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ABSTRACT

Skeletal muscle wasting is a common feature of chronic kidney disease (CKD) and is clinically relevant due to associations
with quality of life, physical functioning, mortality and a number of comorbidities. Satellite cells (SCs) are a population of
skeletal muscle progenitor cells responsible for accrual and maintenance of muscle mass by providing new nuclei to
myofibres. Recent evidence from animal models and human studies indicates CKD may negatively affect SC abundance and
function in response to stimuli such as exercise and damage. The aim of this review is to collate recent literature on the
effect of CKD on SCs, with a particular focus on the myogenic response to exercise in this population. Exercise is widely
recognized as important for the maintenance of healthy skeletal muscle mass and is increasingly advocated in the care of a
number of chronic conditions. Therefore a greater understanding of the impact of uraemia upon SCs and the possible
altered myogenic response in CKD is required to inform strategies to prevent uraemic cachexia.
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INTRODUCTION

Skeletal muscle wasting in CKD

Chronic kidney disease (CKD) is characterized by a progressive
decline in renal function, often in conjunction with structural
abnormalities. The prevalence of CKD Stages 3-5 is predicted to
be 8.5% in the UK and 10.6% globally, with prevalence greatest
at Stage 3, higher among women and increasing with age [1-3].
The number of patients receiving renal replacement therapy
(RRT) has increased in the UK from 45 484 to 61 256 between
2007 and 2015 [4, 5].

Cachexia is highly prevalent in CKD (Table 1). It is associated
with declining renal function [6-8] and therefore is prominent
during the latter stages of the disease [9]. However, wasting is
also reported in non-dialysis patients [7, 10, 11] and the rate of
decline may be greater compared with patients receiving RRT

[12]. Reduced muscle mass and strength is also common in re-
nal transplant recipients [13, 14] and is associated with mortal-
ity and graft failure [15, 16].

The prevalence of muscle wasting in CKD varies depending
on the method of assessment, with different criteria referring to
measures of body composition, functional outcomes or a combi-
nation (Table 1) [10, 17-27]. Even when employing the same
measure, differing cut-off values are often used. For example,
the European Working Group on Sarcopenia in Older People
(EWGSOP) and Foundation for the National Institutes of Health
(FNIH) determine sarcopenia according to hand-grip strength
but with differing cut-offs (<30kg/20kg versus <26kg/16kg in
men and women, respectively). This can significantly influence
prevalence statistics. Zhou et al. [18] reported 29% of 148 non-
dialysis patients fit the EWGSOP classification of
sarcopenia, however, according to appendicular lean mass

Received: 21.2.2018. Editorial decision: 18.5.2018

© The Author(s) 2018. Published by Oxford University Press on behalf of ERA-EDTA.
This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/
licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited.

For commercial re-use, please contact journals.permissions@oup.com

810


mailto:tftos1@leicester.ac.uk
https://academic.oup.com/
https://academic.oup.com/
https://academic.oup.com/

Exercise and cachexia in CKD |

Table 1. Prevalence of sarcopenia in CKD and associations with mortality and physical function
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: Reference Population Criteria Prevalence (%)  Association
Z Souza et al. [17] NDD EWGSOP 11.9 ADL, gait speed, functional capacity,
(@] FNIH 28.7 higher BMI
Q Zhou et al. [18] NDD CKD ASMI < 7.3/5.5 kg/m? men/women 36 Measured GFR, functional reach, Berg
(Stages 3-5) HGS < 30/20 kg men/women 29 balance score.
= ASMI and Handgrip 14
< Pereira et al. [10] NDD CKD (3-5)  HGS < 30th percentile of population, sex- Mortality HR (association between
2 specific reference, plus: mortality and sarcopenia according
Z MACM < 90% population reference 9.8 to BIA significant after multivariate
o SGA 9.4 adjustment)
@) BIA < 10.76/6.76 kg/m?® men/women 5.9
Lamarcaetal. [19] HD CKD DEXA 20th percentile of young individuals 73.5
2 SD below mean of young individuals 32.7
BIA 20th percentile of young individuals 51
2SD below mean of young individuals 13.7
SKF 20th percentile of young individuals 44.1
2 SD below mean of young individuals 3.9
MAMC < 90% population reference 347
CC<31cm 21.8
HGS < 10th percentile of population 85.1
cohort
Kittiskulnam HD CKD Low MM (2 SD below sex-specific means Gait speed (Associations between data
et al. [20] for young adults) indexed to: and mortality presented in another
Height 8.1 paper [21]. Significantly higher mor-
Weight 25.3 tality rate in sarcopenic patients,
BSA 32.4 according to low MM, but not in ad-
BMI 25.0 justed models)
Low MM and SM strength (HGS <26/16 kg
men/women) indexed to:
Height 3.9
|2‘ Weight 11.4
o BSA 15.9
BMI 14.0
Gracia-Iguacel HD CKD ISRMN [23] criteria of PEW at 3 time points No association between PEW and mor-
etal. [22] Baseline tality but loss of MM associated
12months 37 with increased mortality
24months 40.5
41.1
Carrero et al. [24] HD SGA 39 Mortality risk
Kittiskulnam HD HGS <26/16 kg men/women 29.9 Low HGS and slow gait speed associ-
etal. [21] ated with mortality risk
Changet al. [25] NDD CKD HGS, SGA, BIA, MAMC, MAMA, MAC, SKF N/A Only HGS was significantly associated
with composite endpoints of non-
dialysis mortality and ESRD
Isoyamaetal. [26]  Dialysis CKD ASMI 7.3/5.5 kg/m? 24% Low MS associated with PEW, comor-
HGS <30/20 kg men/women 15% bidities, inactivity, old age, low albu-
Combined 20% min, inflammation. No association
of these factors with low MM
Both low MS and MM independently
associated with mortality risk
Wang et al. [27] NDD CKD LTI <10% reference value 12.2% Serum albumin, eGFR, age, IL-6, CVD

