullmore and Bassett, 2011). To compare graphs between two groups,
the threshold is often chosen for each matrix independently in order to
ensure that all networks, irrespective of group, contain the same
number of edges (van Wijk et al., 2010). However, it has been noted
that for very stringent thresholds, networks derived from one popula-
tion can fragment (some nodes become completely disconnected from
the graph, having no remaining edges) while networks derived from a
second population can remain intact. This phenomenon has been re-
ported to occur in resting state fMRI data acquired from people with
schizophrenia (Bassett et al., 2012). In this context, fragmentation has
been linked to underlying network developmental abnormalities (van
den Berg et al., 2012). Comparing fragmented and non-fragmented
networks is problematic because network diagnostic values are highly
dependent on the number of nodes present in the network (Bassett
et al., 2012; van Wijk et al., 2010). In addition to the challenges of the
differential fragmentation processes, this common approach also fo-
cuses on only the strongest set of edges although recent evidence sug-
gests that in fact weakly connected portions of the network might be
particularly important in distinguishing healthy and diseased resting
state function in schizophrenia (Bassett et al., 2012), and uncovering
changes in network organization that underlie individual differences in
cognitive function (Cole et al., 2012; Santarnecchi et al., 2014). In
combination, these methodological factors underscore the potential
benefits of developing alternative approaches.

A recently developed methodology known as the Network-Based
Statistic (NBS) can be used to circumvent several issues that accompany
the comparison of networks extracted from thresholding procedures
(Zalesky et al., 2010). NBS uses a permutation-based approach to select
sub-networks (also known as network components) formed by edges
whose weights are significantly different between the two groups. Im-
portantly, these edges are identified irrespective of whether their
weights are strong or weak. A benefit of this technique is that it is
safeguarded against the multiple comparisons problem that one faces in
the pairwise comparison of all edges between the two groups. While
both Bonferroni and false discovery rate (FDR) corrections can be em-
ployed, they are arguably overly-conservative for the set of inherently
dependent variables that make up connectivity matrices (Zalesky et al.,
2010).

Here we apply NBS to both functional and anatomical data to
identify connectivity abnormalities. We further develop an extension of
NBS for use in the simultaneous examination of multimodal data, which
we call NBSm. This method allows us to statistically test for overlapping
regions of dysconnectivity in any two groups, facilitating the identifi-
cation of an overlapping or “intermodal” set. We apply this method to a
clinical population of 29 people with schizophrenia and 29 age- and
sex-matched controls. We hypothesize that a subset of regions identified
as locations of either functional or anatomical dysconnectivity in
schizophrenia will show statistically significant overlap when examined
from the perspective of distinguishing sub-networks identified using
NBSm.

2. Methods and materials

2.1. Participants

Data from 29 participants with chronic schizophrenia (11 females;
age 41.3 ± 9.3 (SD); 5 left-handed) and 29 healthy participants (11
females; age 41.1 ± 10.6 (SD); 2 left-handed) were included in this
analysis. All participants provided written informed consent and re-
ceived payment for the time they spent participating. The consent
process and all procedures were reviewed and approved by the in-
stitutional review board (IRB) at the University of Minnesota prior to
initiating studies. Schizophrenia patients were diagnosed with the
Structured Clinical Interview for DSM-IV. Out of the 29 chronic schi-
zophrenia patients: 16 were taking 1 atypical antipsychotic, 8 were
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taking 2 atypical antipsychotics, 1 was taking 1 typical antipsychotic, 1
was taking 1 atypical and 1 typical antipsychotic, 1 was taking 2 aty-
pical and 1 atypical antipsychotics, and 2 were not taking any anti-
psychotic. Participants were excluded if they fulfilled the criteria for
Alcohol or Substance Abuse or Dependence described in the Diagnostic
and Statistical Manual of Mental Disorder, Fourth Edition within 3 months
prior to scanning, significant medical illness, or head injury resulting in
loss of consciousness exceeding 30 min. Education and occupational
status were determined with the Socioeconomic Status questionnaire.
See (Camchong et al., 2011) for a detailed breakdown of educational
and socioeconomic status. Groups were matched by levels of education
(t(55) = 0.06, p = 0.952) and occupational status (t(55) = 1.191,
p = 0.239) of primary caregivers. Healthy participants, however, had
significantly higher levels of education (t(55) = 5.01, p < 0.001) and
occupational status (t(55) = 5.78, p < 0.001). See Bassett et al.
(2012) for a detailed analysis of the whole-brain resting state con-
nectivity in this population.

