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Chronic immune activation and inflammation are unwanted consequences of
many pathological conditions, since they could lead to tissue damage and
immune exhaustion, both of which can worsen the pathological condition
status. In fact, the immunesystem isnaturallyequippedwith immunoregulatory
cells that can limit immune activation and inflammation.However, chronic acti-
vation of downregulatory immune responses is also associated with unwanted
consequences that, in turn, could lead todiseaseprogressionasseen in thecaseof
cancer and chronic infections. Myeloid-derived suppressor cells (MDSCs) are
now considered to play a pivotal role in the pathogenesis of different inflamma-
tory pathological conditions, including different types of cancer and chronic
infections. As a potent immunosuppressor cell population, MDSCs can inhibit
specific and non-specific immune responses via different mechanisms that, in
turn, lead to disease persistence. One such mechanism by which MDSCs can
activate their immunosuppressive effects is accomplished by secreting copious
amounts of immunosuppressant molecules such as interleukin-10 (IL-10). In
this article, wewill focus on the pathological role ofMDSCexpansion in chronic
inflammatory conditions including cancer, sepsis/infection, autoimmunity,
asthma and ageing, as well as some of the mechanisms by which MDSCs/
IL-10 contribute to the disease progression in such conditions.
1. Introduction
Inflammatory immune responses are essential for combating infections and
malignancies; however, it is important to remember that chronic inflammation
could lead to tissue damage and worsen the pathological condition [1–4].
Therefore, controlling such immune responses is of central importance to avoid
such unwanted consequences. Paradoxically, shifting the inflammatory to
anti-inflammatory immune responses is considered to be a hallmark in the
pathogenesis of many inflammatory conditions, including cancer and chronic
infections. This is especially because mediating anti-inflammatory responses
can limit specific anti-cancer/infection immune responses that, in turn, lead to
disease persistence. Hence, it is essential to realize that restoring the balance
between inflammatory and anti-inflammatory responses (i.e. immune homeosta-
sis) is a key clue to control chronic inflammatory pathological conditions. To this
end, understanding the mechanisms by which such shifts occur in pathological
conditions are essential to pave the way to achieve immune homeostasis.

A large body of evidence shows that such immune shifts, at least in part, are
driven by a heterogeneous population of immune cells called ‘myeloid-derived
suppressor cells’ (MDSCs). These cells are innate immune cells of myeloid
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origin with potent immunosuppressive capabilities, and are
known to expand and accumulate in many inflammatory
pathological conditions. Expansion of MDSCs is mediated by
the activation of different transcription and regulatory factors.
These include signal transducer and activator of transcription
(STAT3), cyclic adenosine 30,50-monophosphate/mitogen-acti-
vated protein kinase (cAMP/MAPK), interferon related
factor-8 (IRF-8), CCAAT/enhancer-binding protein-β (C/
EBPβ), nuclear factor I-A (NFIA), hypoxia-inducible factor-1
(HIF-1) and retinoblastoma protein 1 (RB1) among others. Acti-
vation or repression of such factors was shown to determine
the ultimate fate of MDSC differentiation into a distinct popu-
lation [5–12]. Another important point to be mentioned here is
that MDSC expansion is totally governed by the inflammatory
microenvironment. In other words, cytokines such as
interferon-γ (IFN-γ), interleukin (IL)-β, IL-6, IL-4/IL-13,
tumour-necrosis factor-α (TNF-α) or other molecules such as
toll-like receptors (TLRs), and prostaglandin E2 (PGE2) acti-
vate specific cellular signalling pathway(s) (e.g. STAT1,
STAT3, STAT6, cyclooxygenase (COX) and NF-κB) depending
on their interaction with the corresponding receptor(s) on the
surface myeloid cells (reviewed in [13–15]). Ultimately, these
interactions promote the expansion of myeloid cells with
suppressive capabilities, namely MDSCs.

In recent years, it has become clearly evident that MDSCs
play a major role in the pathology of cancer and many other
disorders. It is important to note that most of our knowledge
about MDSCs stem from cancer studies. Hence, it will not be
surprising to see an emphasis on cancer in the following dis-
cussion. Generally speaking, in cancer, MDSCs have a triple
pathological role: (i) they suppress specific anti-tumour adap-
tive immune responses that in turn facilitate tumour growth
[16,17]; (ii) they themselves enhance the growth of already
established tumours by secreting different molecules [18,19];
and (iii) they could provide a spark to the initiation of tumori-
genesis at the inflammatory microenvironment [20–23]. As
such, in the following discussion,wherever cancer ismentioned,
we will be hovering in the orbit of these three roles.

In fact, the primary target immune cell population that are
inhibited byMDSCs are T cells. MDSCs exert their suppressive
effects on T cells via different ways, including inhibition of T
cell activation and proliferation, inducing T cells anergy,
depletion of T-cells by apoptosis, and blocking their homing,
etc. through various complex mechanisms that have been
recently reviewed in many published articles [24–27]. These
mechanisms can be categorized into five major categories:
(i) secretion and expression of immunosuppressor molecules
such as interleukin-10 (IL-10), tumour growth factor-β
(TGF-β), reactive oxygen species (ROS), nitrogen oxygen
species (NOS), programmed cell death-1 (PD-1), programmed
cell death ligand-1 (PD-L1) and cytotoxic T-lymphocyte-associ-
ated protein 4 (CTLA-4); (ii) depletion of metabolites required
for T cell functions; (iii) manipulating the expression of chemo-
tactic molecules and ligands that govern the homing of T-cells;
(iv) induction of immune suppressor cells such as T regulatory
(Treg) cells; and (v) manipulating the metabolism of adenosine
by inducing the expression of ectoenzymes [24–27]. However,
our exploration will not be restricted to T cells alone but will
also be extended to include other immune cells, so that the
scattered puzzle pieces can be gathered, especially because
the inflammatory microenvironment is of a complex nature.

IL-10 is a potent immunoregulatory (anti-inflammatory)
cytokine that is encoded by IL10 gene in humans. IL-10 is
produced by different types of immune cells including
monocytes/macrophages (M2 monocytes), dendritic cells,
natural killer cells, mast cells, B cells and T cells (type 2
CD4+ T-helper cells, Treg cells, and a subset of CD8+ T
cells), as well as MDSCs [28–30]. Importantly, under certain
circumstances, IL-10 has pro-inflammatory activity as well,
highlighting its pleiotropic effects [31]. However, the positive
association between disease progression and the blood levels
of IL-10 in several types of cancer indicates that it has an
immunosuppressive effect in cancer [32], and it could be
directly, or indirectly, involved in the pathogenesis of such
pathological conditions (as will be discussed later). This is
at least because the production of IL-10 during inflammatory
conditions, such as cancer and infectious diseases, has
been shown to inhibit the inflammatory immune responses
mediated by different immune cells. The latter include:
type-1T helper cells (Th1); natural killer (NK) cells; classically
activated macrophages; and myeloid-derived dendritic cells,
all of which are essential to initiate type-1 immune responses,
namely anti-tumour/infection immune responses (which will
be discussed later).