ASMI, Appendicular Skeletal Muscle Index; BIA, bioelectrical impedance analysis; BSA, body surface area; CC, calf circumference; DEXA, dual-energy X-ray absorptiom-
etry; SKF, skinfold thickness; HGS, handgrip strength; LTI, Lean Tissue Index.; MAC, mid-arm circumference; MAMA, mid-arm muscle area; MAMC, mid-arm muscle
circumference; NDD, non-dialysis dependent; SGA, subjective global assessment; SM, skeletal muscle.

(<7.3kg/m? versus 5.5kg/m? for men and women, respectively)
this increased to 36%, whereas 14% satisfied both criteria [18].
Every 1mL/min/1.73m? decrement in measured GFR was asso-
ciated with a 0.15kg loss of lean mass, which was in turn posi-
tively associated with physical functioning [18]. Therefore,

regardless of the criteria used, sarcopenia appears to worsen
with disease progression and is associated with poorer perfor-
mance of activities of daily living (ADL), slower gait speed, re-
duced physical functioning and inactivity [17]. Consensus on
the definition and methods of assessment of sarcopenia in CKD
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are required and should employ multidimensional measures
encompassing muscle size and functionality with cut-off points
relevant to CKD [28].

The clinical relevance of reduced muscle mass and strength
in CKD is exemplified through associations with mortality, de-
pression, quality of life, diabetes and cardiovascular disease
(CVD) [10,29-32]. For example, psoas cross-sectional area (CSA)
independently predicts major adverse cardiovascular events in
non-dialysis patients [33]. Reduced muscle mass is also associ-
ated with impaired exercise capacity and physical functioning
[9, 11, 12, 34, 35], which likely contribute to reduced rates of
physical activity in CKD [11, 36]. Roshanravan et al., [37] recently
collated evidence from non-dialysis demonstrating every 0.1 m/
s decrement in gait speed is associated with a 26% greater
risk of death [37]. Reduced strength and physical capacity may
account for the higher fall rates in CKD patients compared with
the general population [38]. Falls are a major cause of acute
injury and often initiate a decline in functional independence,
culminating in greater reliance on health care services [39],
which is predicted to cost the National Health Service in
excess of £2.3 billion per years [39]. This exemplifies the impor-
tance of early detection of skeletal muscle impairment to
allow for timely initiation of appropriate therapy in patients
with CKD [40].

CKD adversely alters both protein synthesis and degrada-
tion, with proposed mechanisms including upregulation of the
ubiquitin-proteasome system (UPS), caspase-3 and autophagy
in response to factors that include metabolic acidosis, inflam-
mation, mitochondrial dysfunction, oxidative stress and insulin
resistance (IR) [40-43]. Satellite cells (SCs) are specialized stem-
like cells that regulate skeletal muscle mass by initiating myo-
genesis, thereby facilitating growth and repair. Altered SC func-
tion is a feature of a number of conditions associated with loss
of muscle mass, including unloading, denervation and atrophy
induced by a number of chronic diseases [44]. Recent evidence
indicates that CKD may also impair the functioning of these
cells, presenting a novel mechanism contributing to uraemic ca-
chexia [41]. The aim of this article is to review the available liter-
ature investigating the role of SCs in uraemic cachexia and to
explore the potential for exercise to restore any lost or inhibited
function of these cells.