2.2. Imaging

Structural (sMRI), functional (fMRI), and diffusion weighted (DTI)
magnetic resonance images were acquired for all participants on a
Siemens 3.0 T Trio scanner (Erlangen, Germany). All images were ac-
quired in a single scanning session.

The resting state fMRI scan lasted for approximately 6 min.
Participants were given instructions to remain still, keep their eyes
closed, and remain awake. The scan utilized a gradient-echo echo-
planar imaging (EPI) sequence of 180 volumes, a TR (repetition time) of
2 s, TE (echo time) of 30 ms, flip angle of 90° and consisted of 34
continuous AC-PC aligned axial slices with a voxel size of
3.4 × 3.4 × 4.0 mm and an acquisition matrix size of 64 × 64 × 34.
Participants were debriefed at the end of the scan to find out whether
they fell asleep.

DTI images were acquired axially using a dual spin echo, single-shot
pulsed-gradient echo-planar imaging (EPI) technique. The sequence
included a TR of 8.3 s, TE of 86 ms, b-value of 1000 s/mm2, 2 averages,
and consisted of 64 slices with a voxel size of 2 × 2 × 2 mm, a field of
view of 256 mm, a skip of 0 mm, and 30 non-collinear directions.

To measure brain structure, we employed a high-res T1 weighted
anatomical image that utilized a magnetization prepared rapid gra-
dient-echo sequence. A field map was also generated and included a TR
of 300 ms, TE of 1.91 ms/4.37 ms, a flip angle of 55°, and a voxel size of
3.4 × 3.4 × 4.0 mm.

2.3. Pre-processing

All images were pre-processed to reduce noise from motion and
inhomogeneity in the magnetic field, and to produce connectivity ma-
trices for later analysis. All fMRI and DTI images were registered to high
resolution anatomical space.

Careful attention was paid to motion correction since subtle
movements have been shown to introduce spurious correlations be-
tween time series (Power et al., 2012; Satterthwaite et al., 2012). Im-
portantly, the two groups had similar mean root mean square (RMS)
motion parameters for the fMRI acquisitions: two-sample t-tests of
mean RMS translational and angular movement were not significant
(p = 0.14 and p = 0.12, respectively).

fMRI images were processed by removing the first 3 volumes for
magnetization stabilization, correcting motion artifacts using FSL,
correcting for geometric distortion, correcting for slice-timing effects,
and removing non-brain elements such as skull, meninges, and dura.
Spatial smoothing, using a 6 mm full-width half-max kernel, grand
mean and intensity normalization, and high-pass temporal filtering
were also applied to images. fMRI images were denoised using prob-
abilistic independent component analysis (PICA) using a tool in FSL
(http://www.fmrib.ox.ac.uk/fsl/), which was based on the procedure

established by Kelly et al. (2010). The goal of this procedure was to
remove noise components from head motion scanner artifacts, and
physiological noise as described by Camchong et al. (2011) and in the
MELODIC manual (http://www.fmrib.ox.ac.uk/fslcourse/lectures/
melodic.pdf). Linear regression was performed on each voxel to ac-
count for effects of individual subject motion by removing 6 motion
parameter time courses. After registration to high resolution anatomical
space, fMRI images were then registered to Montreal Neurological In-
stitute (MNI) standard space (MNI-152 brain).

Average time series were extracted for 90 cortical and subcortical
regions of interest (ROIs) based on the Automated Anatomical Labeling
(AAL) atlas (Tzourio-Mazoyer et al., 2002). ROIs from the cerebellum
and vermis were not included in this analysis. We used a maximum
overlap discrete wavelet transform to extract time series data from
specific frequency bands. We chose the Daubechies 4 wavelet and ex-
tracted level 2 wavelet coefficients for each ROI, corresponding to a
frequency range of 0.060–0.125 Hz. We constructed a functional con-
nectivity matrix by computing Pearson correlation coefficients for each
pair of ROI time series.

