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The term autologous fecal microbiota transplantation (a-FMT) refers herein to the use of
one’s feces during a healthy state for later use to restore gut microbial communities
after perturbations. Generally, heterologous fecal microbiota transplantation (h-FMT),
where feces from a ‘‘healthy” donor is transplanted into a person with illness, has been
used to treat infectious diseases such as recurrentClostridioides difficile infection (CDI),
with cure rates of up to 90%. In humans, due to limited response to medicines, h-FMT
has become a hallmark intervention to treat CDI. Extrapolating the benefits from CDI,
h-FMT has been attempted in various diseases, including inflammatory bowel disease
(IBD), but clinical response has been variable and less effective (ranging between 24%
and 50%). Differences in h-FMT clinical response could be because CDI is caused by a
Clostridial infection, whereas IBD is a complex, microbiome-driven immunological
inflammatory disorder that presents predominantly within the gut wall of genetically-
susceptible hosts. FMT response variability could also be due to differences in micro-
biome composition between donors, recipients, and within individuals, which vary with
diet, and environments, across regions. While donor selection has emerged as a key
factor in FMT success, the use of heterologous donor stool still places the recipient at
risk of exposure to infectious/pathogenic microorganisms. As an implementable solu-
tion, herein we review the available literature on a-FMT, and list some considerations
on the benefits of a-FMT for IBD. (Translational Research 2020; 226:1�11)
Abbreviation: a-FMT = autologous fecal microbiota transplantation; CD = Crohn’s disease; CDI
= Clostridium difficile infection; CI = Confidence interval; FMT = Fecal microbiota transplanta-
tion; hGM = human gut microbiota; h-FMT = heterologous fecal microbiota transplantation;
IBD = inflammatory bowel disease; IBS = irritable bowel syndrome; RCT = randomized con-
trolled trial; UC = ulcerative colitis
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INTRODUCTION

The human gut microbiota (hGM) is comprised of

bacteria, viruses, fungi, protozoa and archaea, which

collectively, may have functionally distinct proinflam-

matory or anti-inflammatory roles, as described in ani-

mal models.1 Alterations in the compositional balance

of microbial communities, also termed “dysbiosis,” has

been hypothesized to play a central role in human dis-

eases. However, the causal connection between the gut

microbiome and the pathogenesis of human diseases

remains uncertain, as pathogenicity studies with animal

models have been deemed implausibly biased,

“exaggerating causality.”2

Irrespective of the complexity of understanding of

the role of the gut microbiome in complex multimodal

diseases,3 fecal microbiota transplantation (FMT),

where feces from a ‘healthy” donor are transplanted

into a patient (‘‘heterologous-FMT”; h-FMT), has been

increasingly investigated as a treatment option to help

restore the functional balance between pro- and anti-

inflammatory microbial communities. In clinical prac-

tice, h-FMT has proven highly successful for the treat-

ment of recurrent Clostridioides difficile infection

(CDI), with cure rates of up to 90%.4,5 By contrast, the

clinical response rate from h-FMT in patients with

inflammatory bowel disease (IBD) has been less

impressive (clinical remission ranging from 24% to

50%).6 Moreover, some studies have reported a wors-

ening of IBD activity in patients following transplanta-

tion of ‘‘healthy” donor feces.7

Studies indicate that FMT response in IBD

depends on the composition of the donor micro-

biome,8,9 leading to the perhaps overly simplistic

notion of ‘‘super-donors,” which by definition, are

people who have gut microbiota that induce a bene-

ficial response in numerous individuals when heter-

ologously transplanted into patients.10 While

identification and characterization of ‘‘super-donors,

could help researchers to refine h-FMT formulations

and improve clinical efficacy, the use of heterolo-

gous stool does not prevent the infectious/safety

concerns of h-FMT. Thus, there is a need for clini-

cal rationalization and solutions to the causes of

poor FMT response in IBD, while addressing safety

concerns.

Current h-FMT donor screening practices focus on

safety, by excluding known pathogens, however, the

long-term safety of the procedure remains unclear.

