
1.  Introduction
The orientation of Earth's rotation axis is continuously changing in time as a response to the tidal forces 
exerted by the Moon, the Sun, and the planets. As seen from an inertial frame, the time scales involved in 
these changes range from thousands of years, as in the case of precession, to months and days in the case 
of nutations. The tidal forcing in the diurnal frequency range (as seen from a frame attached rigidly to the 
mantle) causes the resonant excitation of two eigenmodes, the free core nutation (FCN) and the free inner 
core nutation (FICN). These modes can be pictured as solid-body rotations of the fluid outer core and the 
solid inner core, respectively, along axes slightly different than that of the mantle. Commonly referred to 
as rotational eigenmodes, they are in fact coupled to the inertial eigenmodes of a rotating fluid (Rekier 
et al., 2020; Triana et al., 2019). An important example of the latter is the spin-over eigenmode, which is 
mostly a uniform-vorticity flow in a uniformly rotating rigid boundary (Greenspan, 1968). Instead, if we 
allow the boundaries to exchange angular momentum with the fluid core, we obtain the familiar FCN 
eigenmode. The real part of the associated eigenvalue corresponds to the damping decay factor, while the 
imaginary part corresponds to the frequency (a real number). Alternatively, the damping decay factor (or 
simply “the damping”) can be represented as the imaginary part of the frequency, now a complex number. 
Here, we focus on the damping of the FCN, which corresponds mainly to the imaginary part of the coupling 
constant KCMB introduced by Mathews et al. (2002), see also Equation 16b in Koot et al. (2010).

The tidal forcing on the Earth and its spin axis orientation response are known very precisely. The observed 
phase lag between the tidal forcing and Earth's response, particularly the annual retrograde nutation, helps 
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Plain Language Summary  Gravitational pull from the Sun and the moon (tidal forces) cause 
small periodic changes in the orientation of the Earth's spin axis, which can be measured very precisely by 
using radiotelescope observations of very distant quasars around the sky. It turns out that there is a small 
time delay between the tidal force and the Earth's spin axis response indicating that there is some process 
inside the Earth that is dissipating energy. Here we perform a numerical simulation to see if there is 
energy being lost inside the fluid outer core of the Earth. We find that there is minimal energy lost in the 
bulk of the core and that most of the energy is being lost at the interface between the fluid core and the 
Earth's mantle. Previous studies have assumed without proper justification that energy dissipates only at 
the fluid-solid interface. Thus our study validates such assumption.
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us infer the total power dissipated in the Earth's interior (Mathews et al., 2002). In other words, the observed 
nutations allow us to determine Im{KCMB}, of which the latest estimate is (−1.78  ±  0, 02) × 10−5 (Koot 
et al., 2010). The damping in the fluid core is viscous and Ohmic in nature given the magneto-hydrodynam-
ic character of the flow, and modeling such flow is difficult not only because of the fluid core's very low 
Ekman number E ∼ 10−15 (i.e., the ratio of viscous to Coriolis forces, see Section 2.2) but also because the 
geomagnetic field there is largely unknown.

Downward continuation of the observed magnetic field at the Earth's surface offers a glimpse of the large-
scale magnetic field (i.e., associated with spherical harmonic degrees ℓ ≤ 13) at the core-mantle boundary 
(CMB). The inferred rms value of the radial component of the dipolar field at the CMB, denoted D

rB , is about 
0.21 mT. The rms value of the remaining non-dipolar components, ND

rB , is estimated to be around 0.28 mT. 
This, however, is an estimate based on the spectral trend of the observed, large-scale field up to ℓ = 13, 
which might not be representative of the actual small-scale field. Unfortunately, the strong magnetization 
of the Earth's crust prevents a reliable characterization of the small-scale field for ℓ > 13.

By assuming a thin and electrically conducting layer with a conductivity of 5 × 105 S/m at the bottom of the 
mantle, Buffett (1992) could explain the anomalous out-of-phase amplitude of the annual retrograde nuta-
tion, although he noted that purely viscous dissipation at the CMB, with a kinematic viscosity ν = 0.1 m2  
s−1 could explain the anomaly alternatively. Later Buffett et al. (2002) showed that the damping inferred 
from nutations could be explained by an overall rms radial magnetic field at the CMB of about 0.69 mT, 
with a non-dipolar part taking up 0.64 mT, appreciably larger than the inferred 0.28 mT mentioned above. 
The study considers the Ohmic heating losses in both the fluid and in the thin conductive layer but assumes 
no viscosity, that is, the coupling torque is purely electromagnetic. Alternatively, Palmer and Smylie (2005) 
assumed a purely viscous coupling torque and estimated an Ekman number of E ∼ 9 × 10−11 to match the 
inferred damping from nutations. This estimate is about five orders of magnitude larger than the expected 
Ekman number based on the molecular viscosity of the fluid core (Gans, 1972). Viscous and electromag-
netic coupling torques on the mantle can be both taken into account simultaneously, but their relative 
contribution cannot be disentangled easily. The key quantities are the conductivity of the hypothetical thin 
conductive layer at the bottom of the mantle, often assumed to match the conductivity of the fluid core, 
and the strength of the non-dipolar part ND

rB  of the magnetic field at the CMB. Mathews and Guo (2005) 
assumed a ND

rB  ranging from 0.252 to 0.645 mT and three different values of the conductivity (5 × 105 S/m 
matching the fluid core, 5 × 104 S/m, and 10 S/m) for the bottom layer of the mantle. They concluded that 
inferred Im{KCMB} requires the presence of some viscous dissipation in the fluid core except in the high 
conductivity, high ND

rB  case as already noted by Buffett (1992) and Buffett et al. (2002).