Overview of myogenesis

Skeletal muscle comprises long cylindrical multinucleated
fibres that run the length of a tissue longitudinally and are
grouped into bundles, referred to as fascicles (Figure 1).
Myofibres are composed of numerous myofibrils organized in
series, which are in turn composed of sarcomeres, the contrac-
tile unit of muscle tissue required for locomotion. Muscle fibres
are highly specialized, with specific metabolic capacities to
meet distinct contractile demands. As a result, mature muscle
is post-mitotic and comprises terminally differentiated cells
[45]. However, skeletal muscle is also highly plastic, displaying
remarkable capacity to increase in size following hypertrophic
stimuli or repair damaged myofibres. This is afforded by the
population of SCs that supply new myonuclei to regenerating or
expanding myotubes [46].

Individual myofibres are enveloped by an elastic membrane,
the sarcolemma, which comprises a plasma and basement
membrane. Under homeostatic conditions, SCs reside in a niche
between these membranes in a dormant state known as quies-
cence. Quiescent SCs are undifferentiated and non-
proliferative, but upon activation by damage, exercise or growth

factors, they are able to re-enter the cell cycle [47]. SC progeny,
referred to as myoblasts or myogenic precursor cells (MPCs),
proliferate and differentiate, committing to the myogenic line-
age (myocytes). A small population of SCs will undergo asym-
metric division, with one of their progeny progressing along the
myogenic programme, whereas the other retains its stem cell-
like capacity and returns to quiescence, maintaining the SC
pool [46]. Myoblasts undergoing terminal differentiation will ei-
ther fuse to each other or to existing myotubes, providing new
myonuclei that are phenotypically and functionally indistin-
guishable from those surrounding them [48].

Myogenesis is regulated by the sequential expression of a
number of transcription factors, namely paired-box protein-7
(Pax7) and a group of myogenic regulatory factors (MRFs).
Quiescent SCs can be identified by the expression of Pax7 and
the absence of myoblast determination protein (MyoD) and
myogenin expression [46]. Upon activation, myogenic factor 5
(Myf5) is upregulated and subsequently proliferating MPCs ex-
press high levels of MyoD. Following several rounds of prolifera-
tion, terminal differentiation is initiated by myogenin and
MRF4, whereas differentiated cells are also notable for their ab-
sence of Pax7 expression, due to downregulation by myogenin
[46-49].

Numerous regulators participate in the orchestration of this
complex process, acting via distinct signalling pathways to fa-
cilitate MRF expression and cellular progression through each
stage of the myogenic program. It is beyond the scope of this re-
view to discuss the many regulatory factors involved in myo-
genesis, however, interested readers are directed to the
following comprehensive reviews [46, 49].

SC FUNCTION IN CKD

Research assessing the effect of CKD on myogenesis is relatively
scarce. However, it has been suggested that mice subjected to
subtotal nephrectomy exhibit reduced MPC abundance, with
18% fewer myonuclei located outside the sarcolemma of myofi-
bres [50].

When assessed according to MRF expression, CKD mice
showed reduced mRNA expression of Pax7, but in the presence
of increased MyoD and myogenin, increased mRNA expression
[51]. These mice were not subjected to injury and there was no
evidence of ongoing regeneration, however, elevated muscle
RING-finger protein-1 (MuRF1) and muscle atrophy F-box
(MAFbx) mRNA expression supports the notion of elevated pro-
teolysis, previously reported in CKD, potentially providing a
stimulus for myogenesis [51].

In contrast, another study reported no difference in Pax7
gene expression or the abundance of Pax7* cells between CKD
and wild-type (WT) mice [52]. However, MyoD, Myf-5 and myo-
genin mRNA were supressed in CKD muscle [50, 52]. Reduced
positive staining for MyoD was seen in SCs isolated from CKD
mice, together with lower levels of ‘S-bromo-2’-deoxyuridine
(BrdU) incorporation and embryonic myosin heavy chain
(eMyHC) staining indicating downregulated SC proliferation
and differentiation, respectively, compared with WT-derived
SCs. This in vitro evidence suggests that CKD does not
reduce the number of SCs but impairs their activation and dif-
ferentiation [52].

The discrepancy of the influence of uraemia on MRF expres-
sion may be a product of differing methods, with a genetic model
of slow progressive CKD being used by Avin et al. [51] compared
with the more widely used 5/6 subtotal nephrectomy [52].
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FIGURE 1: Overview of myogenesis and regulatory processes and the possible effect of CKD. Arrows denote stimulatory/upregulatory impact and flat lines indicate neg-
ative/suppressive impact. SCs are activated by stimuli such as exercise and damage. Proliferating cells and myoblasts either return to quiescence or differentiate to be-
come myocytes. Mature myocytes fuse to each other or existing myotubes, providing new myonuclei. CKD interferes with both proliferation and differentiation of SCs
with factors including inflammation, myostatin signalling and IGF-1/Akt dysregulation proposed as primary mechanisms. See text for details.