Microbiological safety in IBD is relevant considering

the frequent use of corticosteroid, immunomodulators,

and anti-TNF-alpha antibody therapy in these

patients.11,12 Especially, after the recent FDA report of

mortality and morbidity in immunocompromised
patients due to an FMT-acquired enteropathogenic

Escherichia coli infection, as well as other reports of

Shigatoxin-producing Escherichia coli, following the

investigational use of FMT.13 More recent studies doc-

umenting the presence of the respiratory SARS-CoV-2

(COVID-19) virus in the stool of infected individu-

als,14-18 also further illustrate the need for proper

screening and selection of donor stool for FMT. Since

the presence of pathogens in donors could alter/influ-

ence the response in patients,19,20 improved strategies

to avoid the risk of unwanted infections are needed.

FMT has been proposed to revert dysbiosis in the gut

microbial community of the patient, however, it is

unclear whether dysbiosis is a cause or a consequence

of IBD. Recently, studies of the long-term dynamics of

the IBD microbiome indicate that the gut microbiome

transitions over time between dysbiotic and healthy

states.21 In this context, our studies with germ-free ani-

mals transplanted with hGM experimentally demon-

strated that the effect of FMT response in mice varies

across donors, and it is person-specific, and not IBD-

specific.22,23 Since FMT response variability is pre-

sumed due to factors intrinsic to the person as a donor

(genetics, diet, other environmental exposures),24 there

is a need to control for such factors, and most impor-

tantly to further study the therapeutic potential for

autologous FMT (a-FMT). The implementation of a-

FMT, where the patients’ own stool is banked during a

time of ‘‘health” (eg, remission, when a patient is not

experiencing symptoms), as an alternative solution to

circumvent the risks associated with heterologous

donor stool, could be a valuable clinical strategy to

improve FMT response rates, while fully abolishing

infectious/safety concerns. Herein, we review the bene-

fits and considerations for a-FMT in IBD. Where possi-

ble, we report confidence intervals (CIs) to facilitate

interpretation of data.

Overall clinical effect of FMTs. For the treatment of

recurrent and refractory CDI, h-FMT has proved to be

a highly clinically effective and cost-effective therapy,

with a meta-analysis of studies reporting a 92% (95%

CI, 89%�94%) clinical resolution rate compared to the

use of one of the first choice antibiotics against CDI,

vancomycin (relative risk:0.23, 95% CI = 0.07�0.80).4

Differences in CDI cure rates have, however, been

observed between the lower (enema-colonic) vs upper

(oral-gastric) gastrointestinal tract delivery (95% [95%

CI = 92%�97%] vs 88% [95% CI = 82%�94%],

respectively).4 Even for the treatment of CDI in

patients with underlying IBD, arguably comparable

FMT success rates have been reported, with a recent

meta-analysis showing an initial cure rate of 81%

(95% CI = 76%�85%), and overall cure rate of up to

89% (95% CI = 83%�93%).25

https://doi.org/10.1016/j.trsl.2020.05.008
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The treatment of IBD with h-FMT to induce clinical