DTI images were corrected for distortion due to eddy currents and
head motion (using a 6 degrees of freedom linear registration) and were
further corrected for geometric distortion using field maps generated
during the structural scan. The AAL atlas was then transformed to na-
tive space for each subject using a non-linear registration (FNIRT;
http://www.fmrib.ox.ac.uk/fsl/fnirt). White matter tractography files
were generated by a FACT-based, DTI algorithm using the TrackVis
Diffusion Toolkit (trackviz.org); parameters included a 35 degree angle
threshold, 0.1 step threshold, and voxel center seed location using one
seed per voxel, with analysis applied to the whole brain. This algorithm
was applied to the whole brain according to the TrackVis Diffusion
Toolkit guidelines. We constructed an anatomical connectivity matrix
by counting the number of white matter streamlines linking each pair of
ROIs, in a similar manner to that reported in (Zhang et al., 2015).

2.4. Brain size analysis

Structural T1 volumetric data were processed with FreeSurfer.
Using the FreeSurfer BrainSegNotVent variable, we compared brain size
between the two groups with age and gender as covariates. No sig-
nificant group difference was found.

2.5. Bivariate analysis

As described above, for each data type a 90 × 90 (N × N) con-
nectivity matrix was generated. This matrix describes the (functional or
anatomical) connectivity between pairs of brain regions (4005 pairs in
total). We then calculated the average connectivity between each re-
gion and all 89 other regions. This measure of connectivity is referred to
as regional strength. Specifically, the strength of node (region) i is de-
fined as the mean value of the ith column of the connectivity matrix.
Overall brain connectivity, referred to as the global strength, was then
calculated. Specifically, the global strength was calculated by averaging
all regional strengths into one value. Group comparisons were made for
both anatomical and functional data types and for both regional and
global strength measures. Comparisons were calculated via an in-
dependent two sample t-statistic. This was calculated as the mean group
difference divided by the pooled standard deviation. Significance was
tested by permutation testing (Nichols and Holmes, 2002). Ten million
random permutations were performed for regional and global strength
for both anatomical and functional data. For each permutation, group
labels were randomized and a t-statistic was calculated. This t-statistic
extracted from the permuted data was then included as a member of the
null distribution. The position of the true t-statistic was then located in
the null distribution to determine a p-value. The p-value was calculated
by dividing the count of null t-statistic values larger than the true t-
statistic by the total number of permutations. Control for Type-I (false
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positive) errors that accompany multiple comparisons, specifically for
the regional analysis, was then performed using a false discovery rate
(FDR) correction (Storey, 2003).

2.6. Network analysis

Here we used the Network-Based Statistic (NBS) developed by
Zalesky et al. (2010) to determine group differences in connectivity
within each imaging modality. In a second-level analysis, we evaluated
the overlap of significantly different, connected ROIs between mod-
alities using a multimodal extension NBSm which we develop for this
study.

2.6.1. Intramodal differences (NBS)
Subjects were labeled as proband or control and group differences

between matrix elements were identified by generating a t-statistic for
each element in the connectivity matrices. In this way, we constructed a
t-matrix representing group differences in connection strengths for each
modality. The t-matrix for each modality was thresholded to retain
information only for matrix elements with the largest group differences.
An initial data exploration was performed to find the t-threshold for
each data modality. A distribution of node count (of the largest com-
ponent) versus t-threshold was generated for each modality over a wide
range of possible t-thresholds. Since the anatomical imaging had a
lower distribution of t-thresholds it was used to choose a maximal node
count provided by a t-threshold ≥ 2.00 (Fig. 1) and resulted in a t-
threshold of 2.10. Based on node count this resulted in the selection of a
functional t-threshold of 5.00. This method provided similarly sized
components even within very different imaging modalities.

Once a t-threshold was chosen for each modality, each t-matrix was
thresholded and subnetworks were identified. The largest intramodal
component was defined as the subnetwork of the modality-specific t-
matrix with the largest total number of edges. In short, we use the size
of the largest connected component as a statistic; noting that this sub-
graph isolates significant network-based differences between the two
groups. In other words, we are testing against the null hypothesis that
the size of a sub-graph of group differences is larger than expected by
chance.

2.6.2. NBS significance testing
The significance of intra-modal components was tested using a

permutation testing technique (Fig. 2). The intra-modal component
generation process was repeated for each modality with random

reassignment of subject labels but with maintenance of original group
sizes. For each random permutation, the maximum component size was
calculated and stored in a null intra-modal distribution. After 10 million
permutations, the size of the actual intra-modal components was
compared to the null size distribution extracted from the permuted data
sets. The p-value for significance in comparison to the null hypothesis
was calculated by dividing the total number null model components
larger than the actual component by the total number of permutations
performed.