Regardless, both studies show CKD induced dysregulation of SCs
in mice.

SCs are required to repair muscle after acute injury, indi-
cated by the lack of regenerative myogenesis following ablation
of Pax7" cells [53, 54]. Nephrectomized mice subjected to cardio-
toxin (CTX) injury show blunted MyoD and myogenin mRNA ex-
pression 72-h post-injury, persisting for 14 days [52]. While WT
muscle achieved full repair after 14 days, at this point CKD mice
presented expanded interstitial spaces, persistence of mononu-
clear cells and myofibres remained considerably smaller after a
month [52]. Therefore the blunted myogenic gene expression
seen in isolated SCs in vitro and whole muscle in CKD is repli-
cated in an in vivo model of injury, culminating in impaired tis-
sue regeneration. To our knowledge, no data are available
assessing the myogenic response of humans with CKD to mus-
cle damage. However, another scenario in which SCs are acti-
vated is in response to exercise.

Effects of exercise on SC function in CKD

Generally, exercise activates SCs, with numerous studies show-
ing initiation of myogenesis following a single bout in healthy
individuals [55-58]. This has been seen following protocols
designed to induce muscle damage, however, SCs also respond
to non-damaging and non-hypertrophic exercise [59]. Sedentary

obese individuals showed an increase in Pax7" and MyoD™ cells
in type I fibres after a single bout of a resistance exercise proto-
col relevant to ‘real-world’ physical activity (8 x 8 leg extension
repetitions at 70% 1 repetition maximum). Although no change
in type II fibre-specific SCs was seen [60]. SC activation in the
absence of myofibre damage suggests different mechanisms of
action, with cytokines and growth factors proposed to play cen-
tral roles [61].

Exercise has previously been shown to attenuate CKD-in-
duced atrophy in mice [50]. This was due in part to the rescue of
depressed protein synthesis and elevated proteolytic rates.
Muscle overload, but not treadmill running, increased peripher-
ally located myonuclei by 1.8-fold and increased the expression
of MyoD, myogenin and embryonic MyHC [50]. This indicates
that a model of resistance exercise can increase MPC abundance
and activation compared with non-exercised uraemic mice, al-
leviating CKD-induced atrophy.

Exercise is increasingly being recognized as an important as-
pect in the treatment of CKD due to improvements in muscle
size and function, physical capacity and CVD risk [40, 62].
However, the effect of CKD on SC function in patients and the
myogenic response to exercise has received less attention.

Dialysis patients showed reduced SC content in type II com-
pared with type I fibres [63]. However, when normalized for fibre
area, this difference was no longer evident, suggesting this
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finding may be a product of disproportionate atrophy in type II
fibres common in CKD patients [63]. The abundance of SCs per
fibre increased by 15% in type I fibres following 16 weeks of
high-intensity resistance training, with no increase in myonu-
clear content [63]. Interestingly, there was no change in the SC
content, but an increase in myonuclear content was reported
in type II fibres, indicating fibre-specific SC responses to train-
ing. [63].

We have previously reported the molecular response to re-
sistance exercise in non-dialysis patients [64]. We found no
change in MyoD or myogenin mRNA expression 24-h after an
unaccustomed bout of exercise compared with baseline levels.
Similarly, no acute myogenic response was seen following a pe-
riod of resistance training [64]. This lack of exercise-induced
myogenesis could diminish exercise adaptation, contributing to
loss of muscle mass. However, these patients did show
increases in muscle CSA (8%), volume (10%) and knee extensor
strength (13%) after training [65]. SC activation during the early
stages of training appears responsive to the degree of damage
caused by unaccustomed exercise, which is attenuated with
regular exercise [66]. Therefore it is possible the exercise proto-
col we employed did not cause sufficient tissue damage to stim-
ulate SC activation. With regard to the training-induced
hypertrophy, while we did not assess SC and myonuclear con-
tent, it is possible to achieve hypertrophy without the accrual of
additional myonuclei if the existing pool is capable of support-
ing the transcriptional capacity of the expanded tissue [66].

Alternatively, the single sample point at 24-h post-exercise
missed an effect. Comprehensive determination of the time
course of gene expression over a 24-h period following resis-
tance exercise reported upregulation of myogenic genes from
2- to 12-h, with MRF4, MyoD and myogenin peaking within
4-8h in young healthy individuals [67]. Increases in Pax7" cells
have been reported 24-h post-exercise [56] and even peaking 72-
h after and remaining above baseline values 120-h post-exercise
[57]. However, these studies have generally employed more ex-
treme protocols of exhaustive eccentric exercise, causing
greater damage. The time course of a myogenic response to ex-
ercise, both damaging and non-damaging, requires more thor-
ough investigation in CKD.