remission has, however, been less effective,26-28 with

clinical remission rates ranging from 24% to 50%.6 In

a recent meta-analysis,26 encompassing 53 studies,

only 36% (201/555, 95% CI = 32.2%�40.4%) of UC

and 50.5% (42/83, 95% CI = 39.4%�61.8%) of CD

patients achieved clinical remission (primary outcome,

as described by the respective study authors). Hetero-

geneity was moderate in the meta-analysis of cohort

studies and that of the four included randomized con-

trolled trials (RCTs) in UC. Of concern, some studies

have reported worsening of IBD activity following h-

FMT, with a recent meta-analysis revealing a rate of

worsening, defined to include escalation of medical

therapy or surgical intervention after FMT, of 14%

(95% CI = 10.0%�21.0%).7 Such discrepancies in h-

FMT success could be due to temporal and spatial vari-

ability of the hGM for both donors and recipient

populations.29

The effectiveness of FMT has been mostly examined

using microbiome sequencing technology, primarily

16S rRNA gene sequencing (used to study bacteria),

with less studies focusing on the role of nonbacterial

microbiome members (viruses, fungi). Positive clinical

outcomes in IBD have been associated with donor

microbiome composition, specifically higher bacterial

richness,8,26,30-34 as well as increased relative abun-

dance in butyrate-producing Clostridium clusters IV

and XIVa (eg, genera from the Ruminococcaceae and

Lachnospiraceae family).8,9,30,35-38 However, analysis

of microbiome data from three completed IBD h-FMT

trials39-41 showed there was no association between the

presence and abundance of butyrate-producers in the

feces of donors and the clinical response after h-FMT,

suggesting that butyrate alone is not sufficient as a pre-

dictor for FMT efficacy.42 In addition to the micro-

biota, some studies have suggested that the donor

virome (‘‘phagebiota”) and fungal composition43,44

play a critical role in determining h-FMT success,44-47

although this appears to be disease specific, with stud-

ies demonstrating that phages are more relevant to

FMT efficacy in CDI (eg, Caudovirales),43,48 compared

to the presence of eukaryotic viruses in donor stool for

UC.49 In addition to the relevance of the donor micro-

biome, studies showed that the gut microbiome compo-

sition in the recipient also plays a role in their clinical

response to h-FMT.50,51 Thus, antibiotic pretreatment

of recipient patients has been effectively used to elimi-

nate the potential competitive advantage of existing

microorganisms facilitating the colonization by

microbes present in the transplanted feces.52-54

To improve FMT response, there is a need to control

for person/microbiome variation. In FMT studies for

CDI, interindividual heterogeneity in donor stools do
not seem to affect clinical response (cure) rates, and

thus, does not play a role in donor selection.55,56 How-

ever, in the case of more complex diseases, such as

IBD, which involves a multi-faceted interaction

between host and microbiome, donor stool composition

is emerging as one of the most important factors in

determining poor/variable patient response.8-10,22,42

Supporting this, results of several h-FMT trials in IBD

patients (active UC) have demonstrated significant

treatment benefit from some donor stool, but not

others.8,9 Highlighting donor-dependence in h-FMT

success, a double-blind RCT conducted by Moayyedi

et al8 in patients with active UC (where stools from 5

different donors vs placebo was used), showed that

78% of patients (7 out of 9) achieved remission (Mayo

score �2 with an endoscopic Mayo score of 0 at week

7) from a single donor, while only 10% of patients

achieved remission with the other donors, with 1 donor

eliciting no success at all. These findings highlight that

not all ‘‘healthy” people are ‘‘good” donors, or that

their microbiomes can be considered comparably

‘‘anti-inflammatory,” and further emphasize the vari-

able nature of the human gut microbiome. Further-

more, findings emphasize the importance of proper

selection of donors to improve the likelihood of FMT

clinical response, if heterologous stool is to be pre-

served as the central strategy for microbiome therapeu-

tics. Notably, autologous reconstitution of the gut

microbiota has proven effective to restore depleted

commensals following antibiotic treatment57,58 and is

often used as the placebo FMT treatment in RCTs on

the basis that it is most physiologically relevant.59

Autologous-FMT as placebo for heterologous-FMT

research vs. enhanced clinical benefits. Autologous

FMTs have been used for clinical and research pur-

poses. To date, the primary clinical benefit of using

autologous samples is that it circumvents current safety

concerns regarding infectious pathologies, an impor-

tant concern, especially in high-risk populations such

as the elderly, those with co-morbidities and immuno-

compromised patients. For instance, in hematopoietic

stem cell transplantation patients, a high-risk popula-

tion due to immunodeficiency, autologous reconstitu-

tion of the gut microbiota after antibiotic therapy,

using feces banked prior to initiation of antibiotic ther-

apy, has proven highly effective.60,61 Thus far, postan-

tibiotic microbial reconstitution of the gut microbiome

via a-FMT has been shown more effective than probi-

otics.57 Here, a-FMT served as a safe and rapid

approach to restoring depleted ‘‘commensal” taxa and

other community-level metabolic deficiencies that are

associated with pathogen/indigenous microbial recolo-

nization during the vulnerable period after antibiotic

consumption.57,58

https://doi.org/10.1016/j.trsl.2020.05.008
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Current guidelines for RCT trials for FMT recom-

mend the use of autologous transplants (‘‘a-FMT”) as a

placebo ‘‘control” intervention treatment because it is

assumed that autologous stool represents the most inert

and physiologically similar research option compared

to donor feces.59 However, it is important to highlight

that often RCTs collect samples from the recipient at

the time of investigational FMT treatment, indicating

that if patients are sick/ill at the time of FMT, their

own sample would be unhealthy (presumably dysbi-

otic) and unable to have a beneficial effect. Therefore,

most RCTs would be biased against autologous trans-

plants as a therapeutic option, favoring h-FMT. In this

context, our studies in germ-free animal model of IBD

indicate that the feces of IBD patients in complete

remission may have proinflammatory or anti-inflamma-

tory potential, depending on the donor, and therefore

autologous transplantation require further re-consider-

ation for clinical purposes, well beyond the current use

for research control purposes.