2.6.3. Intermodal overlap (NBSm)
After determining the intra-modal component for each modality, we

investigated the anatomical locations of regions in each component
separately and defined an “intermodal overlap” set to be the subset of
nodes present in both intra-modal components.

2.6.4. NBSm significance testing
The significance of the intermodal set was determined using a set

membership procedure. With each permutation, the number of over-
lapping ROIs (i.e., those nodes present in both intra-modal components)
was determined. The size of the intermodal overlap set and identity of
the ROIs in this group were recorded. A p-value for the significance of
the size of the intermodal overlap set was generated by counting the
number of permuted data sets in which the size of the intermodal
overlap set was larger than the actual size and dividing this number by
the number of permutations. A p-value for the significance of the pre-
sence of each ROI in the intermodal overlap set was determined by
counting the number of permutations in which the ROI was identified
as a member of the intermodal overlap set and dividing this number by
the number of permutations.

3. Results

3.1. Global strength

Patients showed significantly lower global strength for both anato-
mical and functional network data (Fig. 3). In the anatomical data,
global strength was weaker by 0.451 (p < 0.001); this corresponds to
a smaller number of white matter streamlines linking brain areas. In the
functional data, global strength was weaker in patients by 0.113
(p < 0.001). This indicates weaker functional connectivity between
brain areas when patients are compared to controls.

Fig. 1. Visualization of the relationship between NBS threshold and the number of nodes present in the largest intramodal component for both anatomical and functional data sets. Labels
a and b represent the specific threshold chosen for each modality in the NBSm analysis. They were chosen to select NBS components of similar size involving approximately 50% of total
network nodes. Label a represents a threshold of 2.10 with a network node count of 47. Label b represents a threshold of 5.00 with a network node count of 46.
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3.2. Regional strength

Regional strength varied significantly between the two groups for
both modalities. Both the anatomical and functional data in people with
schizophrenia displayed significantly lower regional strength than
controls (p < 0.05, FDR corrected) but differed in the number of sig-
nificant regions. In the anatomical data, only one region showed

patients having lower strength (superior medial frontal cortex in the left
hemisphere), whereas in the functional data, all 90 regions showed a
group difference in strength.

3.3. Functional component

We applied NBS to the functional connectivity matrices of both

Fig. 2. Visualization of the processes used to generate both the intramodal components and intermodal set. Sub-figures A and B refer to the modality-specific intramodal component
process using the T stats specified. The largest modality-specific components are shown along with the random distribution generated to compute significance. Sub-figure C shows the
computed overlap with the random distribution generated to compute significance.
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groups estimated from the resting-state BOLD signal. We identified an
intra-modal component, distinguishing group differences in functional
connectivity, which consisted of 46 nodes linked by 113 edges
(Table 1). The size of this component was significantly larger than ex-
pected under the null hypothesis (p < 0.001). Subsequent analysis
showed that patients had weaker connectivity than controls (defined as
the average correlation between intra-modal network nodes): with a
difference between groups of approximately −0.224. This component
was globally distributed but consisted of more areas of difference in the
posterior right cortices (Fig. 4).

3.4. Anatomical component

We next applied NBS to the anatomical connectivity matrices esti-
mated via diffusion tensor imaging (DTI). We identified an intra-modal
component, distinguishing group differences in anatomical con-
nectivity, which consisted of 47 nodes linked by 50 edges (Table 1). The
size of this component was significantly larger than expected under the
null hypothesis (p = 0.002). We found that patients had weaker con-
nectivity than controls (defined as the average number of tracts be-
tween network nodes); the average difference between groups was
approximately −13.10 streamlines for each region. The 47 nodes of
this component were distributed over the medial aspect of the brain
with a higher proportion located in the left hemisphere than in the right
hemisphere (Fig. 4).

3.5. Intermodal set

We used NBSm to identify the intersection between statistically

different functional and anatomical connectivity patterns in the two
groups. We found that 26 nodes were shared between the functional
component and the anatomical component identified in the previous
section, together forming the intermodal overlap set. These overlapping
nodes are listed in Table 1.