In summary, SCs are recognized to be essential regulators of
skeletal muscle repair [68]. Their role in hypertrophy, however,
has been the subject of debate, with some supporting an essen-
tial requirement [69], while others show hypertrophy can be
achieved in their absence [68, 70]. These differences could be
the product of the methods used to deplete SCs (irradiation ver-
sus genetic approaches) in animal models and hypertrophic
stimuli (overload versus myostatin inhibition). In humans, a
wealth of evidence shows SC activation following acute and
chronic resistance exercise [57, 58, 60, 63, 66, 67, 71-73]. Indeed,
positive correlations between acute SC response and chronic
hypertrophic gains support a role for SC in skeletal muscle ad-
aptation [74]. As previously mentioned, non-hypertrophic aero-
bic exercise also stimulates a myogenic activation, without
increasing the SC pool, supporting a role in non-hypertrophic
skeletal muscle remodelling [59]. While debate remains on the
absolute requirement of SCs to hypertrophy in animal models,
the human evidence showing myogenic activation after both re-
sistance and endurance exercise overwhelmingly supports a
central role of SCs in skeletal muscle adaptation to exercise [48].

Within the context of CKD, however, there is a shortage of
research assessing the effect of CKD on SC function. The studies
that have been performed indicate that uraemia impairs SC
abundance and/or activation. This has been shown to

correspond to blunted myogenic response to muscle injury and
exercise, potentially contributing to sarcopenia.

MECHANISMS OF SC DYSFUNCTION IN CKD

Inflammation

SCs are receptive to and indeed reliant on signals from their lo-
cal environment, mediated by factors such as disease, damage
and exercise [46]. The involvement of cells of other lineages,
namely haematopoietic, is now recognized as pivotal to SC
function in response to exercise and tissue injury [75].

The early inflammatory response to acute injury is well
characterized, with neutrophils entering muscle within 1-24
h [76-81] and producing large amounts of oxidative free radicals
to remove cellular debris [82, 83]. Following neutrophil accumu-
lation, macrophages become the dominant leucocyte popula-
tion in regenerating skeletal muscle. An initial population of
Ly6C" monocytes/macrophages infiltrate regenerating muscle,
phagocytizing necrotic debris and producing large amounts of
pro-inflammatory cytokines before transitioning in situ to pro-
regenerative Ly6C-macrophages [84-86]. Impaired regeneration
following macrophage depletion illustrates their importance
[84, 87, 88]. This is due to close interaction between myogenic
cells and macrophages throughout myogenesis, with the former
facilitating monocyte chemotaxis while macrophages in turn
protect MPCs and myotubes against apoptosis [89, 90].

Pro-inflammatory macrophages associate with proliferating
MPCs in human muscle [91] and produce soluble factors that
stimulate MPC proliferation and cytokine secretion in vitro [91,
92]. Tumour necrosis factor o (TNFo) induces a dose-dependent
increase in myoblast proliferation [93] but inhibits myogenic
differentiation via nuclear factor kB (NF-xB) activation [94-96].
However, macrophages are also a source of insulin-like growth
factor-1 (IGF-1) [97] and anti-inflammatory macrophages have
been shown to co-localize with myogenin-positive MPCs in vivo,
promoting differentiation and myotube fusion [91]. In sum,
macrophage-derived growth factors and cytokines are involved
in both MPC proliferation and differentiation, demonstrating
the importance of the local inflammatory milieu in myogenesis.

CKD has a profound effect on this local inflammatory envi-
ronment, characterized by low-grade inflammation in circula-
tion. For example, systemic concentrations of C-reactive protein
(CRP) were independently associated with elevated protein deg-
radation and reduced protein synthesis and protein balance
in maintenance haemodialysis (HD) patients [98], while
interleukin-6 (IL-6) concentration was associated with reduced
lean tissue mass in non-dialysis CKD patients [27].

However, CKD patients also show elevated mRNA expres-
sion of intramuscular IL-6, TNF-o, toll-like receptor-4 (TLR4) and
myostatin, while NF-kB and p38 mitogen-activated protein ki-
nase (MAPK) signalling is also upregulated [99-101]. Uraemic ro-
dent models show greater cytokine production and macrophage
infiltration in adipose tissue, while peritoneal macrophages iso-
lated from partially nephrectomized mice show augmented M1
and blunted M2 polarization [102, 103]. Similar findings were re-
cently reported in humans with end-stage renal disease (ESRD),
as patients exhibited greater macrophage presence in adipose
tissue [104]. With regard to skeletal muscle, excessive macro-
phage infiltration and prolonged pro-inflammatory cytokine ex-
pression were reported in CKD mice subjected to CTX-induced
injury, culminating in delayed regeneration [52]. Therefore
uraemia upregulates cytokine expression and inflammatory
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signalling pathways in peripheral tissues while also altering in-
flammatory cell infiltration and function.