Several studies have used autologous transplants,

collecting feces from the patient at time of treatment

(when patient is presumed sick), as the comparative

placebo control treatment to donor feces. Their findings

highlight the therapeutic potential for a-FMT via two

key concepts. First, the microbiome of a sick person

can deviate from an ‘‘inflammatory” (dysbiotic) state

to an ‘‘anti-inflammatory” (healthy) state. Second, the

microbiome of a healthy individual can deviate from

an ‘‘anti-inflammatory” (healthy) state to that of

‘‘inflammatory” state of dysbiosis, during which, FMT

would result in a suboptimal clinical response.

In RCTs for irritable bowel syndrome (IBS) where

h-FMT has been compared to autologous transplants as

the control intervention, trials have provided dichoto-

mous FMT clinical response data regarding the propor-

tion of h-FMT treated patients who achieved a

successful outcome, compared to the FMT response

reported in those treated with autologous stool.62

Table 1 summarizes data from available RCT, and

illustrates that in most cases, although there is overlap

of the predicted effects for h-FMT vs a-FMT (notice

95% CI lower and upper limits), often, autologous had

a lower response rate, indicating that patients often

recover on their own, without the need of FMT. How-

ever, the increased proportion of responsive patients to

treatment indicate that FMT holds benefits beyond the

basic baseline ability of patients to recover on their

own. In this regard, the improvement of FMT by using

a well-designed autologous fecal transplantation pro-

gram, where banking of one’s feces occurs during a

healthy state for later use to restore gut microbial com-

munities after perturbation, would improve the rate of

responses in patients.
Exemplifying the variability of healthy human micro-

biomes, a meta-analysis of 5 RCTs for IBS showed no

significant difference in IBS symptom improvement

between h-FMT compared to placebo treatment encom-

passing autologous transplants or ‘inert’ capsules

(RR = 0.98, 95% CI = 0.58�1.66); however, subgroup

analysis showed that ‘‘inert” placebo capsules were

superior to h-FMT (2 pooled trials; RR = 1.96; 95%

CI = 1.19�3.20), but, when administered via colonos-

copy, h-FMT was superior to autologous stool (2 pooled

trials; RR = 0.63; 95% CI = 0.43�0.93).62 By compari-

son, a RCT of FMT for CDI demonstrated that, although

the overall FMT cure rate for a-FMT patients was signif-

icantly lower (62.5%, 15/24 [95% CI = 41.6%�79.6%])

to that of h-FMT patients (90.9%, 20/22 [95%

CI = 69.2%�97.8%]), cure rates differed by medical

center, with one site achieving a cure rate of 90% (95%

CI = 51.8%�98.7%) via autologous transplants com-

pared to 91.7% (95% CI = 57.2%�98.9%) via donor

stool (‘‘h-FMT”).63 Of note, comparison of patient

cohorts by site showed that the site with the lower

autologous stool cure rate had a significantly higher

proportion of patients reporting prior probiotic treat-

ment, although how this may have affected the

observed differences in the pre- and post-FMT

microbiome profiles between treatment groups by

site was unclear.

Of the limited number of RCTs conducted for FMT

in IBD (UC) to date,8,9,64-66 only two have used a-FMT

as the placebo comparator.65,66 Using h-FMT vs a-

FMT for treatment of mild-to-moderate UC, Roosen et

al,65 suggested that autologous stool could be as effec-

tive as healthy donor feces in inducing clinical remis-

sion (a-FMT 32%, 8/25 [95% CI = 14.9%�53.5%] vs

h-FMT 26.1%, 6/23 [95% CI = 10.2%�48.4%]).

Microbiome analysis showed no significant difference

in baseline gut microbiota composition between recipi-

ent patient groups, whereas a significantly difference in

donor and UC patient stool composition was identified.