At present, there is a remarkable and growing interest in
studying the role of MDSC and IL-10 in chronic inflammatory
conditions. Furthermore, the absence of a specific reviewarticle
that addresses this topic during the past decade, has encour-
aged us to address the mechanisms by which MDSC/IL-10
can suppress immune responses and facilitate disease pro-
gression in different pathological conditions. However, before
beginning, we will introduce the reader into some basic
concepts about MDSC.
2. A glance at MDSCs
MDSCs are a heterogeneous population of myeloid cells, with
two main MDSC populations that have been identified in
humans, non-humanprimates andmice, according to theirmor-
phology and phenotype. MDSCs that are similar to monocytes
in phenotype and morphology and have suppressive activity
are called monocytic-MDSCs (M-MDSCs), while those that are
similar to polymorphonuclear neutrophils (PMN) in mor-
phology and have suppressive capabilities are called PMN-
MDSCs. Under normal conditions, such cells are kept at very
low levels [33–40] and to date, the function of MDSCs under
normal conditions is not yet established, with some findings
reported here and there [41–44]. The reasons behind this lack
of information may stem from the fact that MDSCs were orig-
inally described only in pathological conditions, mainly in
cancer and subsequently in different diseases [33–37,45–53],
leading to the idea that MDSCs are usually pathologically acti-
vated cells. Furthermore, the similarities in phenotype
betweenM-MDSCs and PMN-MDSCs and normal counterpart
cells, namelymonocytes andneutrophils, respectively, have also
hampered the identification ofMDSCs in healthy hosts. In other
words, studies have shown that the phenotypes of M-MDSCs
and PMN-MDSCs in mice are indistinguishable from normal
mouse monocytes and neutrophils, respectively [54]. This is
also the case with human neutrophils which cannot be distin-
guished from PMN-MDSCs based on phenotype alone, and
thus practically these cells could not be detected in healthy sub-
jects, especially, before the discovery of the potential candidate
markers LOX-1 and SPARC which seem to be exclusively
expressed on PMN-MDSCs but not on M-MDSCs or normal
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neutrophils [54,55]. Furthermore, before unifying the term
MDSCs in 2007, there was an inconsistency in MDSCs nomen-
clature in that these cells were frequently called ‘immature
myeloid cells’ or ‘myeloid suppressor cells’. The latter terms
are not accurate enough to exclusively define such cell popu-
lation, explaining why other cell populations which lacked the
features (mentioned below) that define MDSCs were defined
as MDSCs [56–60].

Although the term ‘myeloid-derived suppressor cells’
may be more accurate than the terms mentioned earlier,
recent advances have shown that this term should also be ree-
valuated. This is because it can be used to describe only a
proportion of the cells, which exhibit all the following fea-
tures at once, namely, they are of myeloid origin, immature
and they are functional having immunosuppressive activity,
(reviewed in [15]). In the context of the latter property,
recent studies have also identified mature MDSCs with an
activated state in addition to the immature MDSC popu-
lation. Thus, the MDSC population is thought to comprise
of a mixture of mature and immature cells. Therefore, the
immaturity feature should not be exclusive to MDSCs any-
more [15]. On the other hand, from the function point of
view, healthy MDSCs isolated from normal individuals
(or as we prefer to call them ‘MDSC-like cells’ because of the
similarities in phenotype with pathologically activated
MDSCs) are not immunosuppressive, or at least have much
lower suppressive capabilities than pathologically activated
ones [41,42,61]. Still, pathologically activated MDSCs greatly
vary in their suppressive capabilities (i.e. M-MDSCs have a
greater suppressive power than PMN-MDSCs on a ‘per cell’
basis [62–64]). Additionally, studies have shown that the sup-
pressive function of pathologically activated MDSCs in vivo is
limited to the inflammatory microenvironment (site), as
declared by Haverkamp et al. [65], suggesting that MDSCs
could behave normally or abnormally according to the stimuli
specific to the milieu (i.e. the tumour microenvironment
enhances MDSC immunosuppressive responses). As such, it
is not surprising that several studies have also documented
that normal monocytes from healthy individuals can acquire
the phenotype and the suppressive activity of M-MDSCs
upon exposure to tumour cells or a specific microenvironment
where certain cytokines such as IL-10, or prostaglandin E2
‘PGE2’ play a role in this transition [66–69]. A similar scenario
has also been suggested for the differentiation of neutrophils to
PMN-MDSCs [70–72]. Moreover, emerging evidence indicates
that MDSCs could express pro-inflammatory functions in cer-
tain pathological conditions such as autoimmune disorders
[73–75]. It is becoming clear that myeloid-derived cells
that express pro-inflammatory activity must not be described
as immunosuppressor cells or MDSCs anymore, simply
because this is a contradiction. We therefore suggest a new
nomenclature for such cells to remove this ambiguity, namely
myeloid-derived pro-inflammatory cells (MDPCs) [15].

Taken together, these findings, to a certain extent,
explain why the characterization and the function of healthy
MDSCs have not been studied in a similar way to that of the
pathologically activated MDSCs. Furthermore, the view that
we already have about MDSCs becomes more complicated,
underscoring the need to characterize MDSCs into patho-
logically activated and non-pathologically activated cells.
In addition, there is a need to reevaluate the term MDSC,
especially after the identification of mature MDSCs and
pro-inflammatory MDSCs.
3. The pathological roles of MDSCs
Undeniably, the main striking function of MDSCs is that they
have potent immunosuppressive properties. T cells are the
main target cell population for the immunosuppressive activity
mediated by MDSCs, and to a lesser extent other immune cell
populations, such as NK cells, natural killer T (NKT) cells, MΦ
and dendritic cells (DCs) [16,76–80]. Several studies have
shown that PMN-MDSCs represent the predominant immuno-
suppressive population in blood and at tumour site(s) of most
cancer types, accounting formore than 80% of the totalMDSCs
present [13,81–83]. Yet, on a per cell basis, as previously
mentioned, the suppressive activity of M-MDSCs on T cells is
much greater than on PMN-MDSCs [62–64]. Importantly, if
the massive number of PMN-MDSCs is taken into account,
then one could argue that the overall suppressive effect
mediated by MDSCs in vivo should be driven by the PMN-
MDSC population. Nonetheless, studies have shown that the
depletion of PMN-MDSCs did not alter tumour incidence,
suggesting that M-MDSCs are the major immunosuppressor
cells in vivo [84]. However, additional investigations on both
cancer related and other unrelated pathological conditions
are needed to shed some more light on these findings.