The inter-modal overlap set contained significantly more nodes than
expected under the null hypothesis of no significant overlap between
functional and anatomical connectivity differences (p < 0.001). These
nodes were distributed over the medial, left, and posterior aspects of
the brain (Fig. 4). In 10 million permutations, the largest number of
nodes identified as members of an intermodal overlap set in the per-
muted data sets was 11, a number much smaller than the observed
number of 26 in the true inter-modal overlap component. In fact, ap-
proximately 90% of all permutations showed zero overlap between
intra-modal component nodes. Further, a permutation analysis was
performed to determine the probability of each individual node being
present in the overlap group (see Methods and materials). Each node
was found to be present at a significance level of at least p < 0.001.

4. Discussion

Evidence suggests that differences in brain architecture and function
between those with and without schizophrenia are vast (Camchong
et al., 2011; Skudlarski et al., 2010). A range of methodologies have
been used to identify these differences both in anatomy (using diffusion
imaging and morphometric variation) and function (using fMRI, EEG,
or MEG). However, the interplay between anatomical and functional
abnormalities is far from understood. Powerful techniques have been
developed to examine both anatomical and functional connectivity but
few studies have been able to unify the findings within these separate
modalities. The recent development of graph theoretical methods for
the statistical evaluation of neuroimaging data has facilitated the ex-
amination of anatomical and functional connectivity under a common
mathematical framework (Bullmore and Sporns, 2009; Bullmore and
Bassett, 2011). While high-level information about dysconnectivity can
be gathered by examining connectivity at a global or regional level,
many of the subtleties are lost due to restrictive statistical corrections.
Further, by using novel statistical methods – including group compar-
isons that employ the Network-Based Statistic and significance testing
utilizing non-parametric permutation-based techniques – a principled
framework is now available to find a single significant nodal set that
summarizes common differences across imaging modalities.

We examined measures of global and regional strength and identi-
fied decreased connectivity in people with schizophrenia in both ana-
tomical and functional data. This hypoconnectivity is consistent with
results reported in previous studies (Bassett et al., 2012; Lynall et al.,
2010). We also identified decreases in regional strength in both ana-
tomical and functional networks, suggesting a regional specificity of
disease-related alterations in network structure which is consistent with
the prior literature (Lynall et al., 2010; van den Heuvel et al., 2010).

Fig. 3. Group differences in global strength of connectivity
in anatomical (left) and functional (right) brain networks.

Table 1
AAL atlas nodes found to be significant in intermodal data sets (top), functional data sets
(middle), and anatomical data sets (bottom). Functional and anatomical nodes listed are
in addition to their shared intermodal nodes (present in both anatomical and functional).

Intermodal nodes (present in both anatomical and functional) – 26 nodes
Temporal Mid R, Precuneus R, Lingual L, Lingual R, Rectus L, Precuneus L, Calcarine

R, Precentral R, Paracentral Lobule L, Occipital Mid L, Fusiform R, Parietal Sup R,
Paracentral Lobule R, Cuneus L, Cuneus R, Rectus R, Temporal Mid L, Insula L,
Temporal Inf L, Frontal Inf Orb L, Cingulum Mid L, Frontal Mid L, Postcentral L,
Fusiform L, Occipital Inf R, Occipital Inf L

Unique functional nodes – 21 nodes
Frontal Sup L, Frontal Sup R, Frontal Sup Orb L, Frontal Mid Orb R, Frontal Inf Tri L,

Olfactory L, Frontal Sup Medial L, Frontal Med Orb L, Frontal Med Orb R,
Hippocampus R, ParaHippocampal L, Amygdala L, Amygdala R, Parietal Inf L,
Caudate L, Putamen L, Pallidum L, Thalamus L, Thalamus R, Heschl L, Temporal
Pole Mid L

Unique anatomical nodes – 20 nodes
Frontal Sup Orb R, Frontal Inf Orb R, Rolandic Oper L, Rolandic Oper R, Supp Motor

Area R, Insula R, Cingulum Ant L, Calcarine L, Occipital Sup L, Occipital Sup R,
Occipital Mid R, Postcentral R, Parietal Sup L, Parietal Inf R, SupraMarginal L,
SupraMarginal R, Angular R, Putamen R, Temporal Sup R, Temporal Inf R
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Moreover, the complex pattern of decreases in connectivity supports the
dysconnectivity hypothesis (Friston, 1998) of schizophrenia.