However, at 12 weeks of treatment, microbiome

diversity was significantly increased in all FMT

‘‘responders” (UC patients who achieved clinical and

endoscopic remission) irrespective of whether donor or

autologous stool was used. Analytically, a-FMT res-

ponders shifted away from nonresponders, but in a dif-

ferent direction to that of h-FMT responders,

suggesting differences in the post-FMT effect on

microbiota composition and clinical response when

donor and autologous stool is used. By comparison, the

recent RCT of Costello et al66 in patients with mild-to-

moderate UC found FMT achieved remission in 32%

(12/38, 95% CI = 17.5%�48.7%) of h-FMT compared

to 9% (3/35, 95% CI = 1.8%�23.1%) in a-FMT

patients. From a methodological perspective, it is

https://doi.org/10.1016/j.trsl.2020.05.008


Table 1. Summary of outcomes from RCTs using feces for autologous-FMT collected at time of investigation for use as pla-

cebo vs heterologous-FMT

Study design Achieved clinical benefit/remission

Author Case/
control

Disease Donor
screening

Primary outcome and
follow up

Heterologous-
FMT (95%CI)

Autologous-FMT
(95%CI)

Johnsen91

IBS
55/28 IBS-D 53%,

IBS-M 47%
pooled;
2 healthy
volunteers

decrease in IBS-severity
scoring system >75
points at 12 wks.

R: colonoscopy, once

3 mo: 65%
(51.4%�77.8%)*

12 mo: 56%
(42.3%�69.7%)*

3 mo: 43%
(24.5%�62.8%)*

12 mo: 35.7%
(18.6%�55.9%)*

Holvoet92

IBS
42/22 100% IBS�D or

IBS�M
unpooled;
2 healthy
donors

self-reported question-
naire on symptoms at
12 wks.

R: nasojejunal, once.

50%
(34.2%�65.8%)*

29% (13.9�54.9)*

Holster93

IBS
8/8 IBS�C 25.0%,

IBS�D, 56.2%
IBS�M 18.8%

unpooled;
healthy
donor

decrease in gastroin-
testinal

symptom rating
scale�IBS of �30% at 2
and 8 wks.

R: colonoscopy, once

50% (15.7�84.3).

Note: 66% (2/3)
responded to
‘‘donor 1”
while 40% (2/5)
responded to
‘‘donor 2”.

12.5
(0.3%�52.7%)

Kelly63

CDI
22/24 �3 CDI recur-

rences;
course of
vancomycin
received

unpooled;
healthy
volunteers

resolution of diarrhea
w/out need for fur-
ther anti-CDAD ther-
apy at 8 wks.

R: colonoscopy

90.9%
(70.8%�98.9%)

62.5%
(40.6%�81.2%)

Resolution after
autologous
FMT differed by
site.

Rossen65

UC
23/25 Mild to moder-

ate UC
unpooled;
healthy sub-
jects (partner,
friend,
volunteer)

clinical remission and
endoscopic response
at 12 wks.

R: nasoduodenal, wk 0
and 3.

At 6-wk: 26.1%
(10.2%�48.4%)*

12-wk: 30.4%
(13.2%�52.9%)*

6-wk: 32%
(14.9%�53.5%)*

12-wk: 32.0%
(14.9%�53.5%)*

Costello66

UC
38/35 Mild to moder-

ate UC
pooled;
healthy
volunteers.

steroid-free remission
and 8 wks and 12 mo.

R: colonoscopy fol-
lowed by 2 enemas
over 7 days.

32% (17.5�48.7)* 9% (1.8�23.1)*

R, route of administration and frequency of transplantation; mo, month; wk, week.
*95%CI computed based on reported N/N using normal approximation to the binomial calculation.
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important to make a distinction of how a-FMT samples

intended for placebo purposes have been handled dif-

ferently to that of h-FMT stool samples. In their

study,66 donor stools intended for the h-FMT groups

were prepared anaerobically (pooled from 3 to 4 donors

at 16 different collection time points; from the 16

batches produced, each provided treatment for 1�7

participants), whereas, the autologous stool intended to

be used as placebo a-FMT were processed aerobically

(from a single time point), highlighting the potential

for study and selection/test bias against autologous

stool for FMT. Such fundamental methodological dif-

ference introduces a confounding factor (reducing the

anaerobic diversity in feces for the a-FMT group)

favoring the presence of anaerobic bacteria/
microorganisms in stools intended for use in the h-

FMT group of patients.