It is becoming apparent that the role that MDSCs play in
cancer is not restricted to suppression of anti-tumour
immune responses which in turn facilitate tumour growth
andmetastasis, rather they could be directly involved in tumor-
igenesis, neoangiogenesis and metastasis through different
mechanisms [18–20,85]. For example, Ibrahim et al. [20] have
shown that MDSCs play a critical role in colitis-associated
colon tumorigenesis. High levels of MDSCs and IL-10 are
detected in inflamed colon tissues, with the primary source
of IL-10 being the MDSC population that had accumulated in
these tissues. Of note, accumulation/homing of MDSCs to
inflammation sites could be driven by C-X-C motif chemokine
ligand 1/C-X-C motif chemokine receptor type 2 (CXCL1/
CXCR2) [22,86]. In normal and cancerous colon tissues, IL-10
was shown to upregulate the expression of deoxyribonucleic
acid (DNA) methyltransferase 1 (DNMT1) and DNMT 3 beta
(DNMT3b) proteins in colon epithelial cells upon activation
of STAT3, as the activated STAT3 binds to the promotor regions
of the genes of these proteins and induce their expression. Sub-
sequently, DNMT1 and DNMT3b proteins hyper-methylate
the promotor region of the anti-tumour gene irf8 resulting in
interferon regulatory factor 8 (IRF8) protein downregulation.
DNA methylation is an important mechanism that colorectal
tumours harness to promote tumorigenesis. The latter study
has provided a mechanistic pathway in which MDSCs directly
take part in promoting tumorigenesis. Data from other studies
have also provided evidence of other mechanisms by which
MDSCs promote colorectal tumorigenesis. For example,
increased C–C motif chemokine ligand 2 (CCL2) expression
at the tumour site as a consequence of the accumulation of
MDSCs in colorectal cancer tissues, at least in part [21], may
lead to an elevation of type-2 immune response and thus, in
theory, an elevation in the levels of IL-4 and IL-13 would be
expected. Recently, IL-4 and IL-13 and their receptors (IL-4R
and IL-13R) have been shown to be increased in colorectal
cancer tissues, and this elevation was also shown to be associ-
ated with local metastasis [87]. Indeed, IL-4 and IL-13 are
known to mediate the activation of STAT6 signalling pathway
[88]. Jayakumar et al. [89] have reported that signalling through
IL-4/IL-13-STAT6 pathway promotes intestinal tumorigenesis
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in ApcMin/+ mouse model, and provided evidence for a poss-
ible role of MDSCs. In their study, activation of STAT6 was
essential for tumorigenesis and promoting the expansion
and accumulation of MDSCs, and this could be considered a
negative feedback loop. In another example, Yan et al. [23]
showed that receptor-interacting protein kinase 3 (RIPK3)
deficient MDSC that had accumulated in colorectal cancer
tissues play a critical role in colorectal carcinogenesis. In
brief, the reduction of RIPK3 expression in MDSCs resulted
in increased cyclooxygenase-2 (COX-2)-transcription through
the activation of nuclear factor kappa-light-chain-enhancer
of activated B cells (NF-κB) pathway, with COX-2, in turn,
catalysing the production of PGE2. Besides the ability to inhibit
cytotoxic T cell responses, PGE2 suppressed RIPK3 expression
in MDSC and colorectal cancer cells and induced NF-κB/
COX-2 and expression of arginase 1 (ARG-1). Furthermore,
PGE2 production at the tumour microenvironment could
also increase the infiltration of MDSCs to the colorectal
cancer tissues by increasing the secretion of CXCL1 which eli-
cits its effects by signalling through its receptor CXCR2
resulting in the recruitment of MDSCs to the tumour microen-
vironment [22]. This signalling circuit is reported to accelerate
colorectal cancer tumorigenesis, since targeting this circuit sig-
nificantly attenuated colorectal tumour growth [23]. Still, other
possiblemechanisms have also been described in the literature.
For example, upon recruitment to the tumour site MDSCs
could also promote tumour growth andmetastasis by secreting
the inflammatory proteins S100 calcium-binding protein A8/
A9 (S100A8/A9) which mediate the activation of mitogen-acti-
vated protein kinase (MAPK) and NF-κB signalling pathways
in tumour cells [90–92]. Besides that, S100A8/A9 can enhance
the immunosuppressive activity and regulate the accumulation
of MDSCs at the site of inflammation [93], indicating that such
proteins could play a major role in the pathogenesis of cancer,
or at least certain cancer types. It is thus of central importance
to realize that severalmolecularmechanisms could be involved
in the tumorigenesis of a single cancer type, reflecting the
complexity of the mechanistic pathways of tumorigenesis.
4. MDSC/IL-10, mechanisms of immune
suppression in different pathological
conditions

With respect to themolecularmechanisms of immune suppres-
sion by MDSCs, it is now well-established that there are
different pathways by which these cells can mediate their
immunosuppressive effects and more than one of these
pathways (but not all) could be activated simultaneously
to mediate their immunosuppressive effects [81]. It is thus
rational to conclude that themechanism(s) of immune suppres-
sion mediated by MDSCs is/are governed by different factors
which include but are not limited to: (i) the type of MDSCs
expanded, taking into consideration that M-MDSCs exert
their immunosuppressive effects in a manner different from
PMN-MDSCs; (ii) the pathological condition (i.e. cancer, infec-
tion, autoimmune diseases, allergic reactions, etc.); (iii) the
stage of disease progression; as well as (iv) the inflammatory
microenvironment and the anatomical site (e.g. peripheral
blood, bone marrow, lymph nodes, spleen, etc.) where the
immune suppression process is activated/triggered [81].
Secretion of immunosuppressive molecules is now con-
sidered to be a key mechanistic pathway to suppress various
immunological responses. For example, MDSCs secrete
copious amounts of immunosuppressive cytokines for
example, IL-10 and TGF-β. It is essential to keep in mind that
each of the latter cytokines could also express their immuno-
suppressive effects in different ways, according to the
pathological condition and the inflammatory microenviron-
ment. Since TGF-β is out of the scope of this work, the
following discussion will be restricted to IL-10 only.