A more detailed treatment of the magnetic field power spectrum was carried out by Deleplace and Car-
din (2006). They truncated their magnetic models at ℓmax = 40 and noted that the non-dipolar component 
of the field is not strong enough to warrant a purely electromagnetic coupling, even if the thin layer at 
the bottom of the mantle had the same conductivity as the fluid core. They propose an Ekman number of 
the order of 10−11 to compensate for the reduced electromagnetic torque. The study by Buffett and Chris-
tensen (2007) extends the truncation level to ℓmax = 160 or higher in their proposed magnetic field. They 
argue that such a field, although not supported by the observed magnetic spectrum at the Earth's surface, 
is strong enough to provide an rms value of 0.66 mT to the non-dipolar component while still being physi-
cally plausible given the geodynamo's tight energy budget (Christensen & Aubert, 2006). The studies from 
Buffett and Christensen (2007) and Koot et al. (2010) dismiss the contribution of viscous dissipation to the 
coupling constant because the required viscosity, interpreted as an effective eddy viscosity by Deleplace and 
Cardin (2006), would involve turbulent eddies with typical sizes and turnover times largely incompatible 
with the boundary flow associated with nutations. The study by Koot and Dumberry (2013) determined that 
the particular morphology of the non-dipolar part of the field is largely unimportant when it comes to the 
torque estimation, what matters most is simply its effective rms value at the CMB.

Common to most of the works mentioned so far is the assumption that the core flow is simply a solid body 
rotation with a correction required only near the boundaries, disregarding dissipation processes that might 
take place in the bulk of the fluid. This assumption does not necessarily always hold because other eigen-
modes might interact with uniform vorticity flows as demonstrated by Triana et al. (2019) (see also Rogister 
& Valette (2009) and Schmitt (2006)). The resulting flow in the interior can thus deviate considerably from 
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solid body rotation. There is also the possibility of internal shear layers spawned by eruptions from the Ek-
man boundary layers at the critical latitudes (Rieutord et al., 2001). Such internal shear layers are the seat 
of appreciable amounts of viscous and Ohmic dissipation, which is sometimes dominant (Buffett, 2010; 
Lin & Ogilvie, 2018). Thus, to investigate possible dissipation processes in the bulk of the core and assess 
the validity of the solid body rotation approximation, we investigate numerically a linear 3D model of the 
FCN's damping by studying its closely related and purely inertial counterpart, the spin-over mode (Rekier 
et al., 2020). We represent the Earth's geomagnetic field as an imposed magnetic field either as an axial uni-
form or as a dipolar field. We assume an insulating mantle and inner core, thus drawing our conclusions for 
the case of no electromagnetic torque. A more detailed description of the model follows.

2.  A Model for the Free Core Nutation
2.1.  General Assumptions

The Earth's FCN is essentially a global eigenmode in which the mantle's spin axis does not coincide with the 
fluid core spin axis. Although both axes experience a small and periodic oscillation in their orientation as 
seen from an inertial frame, their relative orientation angle remains constant. The FCN frequency is nearly 
diurnal as seen from a reference frame attached rigidly to the mantle. During the FCN motion, the kinetic 
energy associated with the oscillation of the spin axis of the fluid core is much larger than the respective 
oscillation of the mantle.

A few simplifications are possible leading to a numerically tractable model for the FCN's energy dissipa-
tion. First, given that most of the FCN's energy is carried by the fluid core, we assume the mantle to be 
rigid and uniformly rotating, ignoring elastic deformations and small deviations from uniform rotation. 
Doing so allows us to represent the FCN as the spin-over mode introduced earlier. Second, since most of the 
energy dissipation takes place in the boundary layers and depends only weakly on small deviations of the 
boundaries from sphericity (see Appendix B), we model both the ICB and the CMB as spherical surfaces. 
Additionally, we assume an incompressible fluid core with uniform electrical conductivity σ and density ρ, 
together with no-slip boundary conditions for the flow velocity, and electrically insulating mantle and inner 
core. We chose insulating boundaries because of their computational convenience, allowing us at the same 
time to focus on dissipative processes exclusively within the fluid core. To represent the geomagnetic field 
we adopt a static, imposed magnetic field of the form B0 = − ∇ Φ where Φ is a scalar function expanded in 
the spherical harmonics basis as

    
,

Φ( , , ) ( ) ( , ).m
lm l

l m
r h r Y� (1)

We consider two simple axisymmetric (m  =  0) morphologies with l  =  1: an axial uniform field with 
h10(r) = −B0 r, and a dipolar field with h10(r) = B0/(2r2) both aligned with the mantle's rotation axis ẑ. The 
rms value of the radial magnetic field at the CMB is in both cases 0 / 3B . Figure 1 shows a schematic of 
the two configurations.