Conceptually, the clinical benefit observed in a-FMT

placebo groups, where feces were collected from the

patient at time of treatment (when patient is sick), sug-

gest that a patients’ own feces could hold therapeutic

potential for administration during a disease flare in

some patients if a fecal sample were to be collected/

stored during a time of ‘‘health” (eg, remission, when a

patient is not experiencing symptoms).

Considerations on the selection of stools for a-FMT. To

date, there are no established guidelines or clear micro-

bial/clinical parameters for the identification of appropri-

ate donors and standardization of donor stool selection

for h-FMT, or alternatively, for the ‘optimal’ timing for

https://doi.org/10.1016/j.trsl.2020.05.008
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the collection and functional selection of feces intended

for a-FMT. Since the IBD microbiome has been shown to

transition from ‘‘inflammatory” (dysbiosis) to ‘‘anti-

inflammatory” (healthy microbiome),21,29 the observed

benefit in the discussed RCTs support the need for proper

selection of feces for transplantation.

While some studies have used single donor h-FMT,

the variability in patient response based on donor stool

has elicited others to consider the use of multiple,

pooled donor stool inoculum. Pooling of donor stool

has been proposed as a method to improve remission

rates by limiting the chance for a patient to receive an

‘‘ineffective”/‘‘inflammatory” stool sample.67 How-

ever, clinical benefit in RCTs for IBD has been

reported when multidonor-pooled9,66 and single-donor-

unpooled h-FMT protocols were used,8 irrespective of

the intensity/duration of FMT administration, stool

preparation methods (anaerobic vs anaerobic, fresh vs

frozen), or if donor stool came from healthy partners,

relatives, or healthy volunteers. Specifically, in a dou-

ble blind placebo controlled RCT9 where an intensive

dosing approach was combined with a multidonor

pooling for patients with mild-to-moderate UC, post

hoc analysis revealed a higher remission rate in

patients treated with pooled h-FMT batches that con-

tained stool from 1 specific donor compared to recipi-

ents whose h-FMT batches did not contain stool from

that donor (37%, 14/38 [95% CI = 21.8�54.0] vs 18%,

7/40 [95% CI = 0.73�32.8], respectively). While find-

ings are not surprising considering that multidonor

pooling using a set of randomly selected donors will

not ensure the inclusion of an ‘‘effective” (anti-inflam-

matory) donor, or ensure the ability for one (or more)

included ‘‘effective” donors to ‘‘outweigh” the effect

of other ‘‘ineffective” donors in a pooled sample, find-

ings do emphasize that pooling of donor stool does not

predict a reproducible h-FMT response. Moreover, it is

less likely that the ‘‘effective” donor microbiome will

stay intact due to increased microbial interactions/

incompatibilities which occur between transplanted

microbiomes.32,34 The problem of pooling samples is

that it increases the risk of having a pool of potential

pathogens that cannot be traced back to the donor, and

therefore does not improve the safety of FMT com-

pared to h-FMT from a single donor or the use of a-

FMT (one/self-donor).

Diet compatibility has been proposed as a method to

improve donor-recipient matching and durability of

FMT response,68 assuming individuals with the same

diet would have compatible microbiota, and future tri-

als should collect dietary data for better understanding

of the role of donor diet on FMT durability post-FMT.

In this regard, metabolic profiling could be used to

guide the selection of fecal samples for FMT. Taking
into consideration the temporal, variable behavior of

the human gut microbiome29 and the variability of

FMT response, future stool selection strategies could

consider more refined profiling methods such as meta-

genomics to determine community-level functionality

of the banked stool and those currently deficient in the

recipient, in combination with direct metabolite mea-

surement (eg, SCFA, secondary bile acids69) which

could serve as a superior proxy of community function.