4.1. Cancer
It is clear that IL-10 is involved in the pathogenesis of different
inflammatory pathological conditions, including several types
of cancers. This does not mean that we should ignore the coex-
istence of other factors that could also be involved in the
pathogenesis of inflammatory conditions including cancer.
For example, a study on patients with anaplastic thyroid carci-
noma has revealed that MDSC expansion is associated with
disease progression and a positive association between the pro-
duction of IL-10 and increased circulating MDSCs has also
been reported, although themechanism of action has remained
undetermined [94]. Based on the fact that increased levels of IL-
10 have been reported in many types of cancer, Hart et al. [28]
conducted a study to determine the source of IL-10 elevation in
tumour-bearing hosts in a murine model of ovarian cancer. In
their study,MDSCswere shown to be the primary producers of
IL-10 in the ascites of thesemice [28]. This is consistent with the
finding that depletion of MDSCs results in a remarkable
reduction in IL-10 levels, and concomitantly, better outcomes
leading to inhibition of tumour progression [95,96]. Hart and
colleagues [28], showed that IL-10 dictates the immunosup-
pressive phenotype and function of MDSCs in the tumour
microenvironment through interacting with IL-10-receptor
(IL-10R) expressed on MDSCs, indicating that MDSC-derived
IL-10 expresses autocrine effect on MDSCs themselves. Hart
and colleagues have also pointed to the possibility that IL-10
could stimulate the development/emergence of T populations
that express lymphocyte-activation gene 3 (LAG-3) molecules,
given that the functional IFN-γ production is impeded in LAG-
3+ T cells but not in LAG-3− T cells. This indicates that IL-10
secretion by MDSCs results in the expression of paracrine
effects on T cell function and phenotype.

In patients with ovarian cancer, a significant increase in
MDSCs (particularly M-MDSCs) was also observed in differ-
ent body compartments, including the ascites and peripheral
blood, with a particular increase in the ascites, and the levels
of M-MDSCs were shown to be directly correlated with poor
prognosis [97]. The expansion of M-MDSCs in these patients
was shown to be driven by IL-6 and IL-10 through their
downstream STAT3 signalling pathway, as blocking either
the IL-6 or IL-10 using neutralizing anti-IL-6 or IL-10 anti-
bodies individually significantly reduced the expansion of
ascitic fluid M-MDSCs [97]. Lamichhane et al. [98] have also
shown that blocking IL-10 resulted in a remarkable decrease
in infiltration of MDSCs to the ascites, indicating that there
could be a positive feedback loop between MDSCs and IL-
10. However, inhibition of STAT3 signal activation as well,
significantly abrogated the expansion of ascitic fluid M-
MDSCs to a level similar to that achieved by applying the
two neutralizing anti-IL6/IL-10 antibodies in combination
[97]. M-MDSCs from peripheral blood and ascitic fluid
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were able to restrict the proliferation of autologous CD4+ and
CD8+ T cells and suppress the production of the effector cyto-
kines IL-2 and interferon- γ (IFN-γ). This is of significance
given that these adaptive immune cells and their secreted
cytokines are essential for anti-tumour immunity. It is note-
worthy that the suppressive effects of M-MDSCs on these
adaptive immune cells were primarily mediated by ARG1
and inducible nitric oxide synthase (iNOS), both of which
are expressed in response to STAT3 activation. Another sup-
pressive mechanism through which IL-10 could take part in
the pathogenesis of ovarian cancer, is through mediation of
the expression of the immune check-point inhibitor ‘PD-1’
in a STAT3-dependent manner [98]. Furthermore, high
levels of IL-10 at the ascites of ovarian cancer patients was
shown to increase the migration of tumour cells [99], thereby
enhancing tumour progression.

To further support the importance of IL-10 in immuno-
suppression mediated by MDSCs, another study showed that
MDSCs isolated from histone-deacetylase 11 (a negative regu-
lator of IL-10 transcription inmyeloid cells of both humans and
mice) knock-out tumour-bearing mice express more immuno-
suppressive effects and were able to secrete greater amounts of
IL-10 than that of the ‘wild type’ tumour-bearing mice [100].
Parker and co-workers have shown that alarmin high mobility
group box 1 (HMGB1) enhances immune suppression in
tumour-bearing mice by facilitating the differentiation and
suppressive activity ofMDSCs [101]. In part, HMGB1 enhances
the suppressive activity of MDSCs by enhancing their capacity
to produce IL-10 which, in turn, suppresses anti-tumour
immunity and polarizes the activation of pro-tumour
immune phenotype.

In the serum of patients with B-cell non-Hodgkin
lymphoma the levels of IL-10 are increased, and based on
in vitro studies Xiu et al. [69] have shown that IL-10 is the under-
lying cause ofM-MDSCexpansion in these patients. Moreover,
treatment of monocytes from B-cell non-Hodgkin lymphoma
patients with IL-10 has been shown to decrease human leuco-
cyte antigen–DR isotype (HLA-DR) levels and increase their
suppressive capabilities [69]. Given that M-MDSC expansion
and increased IL-10 production, in these patients, are directly
associated with disease progression [102–106], this suggests a
positive feedback loop between the expansion of MDSCs and
IL-10 production.

MDSCs were also shown to play a central role in inhi-
bition of tumour immunity in non-small cell lung cancer
patients. This was, at least in part, through production of
high levels of IL-10, at different anatomical sites including
peripheral blood, lymph nodes and tumour tissues with a
positive correlation between MDSC/IL-10 levels and disease
progression [107]. The mechanism of T cell inhibition by
MDSCs in non-small cell lung cancer patients was partially
mediated by upregulating the expression of ARG1 through
IL-10 production [43,107].

In gastric cancer, it has been also been observed that the
expansion of MDSCs is associated with disease progression
[108]. Importantly, Li et al. [108] have shown that vasoactive
intestinal peptide (a novel cytokine) can drive CD14+ mono-
nuclear cell reprogramming into M-MDSCs, possibly leading
to MDSC expansion in gastric cancer patients. The immuno-
suppressive effect of these M-MDSCs on CD4+ T cells was
found primarily to be due to the increased IL-10 production,
which in turn, inhibited anti-tumour immune responses,
through inhibiting the production of IFN-γ and IL-12, and
therefore enhancing tumour growth. A similar scenario was
also observed in prostate cancer in which IL-10 was respon-
sible for the immune suppressive effects on T cells
mediated by M-MDSCs [109].