2.2.  Governing Equations

We compute the eigenmodes of our system as follows. We use the CMB radius R as the unit of length, the 
inverse angular speed of the Earth Ω−1 as the unit of time (or rotation time scale), and B0 as the unit for the 
magnetic field strength. Then, in a reference frame attached rigidly to the mantle, small deviations of the 
flow velocity u and magnetic field b from their steady state obey the linearized Navier-Stokes and induction 
equations
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where p is the (dimensionless) reduced pressure. The Ekman number E is the ratio between the rotation 
time scale Ω−1 and the viscous diffusion time scale R2/ν, the Lehnert number Le is the ratio between the 

Alfvén speed 0 0/B  and the unit of speed ΩR, and the magnetic Ekman number Eη is the ratio between 

the rotation time scale and the magnetic diffusion time scale R2/η:


 


  0

2 2
0

, , ,
Ω ΩΩ

BE Le E
R RR� (3)

where ν is the kinematic viscosity (or momentum diffusivity), η is the magnetic diffusivity, and μ0 is the 
magnetic permeability. We complement Equation 2 with no-slip boundary conditions for u and insulating 
boundary conditions for b. Alternatively to Le and Eη, the Elsasser number Λ representing the ratio of Lor-
entz to Coriolis forces and the magnetic Prandtl number Pm representing the ratio of viscosity to magnetic 
diffusivity can also be used as control parameters. They can be written as

 
 

2
Λ , .m

Le EP
E E� (4)

The parameters Λ and Pm turn out to be better suited when searching for scaling laws appropriate for Earth 
(see Sections 3 and 4). We seek for eigenmodes as solutions of Equation 2, so we write u and b as

      0 0, ( )e cc, ( , ) ( )e cc,t tt tu r u r b r b r� (5)

where λ = σ + iω is a complex number whose real part σ corresponds to the damping factor and the imagi-
nary part ω to the eigenfrequency. We add the complex conjugate (cc) to keep u and b real. The details about 
the discretization scheme that we use to cast problem Equation 2 as a generalized eigenvalue problem, and 
the numerical method to solve it, can be found in Appendix A, see also Rekier et al. (2019). Solving the ei-
genvalue problem provides us with several inertial eigenmodes as solutions, from which the spin-over mode 
needs to be identified. This is easily accomplished since the spin-over mode, being characteristically an 
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Figure 1.  Schematic view of our Earth model with an imposed magnetic field B0, which we consider as axial uniform (left) or dipolar (right). The ratio between 
the solid inner core radius and the fluid outer core radius is 0.35.
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almost uniform vorticity flow, is the only one with a toroidal component 
much larger than its poloidal component.

We have thus three control parameters: E, Λ, and Pm, which in principle 
we can vary at will, except for the Ekman number. The small length scale 
features associated with the very small E for the Earth's core (E ∼ 10−15 if 
we use the molecular value for the viscosity, ν ∼ 10−6 m2  s−1) are out of 
reach numerically. We study our problem by considering the lowest E as 
computationally feasible (down to E ∼ 10−11 for the axial uniform field 
and E ∼ 10−9 for a dipolar field, a limitation due mainly to high memory 
usage and round-off errors) and see if we approach any kind of asymp-
totic behavior.

3.  Imposed Axial Uniform Magnetic Field Case
For illustrative purposes we start by setting the Elsasser number Λ with 
a value between 10−0.2 ≈ 0.63 and 100.8 ≈ 6.3, and three different val-
ues for Pm. For comparison, Earth's values are Pm ≈ 10−6, and Λ ≈ 1 if 
we take a total rms radial magnetic field at the CMB of 0.7 mT. Note 
that we define the Elsasser number in Equation 4 based on the strength 
B0 of the uniform background magnetic field which has an rms radial 

magnetic field average rms
0 / 3rB B . The results for the damping σ 

of the spin-over mode are shown in Figure 2. An asymptotic behavior 
is reached at low values of E, depending on Λ and Pm. When Pm = 10−3 
our results show that σ ∝ E1/2 for practically all chosen values of Λ (top 
panel, Figure 2). At Pm = 10−4 (center panel) the asymptotic regime is 
reached when E ≲  10−8 for Λ ≈  6.3, or when E ≲  10−7.6 for Λ ≈  0.63. 
Decreasing Pm further to 10−5 (bottom panel) pushes the beginning of 
the asymptotic regime down to E ≲ 10−9.5 for Λ ≈ 6.3, and to E ≲ 10−9 
when Λ ≈ 0.63. The value of |σ|E−1/2 in the asymptotic regime increases 
with increasing Λ from the purely hydrodynamic value of 2.62047 (see 
Appendix  B) to about 8 for Λ ≈  6.3. In the asymptotic regime, σE−1/2 
depends only weakly on Pm.