However, in the case of fecal samples for h-FMT, such

methods would not account for host-dependent differ-

ences in absorption rates of target molecules (eg, buty-

rate), or other donor-dependent factors such as dietary

habits, which are more likely to differ from those of

the recipient.42 Given that diet can change microbiome

profiles in as little as 24 hours,70 FMT protocols,

whether using donor stool or the patients’ own feces,

may benefit from using dietary strategies both prior to

stool banking and following stool administration, to

support the transplanted microbiome, potentially

extending the sustainability of the post-FMT

microbiota.71

Functional assays, such as fecal calprotectin and

myeloperoxidase activity, are used in IBD (humans,

animals) to assess underlying host intestinal inflamma-

tion.72-74 Previous preclinical studies have demon-

strated that alterations in the gut microbiota, favoring

proinflammatory communities, can sensitize mice to

the development of several inflammatory diseases.75,76

hGM-transplanted mouse models of chemically-

induced colitis have also been widely used to elucidate

the functional role of hGM FMT in IBD.1 Thus, inter-

ested in using a functionality-based method approach

for selection of donor stool, we conducted inflamma-

tion-based tests on germ-free animals. Our preclinical

studies using germ-free mice transplanted with hGM

support the notion that the IBD microbiome can period-

ically transition away from an ‘‘inflammatory,” dysbi-

otic state to that resembling an ‘‘anti-inflammatory”

healthy donor. Using feces from IBD (in clinical remis-

sion) and healthy control donors transplanted into a

germ-free mouse model of spontaneous cobblestone/

ileal Crohn’s disease (SAMP1/YitFc), we showed

(with optimal, >90% engraftment of human taxa) that

the hGM-FMT effect on mouse IBD-phenotype was

independent of the disease state of the donor.22 That is,

feces from some IBD and some healthy donors did not

affect the severity of intestinal inflammation in mice,

while the other donors worsened inflammation. Com-

parably, Baxter et al23 demonstrated, using a hGM-

FMT mouse model of chemically induced colorectal

cancer (CRC), that feces from some CRC patients can

have an anti-inflammatory tumorigenesis effect in

mice, whereas the opposite effect was seen with some

https://doi.org/10.1016/j.trsl.2020.05.008
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healthy donors. Results highlight that the distinct, per-

son-specific structure of the microbiome, and not the

disease status of the individual (CRC patient vs healthy

control) is associated with the functional effect of

hGM FMT. Furthermore, results collectively empha-

size that selection of fecal samples, regardless of

whether for a-FMT or h-FMT, need to be tested using a

functional assay, for instance preclinical hGM mouse

models. Fig 1 provides a schematic overview of the

current vs the approach herein proposed for FMT stool

selection, whereby preclinical mouse models serve as a

functional tool to determine the ‘‘inflammatory” poten-

tial of human feces for heterologous and autologous

FMT.

Collectively, preliminary preclinical and human evi-

dence supports two concepts. The first is the use of

hGM mouse models as a screening tool for hGM

‘‘inflammatory potential,” to help guide selection of

‘‘anti-inflammatory” donor stool for use in FMT clinical

studies, as a complimentary approach to current donor

screening procedures. The second is the use of such pre-

clinical hGM models for identification of ‘‘anti-inflam-

matory” patient feces for a-FMT. That is, the use of

hGM FMT rodent models to determine whether a fecal

sample, isolated in the absence of inflammation, for

instance, from an IBD patient during times of remission,

holds ‘‘anti-inflammatory” potential as a therapy for
Fig 1. Schematic overview of the current vs. the proposed

trates that the current approach to donor stool selection for F

cal response in IBD, as well as the risk of exposure to

preclinical mouse models could help researchers determine

transplantation. By doing so, the likelihood of a beneficial c

if used to test a patients’ own feces (for use as autologous F

the procedure.
autologous (self) transplantation during times of a dis-

ease flare.22 Similarly, such models could help guide

personalized therapies, tailored to the individual patient,

that will redirect the gut microbiome toward an ‘‘anti-

inflammatory” healthy state. Despite the benefits of

using mice as functional avenues to guide FMT therapy,

their implementation in clinical settings is expected to

be challenging and/or possibly unrealistic at large scale.