From another point of view, PD-L1 overexpression on
MDSCs under hypoxic conditions is observed, and its
expression at both the mRNA and protein levels was shown
to be regulated by hypoxia-inducible factor 1-alpha (HIF-1α),
through a direct binding to the hypoxia-response element
(HRE) in the PD-L1 proximal promoter [110]. Furthermore,
hypoxia enhanced the immunosuppressive activity of
MDSCs. Although the major goal of the study of Noman and
his colleagues [110] was to determine the impact of hypoxic
environment on the expression of immune checkpoint recep-
tors on MDSCs, some important observations regarding IL-
10 were reported [110]. For instance, MDSCs cultured under
hypoxic conditions were shown to produce significantly
higher levels of IL-6, IL-10, and TGF-β, but not IL-12, when
compared to the normoxia condition. Interestingly, blockade
of PD-L1 on MDSCs under hypoxia, but not normoxia,
resulted in a significant reduction in IL-6 and IL-10 secretion,
but not TGF-β, and this eventwas accompanied bya significant
attenuation of the suppressive activity of MDSCs, suggesting a
possible role of these cytokines in this process. Noman et al.,
[110] found that blocking of IL-10 but not IL-6, by neutralizing
antibodies resulted in the attenuation of the suppressive
immune responses of MDSCs exerted on specific and non-
specific cytotoxic T cells under hypoxic condition. These
findings further support the importance of IL-10 in the immu-
nosuppressive activity of MDSCs. Under certain
circumstances, it has been observed that interaction of
MDSCs with T cells could enhance the production of IL-10
by T cells [111]. IL-10, in turn, promotes STAT3 activation in
MDSCs, which results in upregulation of the expression of
PD-1 on MDSCs, and PD-1+ MDSCs can suppress immune
responses by a mechanism involving the expression of ARG-
1 and indoleamine 2,3-dioxygenase (IDO) [111]. Taken
together, these data show the complexity of the interconnec-
tions between IL-10 and different mechanisms of
immunosuppression by MDSCs.

4.2. Sepsis and infection
During sepsis inmice,MDSCs accumulate in the late or chronic
phase and both the pro-inflammatory cytokine IL-6 and the
anti-inflammatory cytokine IL-10 play a critical role in the
mediation of MDSC expansion. The activation of STAT3/
S100A9 pathway, is thought to be one mechanism that allows
MDSC expansion. Indeed, both IL-6 and IL-10 can activate
naive immaturemyeloid cells to becomeMDSCs through indu-
cing the expression of S100A9 upon STAT3 phosphorylation.
Of note, phosphorylation of STAT3 is known to induce the
expression of S100A9 in immature murine myelocytes [61].
Interestingly, Bah et al. [112] have concluded that IL-10, but
not IL-6, is responsible for MDSC expansion during late
sepsis in mice. This is because a swift increase in the level of
IL-6 was observed during the early phase (1–5 days) of sepsis
in both the wild-type and S100A9 knock-out mice, and treat-
ment with anti-IL-6 neutralizing antibodies was very efficient
at decreasing the expansion of MDSCs in the early septic
phase only. By contrast, a continuous and gradual increase in
the levels of IL-10 was observed in the wild-type mice
especially after 6 days of the onset of sepsis, while a slight
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elevation in IL-10 was observed in S100A9 knock-out mice
during the early septic phase only. This may explain why
blocking IL10 was so efficient in reducing the accumulation
of MDSCs only in late sepsis. One important finding in this
study is that, of the two cytokines only the IL-10 was able to
promote re-localization of cytosolic S100A9 of naive MDSCs
to the nucleus and activate immature myeloid cells to the
immunosuppressive phenotype. Furthermore, silencing the
S100A9 in MDSCs during late sepsis abolished their immuno-
suppressive capability, indicating that the intracellular but not
the extracellular S100A9 was responsible for activating
immunosuppressive MDSCs.

Alkhateeb et al. [113] have also confirmed the results of Bah
et al. [112] and highlighted the importance of IL-10 in driving
MDSC expansion and activation of the immunosuppressive
phenotype in late/chronic sepsis. They report that IL-10
works by activating STAT3 and mediating the translocation
of S100A9 from the cytosol to the nucleus where it triggers
the expression of certain microRNAs (namely miRNA-21 and
miRNA-181b), possibly by stabilizing the phosphorylated-
STAT3-C/EBPβ complex and facilitating the binding of
this complex to the miRNA promoter region [113]. The
increased expression of these microRNAs in MDSCs results
in increased expression of NFI-A (a myeloid differentiation-
related transcription factor) that lead to the expansion of
immunosuppressive MDSCs during late sepsis [113].

Infection with Staphylococcus aureus (S. aureus) is known to
promote the expansion of MDSCs also [114]. Such expansion
was shown to be associated with the persistence of S. aureus
as a consequence of inhibition of specific T cell responses
against this pathogen. In mice infected with S. aureus,
MDSCs inhibited monocyte/macrophage-mediated anti-bac-
terial immunity by producing high levels of IL-10, thus
leading to infection persistence [115]. In patients with chronic
hepatitis B virus (HBV) infection, MDSC expansion is reported
to be directly associated with the viral load in plasma of HBV
infected patients. MDSCs were able to suppress adaptive
immune responses, in particular ‘specific T cell responses’,
against HBV via PD-1/IL-10 [42]. Indeed, MDSCs from these
patients produce significantly greater amounts of IL-10 than
that of healthy subjects (i.e. ex vivo studies indicated that
MDSCs from HBV patients could produce IL-10 in a spon-
taneous manner, while in contrast, healthy MDSCs cannot do
so). Notably, the suppressive immune responses on T cells in
the case of HBV infection was exclusive to IL-10 secretion,
and this event was dependent on PD-1 stimulation on
MDSCs, but not PD-LI, indicating that an interrelation between
PD-1 and IL-10 exists [42].