This altered immune cell presence and function in periph-
eral tissues may be a product of circulatory factors, with CKD
serum promoting M1 polarization and greater cytokine expres-
sion in macrophages derived from WT animals [102]. Serum
also promotes a pro-inflammatory response in myogenic cell
lines, evidenced by upregulation of TLR4 and TNF-o expression
in C2C12 cells [100] and also impairing mitochondrial function
[104]. Similarly, indoxyl sulfate, a uraemic toxin, recently re-
duced proliferation and differentiation of C2C12 while also
downregulating both mRNA and protein expression of MyoD,
myogenin and MyHC [105]. In sum, uraemia promotes a pro-
inflammatory response from both immune and myogenic cells.

As in response to injury, inflammation is part of a normal
exercise response and is an important regulator of SC activation
[106]. However, recent micro-array analysis showed an overall
pattern of blunted gene expression response to an acute bout of
exercise in CKD patients before and after transplantation [107].
Enhancement of various gene pathways following exercise in-
creased post-transplant, particularly those related to cytokine
and chemokine activity [107]. In addition to investigating the
myogenic response to resistance exercise described earlier [64],
we have also assessed the intramuscular inflammatory re-
sponse to an acute bout of resistance exercise in non-dialysis
CKD patients before and after 8 weeks of progressive resistance
training [65]. A considerable inflammatory response to exercise
in the untrained state was reported, with IL-6 (53-fold), mono-
cyte chemoattractant protein-1 (25-fold) and TNF-a (4-fold) all
increasing significantly. This suggests a transient worsening of
the inflammatory environment within muscle 24 h after a sin-
gle bout of exercise. Whether this inflammatory cytokine upre-
gulation is greater than that normally seen in healthy
individuals is unclear, however, the response was dampened af-
ter a period of training [64]. In addition, IL-15 mRNA was sup-
pressed significantly from baseline in the untrained state. IL-15
is another myokine with mitogenic properties [108] and has re-
cently been shown to mitigate the negative influence of TNF-a
on human myogenesis [109]. Training corrected this blunted IL-
15 expression, which was also combined with the reversal of in-
flammatory cytokine expression [64]. There was no evidence of
overt oxidative stress or protein catabolism following exercise
in either the unaccustomed or trained state [64].

Collectively this indicates an altered intramuscular response
to acute exercise in CKD patients. The apparent lack of a myo-
genic response in these patients following exercise has been
discussed earlier. Whether this was due to elevated local in-
flammation is unclear, but evidence suggests that CKD patients
were also unable to stimulate a myogenic response after a pe-
riod of training, despite normalization of cytokine expression
[64]. Considering the role of inflammation in myogenesis and
the effect of cytokines and immune cells on SCs in culture, fu-
ture research should address the effect of inflammatory factors
present in uraemia on SC function.

IR and diabetes mellitus (DM)

The prevalence of IR in CKD has been reported to range from 10
to 100%, with variance likely due to differences in population
and cause of disease, methods of measurement and criteria of
IR [110]. Research assessing how IR interferes with myogenesis
in CKD is lacking, however, much evidence has assessed its role
in SC dysfunction in obesity and type 2 DM.
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Large-scale cross-sectional evidence indicates patients with
type 2 DM show decreased muscle mass, quality and strength
and reduced physical function compared with non-diabetic
counterparts [111, 112] and that losses of skeletal muscle mass,
quality and strength with age are accelerated in the presence of
type 2 DM [113, 114].

Myopathy is common in insulin-resistant states, with SC
abundance and function central to this [115]. Lipotoxicity,
caused either by high-fat diets or transgenic mouse models,
prolongs muscle regeneration via impaired SC functioning [116,
117]. Animal models of type 2 DM show delayed regeneration
following CTX injury, with impaired SC activation and prolifera-
tion in response to damage, as indicated by reduced BrdU incor-
poration [118]. Delayed regeneration coincided with impaired
inflammatory response with attenuated macrophage accumu-
lation in damaged areas, potentially contributing to persistent
necrosis and collagen accumulation [118, 119].

SCs derived from insulin-resistant donors exhibit impaired
glucose and lipid metabolism, indicating these cells retain do-
nor characteristics in vitro [115, 120]. Interestingly, altered in-
flammatory signalling is also conserved in primary cell cultures
derived from insulin-resistant individuals with evidence of in-
creased NF-kB DNA binding and cytokine production [121] and
dysfunctional IL-6-negative regulation [122]. The effect of in-
flammation on SC function has been discussed previously (see
above) and may represent a common mechanism through
which CKD and type 2 DM negatively influence myogenesis.