In Figure  3, we show the asymptotic value of |σ|E−1/2 (computed at 
E = 10−9) as a function of both Λ and Pm. When Λ ≪ 1 we are essen-
tially in the purely hydrodynamic regime and |σ|E−1/2 is very close to 
the hydrodynamic value, independent of Λ and Pm. A clearly distinct 
regime appears when Λ ≳  5. In this regime the damping σ behaves 
approximately as

   ( ) 1/2( ,Λ, ) ( )Λ ,Pm
m mP E c P E� (6)

where c and α depend only weakly on Pm, see Figure  4. We could not 
explore the asymptotic regime at even higher Λ since it would require 
calculations with Ekman numbers smaller than our current numerical 
limit of 10−11.

The asymptotic damping is almost entirely viscous when Λ ≪ 1, with the 
ratio   / Λ  . In this “weak field” regime the damping is practical-
ly independent of Pm (as long as Pm is much smaller than unity), and it 
seems to follow

     1/2(Λ, ) 2.676 1.10Λ ,E E� (7)

TRIANA ET AL.

10.1029/2020JB021042

5 of 14

Figure 2.  The Ekman number at which the asymptotic regime is reached 
depends on Λ and Pm. Here we show the scaled damping |σ|E−1/2 versus E 
for three different values of Pm. Color indicates log 10Λ. Here the imposed 
magnetic field is axial and uniform.

Figure 3.  The asymptotic value of |σ|E−1/2 computed at E = 10−9 for 10−3 ≤ 
Pm ≤ 10−2 and 10−3 ≤ Λ ≲ 30, imposed axial uniform field case. The dashed 
horizontal line indicates the theoretical asymptotic value (≈2.62047) in the 
no inner core, purely hydrodynamic case. The dotted line represents a Λ0.44 
scaling law for reference.
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which comes from a fit from solutions computed at E ≤ 10−9. At Λ = 0 the 
expression above gives σ E−1/2 = −2.676 which is reasonably close to the 
theoretical value −2.62047 computed for a full sphere (Greenspan, 1968; 
Zhang et al., 2004). When Λ ≳ 1 Ohmic and viscous dissipation contrib-
ute nearly equally to the total damping, independently of Λ, see Figure 5.

To conclude this section, we show that the imaginary part of the cou-
pling constant, Im{Kcmb}, is related in a simple way to the damping σ, both 
providing essentially the same information. Let us assume that the core 
flow can be represented approximately as a solid body rotation around 
an equatorial axis with angular speed Ωf(t). It suffices for our purpose 
to consider just the magnitude Ωf. The damping σ would represent the 
inverse time constant associated with the free decay of that motion. The 
magnitude γ of the viscous torque is simply   | Ω | | |Ωf fI I  where 
I is the moment of inertia of the fluid core. According to our non-dimen-
sionalization scheme, and with the fluid density set as unity we write

 
  5

icb
8 1 .
15

I R� (8)

The amplitude of the eigenmode solution provided by our matrix solver 

is such that its total kinetic energy is set to unity, thus Ω 2 /f I . So, in 
our dimensionless variables we have


 


2 2I I

 | |,
| |

.� (9)

Note that the damping is a global quantity, and thus it is related to the total torque on the core, including 
that at the inner-core boundary. However, in the asymptotic regime, the torque on the CMB alone accounts 
for more than 98% of the damping, see Figure 6. Then the coupling constant Im{Kcmb} can be read directly 
from the damping σ, overestimating it only by less than 2%.

4.  Imposed Dipolar Field Case
We proceed in a similar way as in the axial uniform magnetic field case, 
trying to reach the smallest E as possible for different combinations of 
Λ and Pm. It turns out that poor numerical convergence and round-off 
errors manifested already in the dipolar case at around E ∼ 10−8 for some 
values of Λ and Pm, and a twice as high truncation level compared to the 
uniform field case (both in radial and angular direction) was generally 
required to obtain satisfactory solutions. Notwithstanding, we could get 
a glimpse of the asymptotic regime for the geophysically relevant case 
of Λ ∼ 0.1, which corresponds to the estimated radial rms strength of 
0.21 mT of the dipolar component of the magnetic field at the CMB. Fig-
ure 7 shows the scaled damping at Λ = 0.1 for a range of Pm as a function 
of E. The asymptotic regime appears below E ∼ 10−6 for Pm = 0.1, while 
it seems to appear below E ∼ 10−9 for Pm = 10−4. As in the axial uniform 
field case, the asymptotic scaled damping appears to be weakly depend-
ent on Pm, at least for Λ = 0.1.

We turn now to the Λ-dependence of the damping in the asymptotic re-
gime. Figure 8 shows how the asymptotic value of |σ|E−1/2 depends on 
the Elsasser number Λ, for a few values of Pm. Due to the numerical dif-
ficulties mentioned above, we could only cover relatively small ranges of 
Λ for each Pm. The constant c = 2.678986 as used in the figure is chosen 
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Figure 4.  Dependence of the fit parameters c (top) and α (bottom) 
describing the asymptotic damping of the spin-over mode when Λ ≳ 5, see 
Equation 6. Imposed axial uniform field case.