4.3. Autoimmunity
Indeed, recent investigations have shown that MDSCs could
play a critical role in autoimmune disorders (for example,
rheumatoid arthritis (RA), inflammatory bowel disease,
type 1 diabetes, multiple sclerosis, autoimmune hepatitis, alo-
pecia areata, eczema and systemic lupus erythematosus)
[50,51,116–119]. However, there is an inconsistency in results
regarding their role in such pathological conditions. Some
investigators have shown that MDSCs play a good (yang)
role in controlling the disease progression [9,120–123],
while others have contradicted this view, i.e. MDSC play a
bad (yin) role in disease progression [73,74,124]. To solve
such perplexing results, we have recently established the
yin–yang law of MDSC elsewhere [15]. In brief, we have
stated that if MDSCs are naturally expanded in a pathological
condition without any external intervention (adoptive cell
transfer or mediating the expansion of MDSCs by treatments)
and such expansion was accompanied by any improvement
in the clinical status of that pathological condition, then
such expansion should be considered as a yang face.
Otherwise, if the natural expansion of MDSCs was not
accompanied by any improvement in the clinical status of
or it was associated with any negative impact on a given
pathological condition, then such expansion should be con-
sidered as an unwanted (yin) consequence. On the other
hand, this does not mean to exclude the possibility that
MDSCs could be harnessed to control inflammation under
certain circumstances, where such cells are not expanded or
the level of expansion does not reach the level that allow
them to control inflammation. To prove such a claim, in a
brief manner, we sought to address the role of MDSCs in
RA, an example of autoimmune disorders. Although several
studies have indicated that MDSCs are effective in controlling
the disease progression in a collagen-induced arthritis (CIA)
mouse model [9,120–123], these studies did not investigate
the impact of natural expansion of MDSCs on disease pro-
gression in an RA animal model; rather, they investigated
the impact of adoptively transferred MDSCs in controlling
RA in CIA mouse model. We believe that such experimental
condition cannot be used to determine the impact of MDSCs
on disease progression. This is true for two reasons: first, the
differences in RA disease progression scenario between
human and CIA mouse model; second, the absence of data
addressing the role of MDSCs in RA in humans. It is
worthy to note that the preclinical studies on animal
models do not necessarily represent exactly the same clinical
status in humans. Therefore, investigating the role of natural
expansion of MDSCs in autoimmune disorders (such as RA)
in animal models and humans is needed, so that a balanced
comparison can be made.

Therefore, at this time point, a definitive conclusion
regarding the role of MDSCs/IL-10 in autoimmune disorders
cannot be made. Hence, additional investigations on animal
models as well as humans are required to determine whether
MDSCs/IL-10 are good or not.
4.4. Allergy
In asthma (a chronic inflammation of airways), an imbalance
between CD4+ T helper cell subsets, namely Th1 (‘type 1
immunity’) and Th2 cells (‘type 2 immunity’) with a shift
towards Th2 cells is induced. Cytokines play an indispensable
role in this shift during asthma in both humans as well as
animal models. IL-12 is critical for the function and guiding
of the differentiation of Th1 cells. By contrast, IL-10 is known
to participate in guiding the differentiation of Th2. Therefore,
the two cytokines are involved in the pathogenesis of
asthma. Neutralization of IL-10 has been shown to reverse
this shift. MDSCs are a primary source of IL-10, therefore
studying the association between MDSC/IL-10 levels in
asthma is important. In this regard, Zhang et al. [125] have
shown that the levels of IL-10 andMDSC dramatically increase
during asthmatic children and mice. This may indicate that
MDSCs and IL-10 could play a role in the pathogenesis of
asthma, suggesting additional investigations.
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4.5. Ageing
Accumulation of MDSCs over time in aged individuals has
been shown to increase the incidence of tumour development
[126]. For instance, Chen and others have reported that
MDSCs promote age-related increase of lung cancer growth
via inhibiting anti-tumour T cell responses through upregulat-
ing the expression of immune checkpoint protein, namely PD-1
(the so-called B7-H1). Different cytokines could play a role in
upregulating the expression of PD-1 including IL-10, granulo-
cyte-macrophage colony-stimulating factor (GM-CSF) and
IFN-γ [127,128]. Interestingly, IL-10 was responsible for the
stimulation of PD-1 expression in MDSCs as the inhibition of
IL-10 by neutralizing anti-IL-10 antibody was associated with
a significant reduction in PD-1 expression in MDSCs [126],
supporting the interrelation between PD-1 and IL-10.

Taken together, these studies clearlyemphasize thatMDSCs/
IL-10 play a direct indispensable role in the pathogenesis
of various pathological conditions. However, it is important to
remember that additional investigations are required to address
their role in other pathological conditions such as autoimmune
disorders and other inflammatory conditions.
5. MDSCs/IL-10 and cross-talking with
other immune cells

From another point of view, MDSCs can also inhibit the anti-
tumour immunity by cross-talking with other immune cells
(figure 1). For instance, the Rosenberg group [16] showed
that MDSC subvert innate and adaptive anti-tumour
immunity by synergizing the production of IL-10 in tumour-
bearing mice and cell cultures, after skewing the phenotype
and the function of MΦ to the alternatively activated MΦ
(M2) rather than the classically activated MΦ (M1). For this
event to be accomplished, they have shown that a direct
cell-to-cell (MDSCs–MΦ) contact is required. Unlike the anti-
tumour M1, M2 express high levels of IL-10 and low levels of
IL-12, and are known to enhance tumour progression
[16,129,130]. The increased IL-10 production was exclusive to
MDSC upon cross-talking with MΦ but not as a result of M1
to M2 shift, because this occurred when MDSCs cross-talked
with IL-10−/− MΦ, while the observed IL-12 reduction was
due to the shift ofM1 toM2 [16]. These resultswere also further
confirmed by the Rosenberg group later [17], and they also
reported that MDSC IL-10 downregulates the production of
IL-6 while increasing the production of NO by MΦ [17].
Indeed, MDSCs cross-talking with MΦ result in activation of
an intermediate MΦ state that share some properties of both
M1 and M2, i.e. these MΦ produce low levels of IL-12
and IL-6 ‘like M2’, while expressing high levels of NO ‘like
M1’. Furthermore, Zhou et al. [131] reported that MDSC
can suppress anti-lung-tumour immune responses by
shifting the inflammatory (type 1 immunity) towards the
anti-inflammatory immune responses (type 2 immunity).
MDSC suppression of anti-lung-tumour immune responses
occurred through inhibiting the maturation of DCs, directing
the polarization of MΦ to the M2 phenotype, and mediating
the expansion of Treg cells. Similarly, other investigators have
shown that increased regenerating islet-derived protein 3
gamma (Reg3 g) expression in pancreatic ductal adenocarci-
noma is associated with tumorigenesis of this cancer by