Gross descriptors of anatomical and functional connectivity, such as
global and regional strength, are limited because they are averages and
do not utilize information contained in specific network connections;
they therefore cannot be used to identify how the nodal differences are
related to one another. An additional difficulty of regional analysis is
that nodal measures of different modalities are difficult to compare
statistically to one another due to wide differences in variance and
modality-specific trends. These issues are illustrated in our findings that
anatomical connectivity showed only one area of significant difference
whereas functional connectivity showed decreases in all nodes in
people with schizophrenia.

Together, these methodological difficulties argue for a more robust
approach. Here we have introduced and applied the NBSm metho-
dology which allows us to define an intermodal node set, composed of
brain regions that display altered functional and anatomical con-
nectivity in people with schizophrenia. Further, our method ensures
that this group of nodes is validated in a statistically reliable way. The
intermodal set defined in our present study provides a robust descrip-
tion of a fundamental set underlying both anatomical and functional
imaging.

Recent evidence links fronto-temporal abnormalities (van den

Heuvel et al., 2010) to symptoms that accompany the disease (Raij
et al., 2009; Rotarska-Jagiela et al., 2010), particularly auditory and
verbal hallucinations (Jardri et al., 2011; Spencer et al., 2009). Both our
regional findings and the identified intermodal set are consistent with
this notion and support the theory that schizophrenia is accompanied
by abnormalities in bottom-up circuits involving sensory regions such
as the left insula, left middle temporal, right cuneus, and left lingual
gyrus. Alterations to these regions have been suggested to result in
dysfunction in multisensory processing and integration (Williams et al.,
2010) and might also play a role in discriminating self-generated in-
ternal processes and real externally-generated sensory information
(Wylie and Tregellas, 2010).

The presence of frontal cortices in our findings is also consistent
with fronto-striatal and fronto-parietal abnormalities identified in
paradigms of cognitive function in schizophrenia. For example, fronto-
striatal networks are thought to mediate the poor executive functioning
typically observed in people with schizophrenia (Camchong et al.,
2006; Koch et al., 2008). Abnormalities in this circuit have in fact been
proposed as promising biological markers of the disease (Ettinger et al.,
2012; Fusar-Poli et al., 2011). Furthermore, fronto-parietal attention
and memory network abnormalities are thought to mediate the atten-
tion and memory deficits characteristic of schizophrenia (Bassett et al.,
2009; Weiss et al., 2011). Such fronto-parietal networks might further

Fig. 4. Axial, sagittal, and coronal views of modality-specific (NBS) components and intermodal (NBSm) set. All components are significant at p < 0.001. Colored circles and lines
indicate nodes and edges respectively that have been identified in the structural (left), functional (middle), and intermodal (right) components; gray circles indicate nodes that were not
present in the significant components.
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mediate complex cognitive processes such as insight (Antonius et al.,
2011).

From a network perspective, our findings are particularly relevant
when compared to studies of network efficiency and organization. A
recent study has described the human connectome as having a core of
highly connected hubs, also known as a “rich-club” (van den Heuvel
and Sporns, 2011). A rich-club architecture contains a core of hubs that
are densely connected among themselves rather than being densely
connected to non-hub nodes. This organization may provide resilience
against network failure, based on the redundant connectivity of hub
nodes. Van den Heuvel and Sporns identified 12 densely connected hub
regions including right and left superior parietal, right and left pre-
cuneus, right and left superior frontal cortex, right and left putamen,
right and left hippocampus, and right and left thalamus. In our study,
we also identified the right and left precuneus and right superior par-
ietal regions as members of the intermodal set; i.e. regions with ana-
tomical and functional connectivity significantly different in people
with schizophrenia. One could speculate that these common abnorm-
alities could result in a fundamental disruption in the network's ability
to recover from intense demands such as biological or psychological
stressors.