Figure 5.  The ratio of Ohmic to viscous dissipation  /   computed at 
E = 10−9. Imposed axial uniform field case.
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after a fit of of the form σ = −(c + k Λα)E1/2 using only the solutions with 
Pm = 10−4. The plot suggests that c, k, and α indeed depend on Pm for 
Λ ≲ 3 × 10−3 but become only weakly dependent on Pm for Λ ≳ 3 × 10−3. 
The exponent in Λα is very close to 1 for Pm = 10−4 and Λ < 3 × 10−3, while 
becoming very close to 2/3 for higher Λ. So, for Λ > 3 × 10−3 the damping 
is approximately

     2/3 1/22.679 1.74Λ ,E� (10)

as long as Pm ≪ 1. We discuss the CMB torque and the Ohmic to viscous 
dissipation ratio further below in Section 5.

5.  Discussion
5.1.  Boundary Layer Scaling

The damping of the spin-over mode with an axial uniform magnetic field 
background follows a familiar E1/2 asymptotic scaling even for moderate 
values of the Elsasser number Λ above 1. This scaling is intimately con-
nected to the fact that most of the energy dissipation, whether Ohmic or 
viscous, takes place at the boundary layers. The character of the bounda-
ry layers transitions from an Ekman layer type when Λ ≪ 1 to a slightly 
thinner Hartmann-Ekman layer type when Λ (1) , in accordance with 

Benton and Loper  (1969). Figure 9 shows the radial (θ, ϕ integrated) profiles of the viscous and Ohmic 
dissipation near the CMB for both cases, which clearly demonstrate the thinner boundary layer for a larger 
Elsasser number. The different curves collapse onto one when scaling the radial distance to the CMB by E1/2 
matching the asymptotic scaling of the damping. The damping in the imposed dipolar field case exhibits 
the same scaling, thus suggesting the same scaling for the width of the boundary layers, but we could not 
verify this directly given the rather narrow range of Ekman numbers that we could study in the asymptotic 
regime in that case.

5.2.  Axial Uniform Versus Dipolar Field Background

The behavior of the spin-over mode for an extended range of Ekman 
numbers in the dipolar background field case is qualitatively similar to 
the axial uniform case. Figure 10 illustrates this point. The main differ-
ence being an overall increase in the total damping in the dipolar case. 
In both cases, there is a damping peak near E ∼ 10−5 for Pm = 10−4 and 
near E ∼ 10−4 for Pm = 10−3 (i.e., when Eη ∼ 0.1) appearing also as a peak 
in the mode frequency (top right panel), as a valley in the CMB torque to 
dissipation ratio cmb (bottom left panel), and again as a peak in the total 
Ohmic to viscous dissipation ratio (bottom right panel). The marked de-
parture from unity of the ratio  is indicative of considerable energy dissi-
pation taking place in the bulk of the fluid compared to the boundaries at 
larger E. In this situation, the damping σ is therefore not expected to scale 
as E1/2 as it is not the case indeed away from the asymptotic range. The 
spin-over mode is still unambiguously identifiable as the mode with the 
largest toroidal to poloidal kinetic energy ratio, but the induced magnetic 
field seems weakly coupled to the flow. This peculiar behavior near Eη ∼ 
0.1 is very reminiscent of magnetic free decay modes where the magnet-
ic field dynamics is dominated by magnetic diffusion (see e.g., Moffatt 
& Dormy, 2019; Schmitt, 2012); however, we did not investigate this in 
further detail since it seems beyond the scope of our geophysical setting.
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Figure 6.  The ratio  between the computed CMB viscous coupling torque 
 cmb / 2I , and the mode damping σ. The ratio  should approach unity 
if the flow is mostly a solid body rotation whose damping is due solely to 
torques on the outer boundary. In the main figure, we fix Pm = 10−4. The 
inset plot, where we fix E = 10−9 and Pm = 10−3, shows little variation of 
the ratio  over an extended range of Λ. Imposed axial uniform field case. 
CMB, core-mantle boundary.

Figure 7.  In the imposed dipolar field case, the asymptotic regime for 
the damping appears at values of E depending on Pm, in a similar fashion 
as in the axial uniform field case. However, numerical convergence of 
the solutions is much harder to achieve compared to axial uniform field 
case; therefore, we could only explore here a limited range of the control 
parameters. In this plot, the Elsasser number is fixed at Λ = 0.1.
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It is clear from the top right panel of Figure 10 that for fixed Λ and Pm the 
asymptotic regime appears at much lower Ekman numbers in the dipole 
case, and the asymptotic value of the scaled damping is slightly higher. 
The ratio  (see Equation 9) for the CMB in the asymptotic regime is not 
as close to unity in the dipolar case as in the axial uniform case. This 
is not surprising since the background magnetic field is stronger near 
the ICB in the dipolar case; thus, we expect a larger contribution to the 
total damping from the dissipation at the ICB, coming from comparative-
ly more Ohmic dissipation, and correspondingly higher ICB torque. In 
both cases, the frequency of the spin-over mode in the asymptotic regime 
becomes very close to one, as can be seen from the top right panel in Fig-
ure 10. The frequency dependence of this mode, or the Earth's FCN for 
that matter, is dominated mainly by the flattening of the planet, which 
our study ignores.