royalsocietypublishing.org/journal/rsob
Open

Biol.10:200111

8
promoting the recruitment of immune regulatory cells, includ-
ing MDSCs, to the tumour microenvironment. Reg3 g-
recruited MDSCs can inhibit the maturation of DCs, inhibit
the effector function of cytotoxic T cells, and shift the type 1
immunity towards the type-2 immunity [132]. In liver cancer,
MDSC expansion was shown to inhibit the function of T cells
and lead to tumour progression by inhibiting the activity of
different innate immune cells, including NK cells and DC
[133–135]. Hu and colleagues [133] have demonstrated that
MDSC expansion can lead to hepatocellular carcinoma devel-
opment in mice through inhibition of the T-cell stimulatory
activity of DC and inhibition of IL-12 production by the IL-10
that was produced by MDSCs [133]. Indeed, elevation of IL-
10 secretion by MDSC or M2 at the expense of reduction of
IL-12 secretion by M2 and/or inhibition of IL-12 producing
cells, namely DCs, can affect the immune responses mediated
by different immune cells (including NK cells and DC, as
well as T cells) and shifts the inflammatory responses to the
anti-inflammatory response. Of note, IL-12 is essential for
NK cell activation and production of tumour necrosis factor-
alpha (TNF-α) and IFN-γ [2], as well as for the subsequent acti-
vation of anti-tumour immune responses, given that NK cells
are the principal innate effector cells that express potent anti-
tumour immunity. On the other hand, high levels of IL-10
can inhibit the maturation of DC which are the most pro-
fessional antigen-presenting cell (APC) and a major IL-12
producing cell among the entire immune cells. This, in turn,
can inhibit the activation of specific anti-tumour/anti-patho-
gen T cells responses and hamper the activation of NK cells,
respectively. Inhibition of NK cells can also affect the matu-
ration of DC, since it is known that NK cells cross-talk with
DCs, either directly via cell-to-cell contact and/or indirectly
via cytokines network, and this cross-talking has mutual reci-
procal effects [2]. In line with these data, Choi et al. [136]
have shown that treatment of tumour-bearing mice with IL-
12 can improve the anti-tumour immune responses by down-
regulating the suppressive function of MDSCs, decreasing
M2 numbers, and increasing the proportion of APCs (includ-
ing mature DC) by guiding the differentiation of M-MDSCs
to APCs. It has also been shown that MDSCs can inhibit anti-
tumour immune responses by driving the expansion of Treg
cells in a cell-to-cell contact independent manner, at least in
part, by inducing the secretion of IL-10 upon activation of
STAT3 pathway [131]. These Treg cells can inhibit cytotoxic T
cells via immune check-point inhibitors, such as PD-1 (also
known as CD274 or B7-H1) and CTLA-4.

On the other hand, once activated,MDSC could also partici-
pate in reprogramming of mature monocytes to become
M-MDSCs or MDSC-like cells, at least in part, through IL-10
[70,130], initiating a negative feedback loop and thus entering
a vicious circle. Interestingly, co-incubation of monocyte-
derived DCs (moDCs) with IL-10-treated APC (MDSC-like
cells; which are generated from human monocytes under the
differentiation condition of moDC and treated with IL-10 in
the presence of IL-4 and GM-CSF) results in a reduced capacity
to stimulate the activation of allogenic T cells [130]. Perhaps this
is because these cells express different classes of immune sup-
pression molecules such as PD-1, glucocorticoid-induced
tumour-necrosis-factor-receptor-related-protein (GITR) and its
ligand GITRL, as well as syndecan-4, indicating that these
cells themselves are immunosuppressive. Further, co-incubation
of MDSC-like cells with mature and immature moDC resulted
in a substantial increase in the expression of the inhibitory
molecules GITR, PD-1, PD-L1 and osteoactivin on mature
moDC, as well as GITR and PD-1 on immature moDC, indicat-
ing that MDSC-like cells can affect the surrounding cells.
Moreover, treatment of healthyMDSCs with IL-10 significantly
increased their suppressive capacity, in part through inducing
the expression of GITR, GITRL, osteoactivin, syndecan-4 and
PD-L1 [130], supporting the notion that healthy MDSCs are
much less suppressive than pathologically activated MDSCs.

Lamichhane et al. [98] have also reported that IL-10 in the
ascites of ovarian cancer-bearing mice can increase the
expression of PD-1 and PD-L1 on tumour infiltrated DCs as
well as the bone marrow-derived DCs. Expression of PD-1 on
DCs, in turn, impairs their function; since it has been shown
that elevation of PD-1 expression on DCs maintains them in
a suppressive phenotype [137,138]. IL-10-treated DCs can
then suppress anti-tumour adaptive immunity by inhibiting
T cell responses upon ligation of PD-1 on T cells with its
ligand ‘PD-L1’ on DCs [98]. Although these investigators did
not explore the mechanism by which IL-10 is increased in the
ascites, one possible mechanism could be due to the increased
infiltration of MDSCs, which are considered to be among the
major IL-10-producing cells. This could be a plausible mechan-
ism since the blocking of IL-10, but not PD-1, decreased the
infiltration of MDSCs to the ascites. Interestingly, this study
has shown that blocking the PD-1 by neutralizing antibodies
was associated with increased IL-10 production by DCs and
this did not result in a change in the immunosuppressive
microenvironment of the tumour, indicating that IL-10 com-
pensates for the PD-1 blockade. Also, this explains why some
cancer types do not benefit from treatments that target PD-1/
PD-L1-axis [98,139]. Targeting both IL-10 and PD-1 by neutra-
lizing antibodies, but not PD-1 alone, resulted in reduced
tumour burden, augmented adaptive anti-tumour immunity
and thus enhancement in survival of tumour-bearing mice.
Taken together, these data underscore the importance of
IL-10 in immune suppression by MDSCs.
6. MDSC/IL-10 as a therapeutic target
Asmentionedabove, it is nowclearlyevident thatMDSCs/IL-10
could be targeted to control different inflammatory conditions.
In the context of cancer, MDSCs and IL-10 can inhibit anti-
tumour immune responses, thereby leading to tumour
progression. MDSCs are the primary producers of IL10 which,
in turn, can limit theactivityofhelperT cells andcytotoxicT lym-
phocyte (CTL) against tumour cells by different mechanisms
including decreasing the expression of major histocompatibility
complex (MHC) class I on tumour cells [140]. Additionally, IL-10
can inhibit anti-tumour activity of NK cells, for example, by
increasing the expression of non-classical MHC class I on
tumour cells, given that non-classical MHC class I can inhibit
NK cell activity [141]. On the other hand, IL-10 can limit
the immune responsesmediated byDCs (inhibit antigenpresen-
tation) via decreasing the expression of MHC class II,
intracellular adhesion molecules (e.g. ICAM-1), and costimula-
tory CD80 and CD86 molecules via inhibiting production of
IL-12 [142,143]. IL-10 can also trigger the generation and acti-
vation of Treg cells [144], all of which can limit anti-tumour
immune responses, leading to cancer disease progression. It is
thus not surprising to know that targeting IL-10 for inhibition
in such conditions has been suggested as a therapeutic approach
to enhance anti-tumour immune responses. For this reason,
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Rossowska et al. [145] reported that temporary elimination of IL-
10 represents an effective way to decrease the immune suppres-
sion mediated by MDSCs and considered a useful approach to
enhance the efficacy of immunotherapy for cancer. Reversing
the immunosuppression of the tumour microenvironment has
been suggested as a therapeutic approach to combat tumour
growth. As such, Liu et al. [146] have reported that endostatin
can achieve such goals in lung cancer by limiting the recruitment
of MDSCs and decreasing the production of anti-inflammatory
cytokines, including IL-10 among others. Consistent with this
view, Tan et al. [147] have shown that depletion of MDSCs, par-
ticularly IL-10-producing PMN-MDSCs, which can inhibit DCs
that activate anti-tumour cytotoxic T cell responses, can enhance
the therapeutic efficacy of modified vaccinia Tiantan strain by
inducing anti-tumour cytotoxic T cell responses in mesothe-
lioma. Treatment with zoledronic acid impaired the
accumulation of MDSCs to the tumour site resulting in delayed
tumour growth rate, and increased recruitment of T cells to the
tumour and prolonged the overall survival [148]. Indeed, this
was associated with a reduction in IL-10 production and a
shift towards type 1 response with increased IFN-γ production
[148]. Similarly, Sinha and co-workers [149] have shown that
treatment of tumour-bearing mice with WithaferinA (the most
abundant constituent of the plant Withania somnifera) can
reduce the accumulationofMDSCs at the tumour site.Addition-
ally, they have reported that treatment of MDSCs with
Withaferin A can minimize their capacity to produce IL-10 in a
dose-dependent manner. Furthermore, they have shown that
Withaferin A can prevent the increased production of IL-10 by
MDSCs upon cross-talking with MΦ, therefore inhibiting pro-
tumour immune responses, namely type 2 immune responses
[149]. Likewise, targeting MDSCs/IL-10 directly or indirectly
in other pathological conditions such as sepsis/infection
[112,113], certainautoimmunedisorders, and certain allergicdis-
orders such as asthma [125] could also provide a promising
approach to control such pathological conditions. However,
since the role of MDSCs is less established in non-cancer
pathological conditions, additional investigations are required.