We have shown NBSm to offer distinct promise as a methodology,
but caution is warranted in interpreting our specific findings with re-
spect to the underlying connectomics of schizophrenia. While graph
theory is a powerful tool, its metrics can be biased and sensitive to
shortcomings and variability in the underlying data and/or data pro-
cessing techniques. This has been examined in-depth in the literature
(Fornito et al., 2013) but warrants discussion of specific considerations.
Graph theory relies on accurate and reliable definition of nodes and
edges, with edges having the strength of connectivity defined based on
the value of underlying data. Should the node or edge definition be
unreliable, then the composite network measures will also be unreli-
able. Drakesmith et al. (2015) and Garrison et al. (2015) have shown
that simple thresholding of networks, a common practice used in neu-
roimaging graph theory to find subnetworks of interest, is an unreliable
method causing a larger likely variation in the graph statistics com-
pared to non-thresholded metrics such as streamline counts or func-
tional connectivity. Further, Braun et al. (2012) have shown that
second order metrics (small-worldness, hierarchy, and assortativity) are
more robust than first order metrics (clustering coefficient, path length,
efficiency). Garrison et al. suggests measures of sparsity are reliable at
defining subnetworks of interest whereas Drakesmith et al. suggests a
multi-threshold technique. NBS and our extension NBSm take a similar
approach, by avoiding a first order threshold technique, to discover
relevant subnetworks based on the statistical difference in edge strength
between groups. This procedure avoids an arbitrary threshold but in-
stead uses the significance of the data to determine connectivity. Of
course, our method is not without its own potential pitfalls: the method
could be subject to compounded error from the combination of multiple
graph theoretical analyses as well as methodological issues in the un-
derlying data.

These sources of error are worth discussion and are likely limita-
tions in our study based on the methodology used to collect and process
the data. First, use of DTI has been shown to produce elevated false
negatives which could alter the subsequent components produced by
NBSm (Feigl et al., 2014; Kuhnt et al., 2013). Newer diffusion para-
digms and analysis tools are available and have been shown to be more
sensitive at detecting crossing tracts as well as local connectivity tracts
(Kuhnt et al., 2013; Proix et al., 2016). We did not have motion para-
meter data for our DTI. While we found no motion group differences in
the fMRI data, this does not necessarily mean there was no motion
differences in the DTI data. Second, the validity of our findings may be
limited by the short fMRI acquisition length of 6 min, as has been
shown elsewhere in the literature (Birn et al., 2013). New multiband
techniques are now available and have been shown to reduce scanning
time and increase sensitivity to detect resting state brain networks

(Preibisch et al., 2015). Third, our anatomical connectivity matrix is
likely sensitive to varying brain size. This has been shown to be a
common finding in those with schizophrenia (Haijma et al., 2013). This
is a possible limitation of our findings as the analysis was performed in
native space and there was no normalization step performed prior to
subsequent analysis. Fourth, our parcellation technique is an anato-
mical parcellation and makes use of the AAL atlas (Tzourio-Mazoyer
et al., 2002). While this method has been shown to be rapid, intuitive,
and reliable it is low resolution, and has large variations in node size
(Fornito et al., 2013) which can impact on the reproducibility of con-
nectivity patterns (Craddock et al., 2012; Smith et al., 2011). Future
work could utilize subject-specific structural imaging driven parcella-
tions. For example, Proix et al. (2016) evaluated the effects of this sort
of parcellation scheme using 140 nodes with structural imaging, and
found it to be effective for modelling slow resting state network
changes, specifically those found in fMRI. This could provide more
reproducible connectivity patterns to use with NBSm. Fifth, in our
participants with schizophrenia, neuroleptic medications were being
used at differing doses. This has been shown to have significant but
unpredictable effects on functional connectivity (De Rossi et al., 2015).
Future studies should attempt to normalize neuroleptic dosing across
participants. Finally, consideration must be given to the impact of
changes in functional connectivity over time. Calhoun et al. (2014)
have shown changes in functional connectivity over time within a
single resting state imaging session. Future work should examine the
NBSm component change within a single resting state session to de-
termine if there are multi-modal components that vary within session.

Overall our approach is novel, robust, and uncovers regions of
fundamental importance in their contribution to both anatomical and
functional dysconnectivity in schizophrenia through the use of an in-
tegrated, multimodal analysis. The work confirms a picture of dyscon-
nectivity in regions thought to mediate central brain processes such as
memory, insight, and perceptual experiences. The findings provide
specific foci for further study in a field dominated by vast and complex
findings. Future work will seek to identify intermodal component-based
and node-based diagnostics that correlate with positive symptoms, ne-
gative symptoms, and cognitive and neuropsychological variables,
which together could provide a critical understanding of long-term
clinical prognosis, possible targets of therapy, or biomarkers to assess
response to therapy.
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