5.3.  Comparing to Observations

We now compare the damping of the spin-over mode with values de-
duced from Earth's annual retrograde nutation observations, that is, with 
the imaginary part of the CMB coupling constant which Koot et al. (2010) 
report as Im{KCMB} = (−1.78 ± 0.02) × 10−5 ≡ σobs. Let us assume now 
that either Equation 6 or Equation 10 correctly describe Earth's core re-
gime and extrapolate toward the appropriate Ekman number, E = 10−15, 
which is based on a molecular kinematic viscosity of ν ≈ 10−6 m2  s−1. 

Equation 6 then shows that Λ needs to be quite large (Λ ≈ 105) at E = 10−15 to match σobs. This would 
correspond to a radial rms magnetic field of about 220 mT at the CMB. In the dipolar background field 
case, Equation 10 requires a somewhat smaller radial rms field of about 120 mT at the CMB to match σobs, 
which is still incompatible with the downward continuation of the observed magnetic field at the Earth's 
surface. Alternatively, if we require Λ (1)  then the Ekman number must be  11(10 )E  . Such a high 
Ekman number might arise as the result of turbulent behavior in the boundary layers, in which case the 
effective kinematic viscosity is better represented by an eddy viscosity νe ∼ 2.2 × 10−2 m2  s−1 rather than its 
molecular value. Note however that our choice of an insulating mantle might not be realistic and another 
interpretation is possible. As we discussed in the introduction, the damping could be explained as well by 
a purely electromagnetic coupling through a hypothetical thin layer of electrically conductive material at 
the bottom of the mantle.

It is certainly the case that the FCN flow velocity at the CMB associated with the retrograde annual nutation 
is not large enough to drive instabilities leading to turbulence. With roughly 32 mas of observed amplitude, 
it leads to a core surface velocity of only 1.7  ×  10−4  m/s. The corresponding Reynolds number, defined 
as Re = vδ/ν, where   cmbR E  is the width of the boundary layer, v the core surface velocity and ν the 
kinematic viscosity, is Re = 21. The boundary flow is known to become unstable only at Re ∼ 55 and fully 
turbulent at Re ∼ 150 (Cébron et al., 2019; Lorenzani & Tilgner, 2001; Sous et al., 2013). On the other hand, 
Earth's precession is very likely to drive a turbulent boundary flow at the CMB. This precessional motion 
leads to an angular misalignment between the fluid core spin axis and the instantaneous mantle spin axis. 
According to Tilgner (2007) and Le Bars et al. (2015) the misalignment is 1.7 × 10−5 radians, an estimate 
based on the theory by Busse (1968) for a fluid-filled precessing spheroid, which has been well tested nu-
merically and experimentally (see e.g., Noir et al., 2003; Triana et al., 2012). Such misalignment is seen from 
the mantle frame of reference as a solid body rotation of the fluid core around an equatorial axis, and this 
axis goes around on the equatorial plane with a nearly diurnal frequency (see e.g., Pais & Le Mouël, 2001, 
for a detailed description of such flow). This motion is in fact another example of a uniform vorticity flow, 
just like the FCN or the spin-over mode. The core surface flow from precession is about 4.3 mm/s. The corre-
sponding Reynolds number is about Re ∼ 473, large enough for a fully turbulent boundary flow to develop. 
Thus, the weaker FCN flow associated with the retrograde annual nutation does not exist in isolation, it 
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Figure 8.  A plot of |σ|E−1/2 − c with c = 2.678986 as a function of Λ for 
a range of Pm in the imposed dipolar field case. The asymptotic value 
of |σ|E−1/2 appears to depend on Pm for Λ ≪ 1, as opposed to the axial 
uniform case. A regime transition takes place near Λ = 3 × 10−3. At 
Λ = 0.1, corresponding roughly to the radial rms strength of the dipolar 
component of Earth's magnetic field at the CMB, the asymptotic value 
seems independent of Pm, especially for Pm ≪ 1. CMB, core-mantle 
boundary.
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has a turbulent companion. Nonlinearities will prevent any simple linear superposition of these flows and 
Reynolds stresses will lead to increased viscous damping of the FCN. Estimating this damping increase 
remains very challenging, as simple eddy viscosity estimates based on mixing length theory (see e.g., Ten-
nekes & Lumley, 1972) do not seem applicable in this case (Buffett & Christensen, 2007).