Autologous transplants to reduce safety/infectious

concerns for h-FMT. Despite generally low rates of

reported adverse events, the most limiting caveat about

FMT using whole donor stool is the concern of long-

term safety of the procedure.77 By contrast, autologous

transplantation circumvents the potential for transmis-

sion of both communicable and noncommunicable dis-

eases, as well the transfer of yet to be discovered

microbial drivers of disease present in the gut micro-

biota. Autologous FMT also reduces the potential for

donor-recipient microbial-interactions/incompatibili-

ties which have been shown to influence strain engraft-

ment outcomes.32,34

Current FMT donor selection procedures rely on

available technologies for infectious (eg, cytomega-

lovirus78) and pathogenicity screening,79 including

the exclusion of donors testing positive for known

antibiotic-resistant bacteria,68 among several other

factors.13-16,59 However, in an attempt to minimize
approach for selection of FMT stool. Figure illus-

MT perpetuates the unpredictability of patient clini-

infectious pathogens/pathobionts. By comparison,

the functional potential of a fecal sample prior to

linical response to donor feces would improve, and,

MT), potentially abolish current safety concerns of

https://doi.org/10.1016/j.trsl.2020.05.008
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the risk of infectious pathogen transmission, and the

notion that a similarity in microbial composition

might be more tolerated by the mucosal immune

system of the patient,28 most studies have selected

h-FMT donors based on their genetic and environ-

mental proximity (healthy adults or children family

members) to the recipient.80

One highly relevant, example of exposure to

unwanted life-threatening infectious pathogens present

in donor stool is the recently issued FDA safety alert

based on the documented presence of the respiratory

causing virus SARS-CoV-2 (COVID-19) in the stool

of infected individuals,14-16 and in turn, the possible

risk of transmission via FMT.17 To avoid such risk, the

FDA recommends using stool donated before Decem-

ber 1, 2019. For stool donated after this date, the FDA

recommends additional precautions should be taken,

including, (1) the inclusion of donor screening ques-

tions related to COVID-19 infection, (2) the testing of

both donors and their stool for COVID-19 (as feasible),

(3) development of criteria for exclusion of donors and

donor stool based on screening and testing, and (4) to

include information pertaining to the potential risk of

transmission of the virus in the informed consent.18

Several preclinical studies in mice transplanted with

hGM have demonstrated the transfer of host phenotype

through microbiota transplantation.51,81-84 In this context,

the potential for transmission of non-infectious diseases

associated with microbially-derived metabolites present in

donor stools has been hypothesized.85-87 In particular, the

association between dietary animal protein and trimethyl-

amine N-oxide (TMAO) production, a bacterially-derived

metabolite associated with cardiovascular risk modula-

tion.88 While machine learning has been proposed as a

method to identify complex community signatures in

healthy donor stool that could reproducibly distinguish/

predict ‘‘effective” donors and a phenotype/clinical

response of interest,32,42,89,90 such computational approach

does not address current safety concerns of h-FMT.

Limitations of therapeutic benefit of FMT in IBD. The

challenging component of a program of a-FMT is

the implementation of a functional testing platform

to enable the accurate identification of ‘‘anti-inflamma-

tory” fecal samples from an IBD patient because the

nature of their disease makes them prone to be often

inflamed, even in remission, as we showed.22 Having a

well-documented bank of autologous samples could be

implementable among patients soon after diagnosis as

a scalable measure to use therapeutic a-FMT, however,

this may not be feasible for all facilities given the con-

siderable resources required to maintain stool banking

programs.

Although a-FMT holds therapeutic potential, it is

possible that with the multi-factorial nature of IBD, a
patients’ own stool would not be able to effectively

treat 100% of cases. IBD is a multimodal disease3 (not

infectious, and more predictable and responsive to

FMT as with CDI) for which the complex nature of dis-

ease severity, including the person-specific temporal

and phenotypic variability in gut microbiota, are ana-

lytically challenging to study and interpret. We have

extensively discussed the multimodality of disease sub-

types underlying IBD, from analytical perspective,

elsewhere.3
CONCLUSION

Autologous-FMT is preferable to h-FMT to pre-

vent infectious complications, however, there is a

need to identify functionally optimal stool samples

based on inflammation relevant to IBD. The imple-

mentation of a-FMT patient stool banks using func-

tional assays, for instance hGM mouse models, to

identify/confirm the anti-inflammatory potential of a

fecal sample for use during a disease flare could be

more clinically beneficial than screening banked

fecal samples from multiple randomly selected

healthy donors when needed.
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