Exercise is routinely used in the management of diabetes.
Reduced SC proliferation in obese Zucker rats was counteracted
by loading along with protein expression of myogenin, MyoD
and Akt [123]. However, no change in SC content was seen after
6 months of endurance exercise in obese male type 2 DM
patients [124]. This may be due to the lack of hypertrophy, with
patients showing no change in fibre composition, CSA or lean
mass. Therefore exercise has the potential to ameliorate the
negative influence of type 2 DM and IR on SC function, but fur-
ther research is needed specifically in the context of CKD and to
clarify the optimal exercise mode to use for maximum benefit.

IGF-1

IGF-1 signalling is central to maintaining a healthy muscle
mass. Following IGF-1 receptor binding, a cascade of intracellu-
lar signalling is initiated that represents a crossroads in protein
metabolism, stimulating protein synthesis via downstream tar-
gets, such as Protein Kinase B and mammalian target of rapa-
mycin, while suppressing degradation through phosphorylation
of Forkhead box O1 (FoxO1) and subsequent inhibition of the
UPS [125, 126]. This is relevant to CKD, as rodent models show
defective post-receptor insulin/IGF-1 signalling culminating in
reduced Akt activation [127].

IGF-1 levels increase both locally and in circulation after ex-
ercise. Intramuscular IGF-1 also increases after tissue damage,
primarily derived from macrophages [97, 128]. Most mitogens
are generally believed to increase proliferation and inhibit dif-
ferentiation, however, IGF-1 positively regulates both of these
mutually exclusive processes through distinct signalling path-
ways. Early provision of IGF-1 by macrophages mediates MPC
proliferation via MAPK signalling, whereas later IGF-1 secretion
by macrophages and other cell types, including fibroblasts, sup-
ports differentiation via phosphatidylinositol-3-kinase-induced
p70 S6 kinase activation [129]. Alternatively, the IGF-1 splice
variant mechano-growth factor (MGF) is expressed early after
mechanical stretch in rodents, promoting proliferation and
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blocking differentiation, whereas IGF-IEa is expressed later and
promotes myoblast differentiation [130, 131]. A similar expres-
sion time course of these IGF-1 isoforms was replicated in
humans after exercise [132].

Numerous studies using in vivo transgenic or knock-out
models point to a major role of IGF-1 in the regulation of muscle
mass [133]. Transgenic mice bearing heterozygous IGF-1 recep-
tor (IGF-1R) mutation in MyoD" cells show reduced muscle
mass and myofibre CSA, while myogenic gene expression, pro-
liferation and differentiation rates are also suppressed [52, 133].
IGF-1 signalling intersects with numerous members of other
pathways in skeletal muscle [126], including transforming
growth factor p1 (TGF-B1), which suppresses MyoD-dependent
differentiation via Smad3 signalling [134]. However, IGF-1 pre-
vents nuclear translocation of Smad3 and subsequent impact
on gene expression due to cytoplasmic association with p-Akt
[133]. Exercise-induced Akt activation has been seen to be
blunted in mouse models of CKD and in human CKD patients,
suggesting CKD induces an anabolic resistance [50, 64] that may
impair SC function and also contribute to fibrosis by failing to
regulate TGF-B1 signalling, as seen in IGF-1R™~ models [133].
This appears to be rescued by exercise training [50, 64], which
was also associated with increased MRF expression, suggesting
that this is one possible mechanism by which regular exercise
training might be able to improve SC function.

Muscle overload designed to replicate resistance exercise in-
creased IGF-1 mRNA in CKD mice and corrected atrophy [135].
Similarly, a cycling-based endurance training program in-
creased IGF-1 expression in muscle of maintenance HD patients
[136]. This highlights suppressed IGF-1 signalling as a therapeu-
tic target to prevent muscle wasting, which appears can be posi-
tively modulated by exercise training. This is an attractive, safe
and low-cost intervention that provides numerous other bene-
fits to CKD patients.

Myostatin

Myostatin is a member of the TGF-p protein family and is a neg-
ative regulator of muscle mass. It is expressed in SCs and their
progeny, where it inhibits Go-S phase progression and prolifera-
tion [137]. Myostatin knock-out myoblasts exhibit prolonged
proliferation in differentiation medium due to extended expres-
sion of MyoD and myogenin [137].

In a recent publication, myostatin was shown to stimulate
fibro/adipogenic precursor (FAP) cell proliferation. FAPs are
bipotent progenitor cells capable of differentiating into adipo-
cytes or fibrocytes. Myostatin increases fibrotic gene expression
in FAPs, promoting fibrocyte differentiation and potentially ac-
counting for greater FAP content and a-smooth muscle actin ex-
pression in CKD muscle following injury [138]. Blocking
myostatin was effective in reducing FAP abundance and fibrotic
gene expression in injured CKD mice compared with controls,
while also decreasing fibrotic gene expression. Therefore it
appears myostatin expression simultaneously inhibits myogen-
esis and promotes fibrosis by pushing FAPs towards fibrocyte
differentiation [138].