The study by Deleplace and Cardin (2006) arrives at an expectation for the value of the effective Ekman 
number in the core of E ≈ 3 × 10−11 to match σobs when the Elsasser number is set to Λ = 0.145, with a 
viscous dissipation 85% of the total. According to our Equation 7, we estimate E ≈ 4 × 10−11 if we use the 
same Λ, the viscous dissipation being 90% of the total (see Figure 5). The slight difference can be traced 
to our choice of an insulating mantle, whereas in Deleplace and Cardin (2006) there is a thin layer at the 
bottom of the mantle with the same electrical conductivity as the core, where additional Ohmic dissipation 
takes place. Mathews and Guo (2005) give an estimate of E ≈ 3.3 × 10−11 when Λ ≈ 1 assuming a thin, low 
conductivity (10 S/m) layer at the bottom of the mantle, which is in fair agreement with our E = 2.5 × 10−11 
estimate. Thus, our results largely validate the simpler analytical approach and the approximations made in 
both Deleplace and Cardin (2006) and Mathews and Guo (2005). The uniform vorticity flow assumption is 
indeed a good one, at least in the case at hand. Note that unmodelled features such as density stratification 
at the top of the core, CMB topography, or the back reaction of the mantle on the core might have the po-
tential to change this simple picture dramatically.

TRIANA ET AL.

10.1029/2020JB021042

9 of 14

Figure 9.  Radial profiles (θ, ϕ integrated) at Pm = 10−3 of the viscous (top) and Ohmic dissipation (bottom) near the CMB scaled by their respective maximum 
values at the CMB. Panels on the left correspond to the hydrodynamic (viscous-dominated) regime at Λ = 10−3, and panels on the right correspond to Λ ≃ 5.01 
where Ohmic and viscous processes contribute equally to the overall energy dissipation. The horizontal axis is the radial distance to the CMB scaled by E . 
Colors indicate the Ekman number. Imposed axial uniform field case. CMB, core-mantle boundary.
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6.  Summary and Conclusions
We have implemented a linear, fully 3D numerical model to study viscous and Ohmic dissipation process-
es associated with the Earth's FCN mode. Our approach consists of using the spin-over eigenmode as a 
proxy for the FCN motion, taking advantage of their analogous flow characteristics, and representing the 
geomagnetic field either as an externally imposed, uniform axial field or as a dipolar field. Deviations from 
sphericity in the total dissipation are expected to enter only at second order in the ellipticity, as indicated by 
(Zhang et al., 2004). Thus, by assuming spherical rather than ellipsoidal surfaces at both the ICB and the 
CMB, we introduce an error smaller than 1% on the total energy dissipation. With spherical surfaces and 
the aid of an efficient spectral method based on ultraspherical polynomials, we are able to reach very small 
Ekman numbers (∼ 10−11) at an affordable computational cost.

The flow in the model appears to reach an asymptotic regime where the damping scales as E1/2 in the nu-
merically accessible Ekman number range. In the case of an imposed axial uniform magnetic field, two 
asymptotic regimes appear: if the Elsasser number Λ is much smaller than unity, then the dissipation is 
dominated by viscosity, and the asymptotic regime is essentially the same as in the purely hydrodynamic 
case. In this situation, the Ohmic to viscous dissipation ratio Dη/Dν is directly proportional to Λ. When 
Λ (1)  , stronger Ohmic dissipation takes place but never dominates over viscous dissipation processes, 
both becoming comparable in that range of Λ. The total dissipation scales are still as E1/2 in both asymptotic 
regimes but with a Λ-dependent factor as given by Equation 6 in the latter case. The Ekman boundary layer 
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Figure 10.  A comparison between the imposed dipolar field (continuous lines) and axial uniform field (dashed lines) over an extended range of E for a fixed 
Elsasser number Λ = 0.1. Dark blue lines correspond to Pm = 10−4 and red lines to Pm = 10−3. Top left panel shows the scaled damping, top right panel shows 
the mode frequency, bottom left panel shows the ratio  between the magnitude of the CMB torque γcmb and the quantity | | 2I , see Equation 9. Panel on the 
bottom right shows the Ohmic to viscous dissipation ratio. CMB, core-mantle boundary.
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in the viscous dominated case (Λ ≪ 1) becomes a slightly thinner Ekman-Hartmann boundary layer when 
Λ (1)  . The magnetic Prandtl number Pm does not seem to play a big role, the damping being nearly 
independent of it when Pm ≪ 1.

We also considered an imposed dipolar field to represent the geomagnetic field in the core. In this case, the 
background magnetic field is stronger near the ICB compared to the field at the CMB (at the same Elsasser 
number). Although more demanding computationally, we could glimpse asymptotic behavior for a limited 
range of the control parameters. As in the axial uniform field case, a weak regime also appears for Λ ≪ 1 but 
it seems dependent on the magnetic Prandtl number Pm. An “intermediate” regime exists when Λ > 3 × 103 
where the Pm dependence weakens. Numerical limitations prevented us from exploring eigensolutions for 
Λ > 1. For the dipolar case in general, the ICB contributes more to the damping particularly through more 
Ohmic heating. However,the total damping comes mostly from Ohmic and viscous dissipation at the CMB.