MDSCs/IL-10 could also be indirectly inhibited by target-
ing regulators and transcription factors (such as STAT3)
involved inMDSCexpansion and IL-10 production. Activation
of the STAT3 transcription factor signalling pathway by IL-10 is
well documented in several pathological conditions. Further-
more, STAT3 activation is not only important for MDSC
generation and accumulation, it is also important for their
immunosuppressive function, since it regulates the expression
of differentmolecules involved in immune suppression such as
IDO-1 and ARG-1, as well as IL-10 and vascular endothelial
growth factor (VEGF) [150–152]. This suggests that STAT3
could be considered as a potential therapeutic target
[153–156]. However, to delineate the importance of IL-10 in
the immunosuppressive effect mediated by MDSCs through
STAT3, Hellsten and colleagues [157] have demonstrated that
inhibition of STAT3 using galiellalactone prevented the gener-
ation of MDSC-like cells from treated prostate cancer ex vivo.
They also observed a significant reduction in immunosuppres-
sive activity of MDSCs, possibly as a result of a significant
reduction in IL-10 secretion by MDSCs. Similarly, targeting
STAT3 in other pathological conditions such as sepsis could
also provide a therapeutic avenue to control the expansion of
MDSCs and regulate the production of IL-10, and thus,
enhance immune responses.
Targeting ST100A8/A9 pathways in certain pathological
conditions, wherever these pathways are involved in MDSC
expansion and IL-10 production as aforementioned, is also
another strategy to target MDSCs/IL-10. Still, targeting
HMGB1 or histone-deacetylase 11 by specific inhibitors
could also provide an avenue to inhibit MDSC expansion
and limit IL-10 production and thus enhance anti-tumour/
infection immune responses.
7. Conclusion
It has become clearly evident that MDSCs are an important
immunoregulator cell population of the immune system which
seems to be activated mainly in the setting of pathological con-
ditions. Furthermore, the information available about their
role under normal conditions is inadequate. Together, this
explains whyMDSCs are often described as pathologically acti-
vatedcells.Althoughthe roleofMDSCs relatively iswell studied
in oncological studies, their pathological role in other pathologi-
cal conditions is still in its infancy, explaining why investigators
have emphasized on results obtained from cancer studies. This
necessitate additional investigations on other chronic inflamma-
tory conditions as well as infectious diseases.

With respect to their immunosuppressive function,MDSCs
express their activities through differentmechanisms. Secretion
of copious amounts of immunoregulatory cytokines such as IL-
10 and TGF-β is considered to be a major mechanism by which
MDSC can downregulate immune responses. The purpose
of this work was to address the mechanisms of immuno-
suppression mediated by MDSCs/IL-10 and their role in the
pathogenesis of different inflammatory conditions according
to the available data in the literature. Indeed, IL-10 canmediate
and regulate immune responses at the cellular and molecular
levels. Several studies have shown that there is a positive feed-
back loop between production of IL-10 and the expansion
of MDSCs. In other words, MDSCs are among the primary
producers of IL-10 which, in turn, positively mediate the
expansion and recruitment of MDSCs to the inflammatory
site. Intriguingly, regulation of MDSC expansion by IL-10
and the production of this anti-inflammatory cytokine are
governed by different mechanistic pathways, explaining why
there are several targets that could be used to control the
expansion of MDSCs and the production of IL-10.

It is essential to realize that IL-10 can directly inhibit
immune responses by upregulating the expression of cell mem-
brane suppressor molecules such as PD-1 and PD-L1 on
MDSCs. This, in turn, can suppress immune response activation
upon direct cross interaction with adjacent immune cells that
express corresponding ligands at the inflammatory site. On
the other hand, IL-10 can suppress immune responses indirectly
by shifting inflammatory to anti-inflammatory immunity
by inhibiting the maturation and activation of innate immune
cells such as DC, MΦ and NK cells, while triggering the expan-
sion of Treg cells, both ofwhich can lead to inhibition of specific
immune responses against abnormal (tumour and/or infected)
cells, resulting in disease persistence.
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