Myostatin mRNA expression is elevated in CKD muscle, po-
tentially due to TNF-o-induced NF-kB activation [51, 138, 139].
This appears to induce atrophy, as intramuscular antagonism
of myostatin corrected rates of protein synthesis and degrada-
tion, preventing loss of muscle mass [139]. This was partially
due to increased Akt phosphorylation, subsequently increasing
phosphorylation of FoxO3a and FoxO1 [139]. In addition,

myostatin inhibition also increased MyoD and myogenin ex-
pression at rest and in response to CTX injury in CKD mice
[139].

The applicability of myostatin inhibition to CKD patients has
not been investigated, but a number of clinical trials have been
performed in healthy controls [140], elderly participants [141]
and other patient populations [142]. These trials demonstrate
anti-myostatin treatments to be generally well tolerated and to
exert positive effects on muscle mass and functional outcomes
[140, 143].

Another method of reducing myostatin expression is
through exercise. Muscle overload attenuates declines in MyoD,
myogenin and eMyHC expression in CKD muscle [50] and nor-
malized elevated myostatin expression [135]. Regular endur-
ance training also appears to improve myostatin mRNA
expression levels in HD patients [136] and resistance exercise
suppressed myostatin expression 24 h after a single bout in
non-dialysis patients [64]. Therefore exercise may pose a viable
therapeutic strategy of improving the effect of altered intramus-
cular myostatin signalling in CKD.

Nutrient availability

In addition to stimuli such as exercise, tissue damage and
growth hormones, nutrient availability has emerged as an addi-
tional modulator of SC function. Protein provision, specifically
of branched-chain amino acids (BCAAs) such as leucine, may
have the potential to augment SC responses in vitro and in vivo
following acute exercise, as comprehensively reviewed recently
[144].

Dietary recommendations, especially those concerning pro-
tein, are complicated within a uraemic context. Failure to ex-
crete non-volatile acids derived from dietary protein can result
in metabolic acidosis, which is implicated in protein catabolism,
systemic inflammation and CKD progression [145]. However,
protein energy wasting is prevalent in CKD and frequently
caused by inadequate dietary protein intake [146]. Low-protein
diets are common in non-dialysis CKD patients, and hypertro-
phic benefits of exercise have been achieved consuming
0.6 g/’kg/day [147]. However, considering the impact of protein
availability on hypertrophic and specifically SC responses to ex-
ercise [144], further research is warranted to determine the opti-
mal dosage and timing of protein intake post-exercise in order
to maximize benefits without compromising other aspects of
patient care.

Ageing

Another factor relevant to SC dysfunction within the context of
CKD is ageing. The decline in skeletal muscle mass starts during
the third decade of life, accelerating during the fifth [148] and
SC dysfunction has been highlighted as a contributing factor
[149]. Increasing age is associated with reduced fibre CSA and
SC content [73], which disproportionately effects type II fibres
[149, 150]. While 4 weeks of retraining in young participants re-
stored the myofibre area and SC content lost during 2 weeks of
immobilization, elderly individuals showed no such recovery
[151]. Previous research also reports blunted acute SC responses
after resistance exercise in type Il-associated SCs, potentially
due to delayed downregulation of myostatin [73, 152]. This indi-
cates impaired or delayed SC response to exercise. Promisingly
however, age-related declines in type II fibre size and SC con-
tent can be corrected following prolonged resistance exercise
regimes lasting 12 weeks [149].
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As with elderly individuals, dialysis patients reportedly
show greater type II-specific fibre atrophy [153] and lower type
II SC content [63]. Due to the chronic nature of renal disease,
prevalence is high in the elderly. However, with neither study
including age-matched controls, it is difficult to disentangle the
contributions of aging and CKD to muscle wasting and SC
dysfunction.

SUMMARY

Muscle wasting is prevalent in CKD patients and is associated
with a number of negative outcomes. Impaired SC functioning
has emerged as a novel mechanism of atrophy and muscle dys-
function in CKD. Research on this topic is in its infancy, but a
greater understanding of the effect of uraemia on SCs and the
mechanisms through which this occurs will allow for more tar-
geted treatment strategies.

This is particularly pertinent as increasingly there are calls
for exercise to be implemented into standard renal care due to
its favourable impacts on a range of common comorbidities
[154]. Despite the wealth of evidence in support of ‘exercise as
medicine’ in CKD, routine prescription is uncommon [155].
More research is required to determine the necessary dose to
prescribe to CKD patients, particularly in non-dialysis and
transplant populations [156], to increase implementation to
that seen in other chronic diseases.
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