Our model shows that possible deviations of the core flow from solid body rotation, such as internal shear 
layers, do not contribute in any significant way to total dissipation. Almost all the kinetic energy is dissipat-
ed at the boundaries, mostly at the CMB in both dipolar and uniform background field cases. Taking the 
Ekman number as a free parameter to match the observed Im{Kcmb}, we reach essentially the same estimates 
as Deleplace and Cardin (2006) and Mathews and Guo (2005), thus validating their much simpler approach. 
We do see evidence of Ohmic dissipation processes in the bulk of the fluid core that cannot be captured by 
their models, but they do not appear to take place in the asymptotic regime appropriate for Earth.

There are still many aspects that deserve further study to disentangle the nature of the damping of the 
Earth's nutations. One of them is the possibility that the boundary layer at the CMB is turbulent, and its 
effect on the dissipation associated with nutations. Reliable estimates of this dissipation are important since 
it will tighten the constraints on the conductivity of the Earth's lower mantle, the strength of the magnetic 
field at the CMB, and possibly the length scale of the CMB topography. Our numerical approach can be 
readily extended to include mantle conductivity, density stratification, and more complex field geometries. 
These are topics for future study.

Appendix A:  Numerical Method
To formulate the problem as a numerical eigenvalue problem we need a discretization scheme. Both the 
flow velocity u and the induced magnetic field b are divergenceless, so a poloidal-toroidal representation 
is adequate:

             
             

( ) ( ) ,

( ) ( ) .
0

0

u r r r r

b r r r r

 

 
� (A1)

We use spherical harmonic expansions for the angular dependence of the scalar functions ,   and  ,  . 
We illustrate the method for just one of these scalar functions since it is completely analogous for all of 
them. For instance, for   we write

   
 
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max

1
( , , ) ( ) ( , ),

l l
m

lm l
l m l

r F r Y� (A2)

where m
lY  are the spherical harmonics, Flm(r) is a radial function, and lmax determines the angular truncation 

level. The spherical harmonic expansion leads to a fully decoupled problem in the azimuthal wave number 
m. The FCN has m = 1 so we restrict m accordingly. We further expand each function Flm(r) using Cheby-
shev polynomials tk:


 

0
( ) ( ),

N
k

lm lm k
k

F r F t r� (A3)

where k
lmF  is a complex coefficient to be determined, k is the degree of the Chebyshev polynomial, and N 

is the radial truncation level. We map the natural domain [−1, 1] of the Chebyshev polynomials to the 
radial interval [RICB, RCMB] ≡ [0.35, 1]. For the differential operators appearing in the governing equations 
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(Section 2.2 in the main text) we employ a fast spectral method devised by Olver and Townsend (2013) that 
uses Chebyshev polynomials for the unknowns, as just explained, and Gegenbauer polynomials for terms 
involving their spatial derivatives. In the end, we have transformed our original problem into a generalized 
eigenvalue problem of the form

 ,Ax Bx� (A4)

where A and B are sparse matrices, λ is the eigenvalue, and x is the eigenvector comprised by the set of 

coefficients { , , , }k k k k
lm lm lm lmP T F G .

We employ no-slip (u = 0) boundary conditions for the velocity, therefore, we set


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

( ) ( ) 0,

( ) 0,

lm b lm
r rb

lm b

P r P r

T r
� (A5)

where rb denotes the radius of either the ICB and the CMB, and the prime (′) denotes a radial derivative. 
For the induced magnetic field b we assume an insulating mantle and insulating inner core, thus in these 
regions b can be written as a potential field b = ∇ Φ. This condition is met if the radial functions satisfy


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at the ICB, and
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r
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at the CMB.

The solutions for u are either equatorially symmetric or antisymmetric. Since our applied field 0ˆB z is equa-
torially antisymmetric, we expect the induced magnetic field b to have the opposite symmetry of u. Note 
also that we do not need to compute all the coefficients for each l since either even or odd l coefficients will 
vanish depending on the symmetry of u or b. To solve Equation A4 we employ the shift-and-invert strategy 
with the help of the PETSc and SLEPc solver packages and associated libraries (Amestoy et al., 2001, 2006; 
Balay et al., 1997; Dalcin et al., 2011; Hernandez et al., 2005; Li & Demmel, 2003).

Once we obtain the solutions, we proceed to compute their Ohmic and viscous dissipation. We define first 
the radial Qlm and consoidal Slm functions as



 
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( ) ( 1) ( ),
( )( ) ( ) .
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Q r l l P r
P rS r P r
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For the sake of compactness we now define

  ( ), ( ), ( ).lm lm lmq Q r s S r t T r� (A9)

With this notation, and employing the Schmidt semi-normalized Spherical Harmonic convention, we write 
the total Ohmic dissipation as
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where V is the fluid domain. Similarly, we compute the viscous energy dissipation as

 
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where the colon (:) denotes the tensor double dot product and u is defined as
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1 ,
2

Tu u u� (A12)

All the formulae in this study were obtained with the help of TenGSHui, a tensor calculus package for Math-
ematica (Trinh, 2019). The computation of the matrix elements involve the usage of the Wigner-3j symbols, 
which we compute with the help of the package WIGXJPF (Johansson & Forssén, 2016).

Appendix B:  The Damping of the Spin-Over Mode in an Oblate Spheroid
The effect of a small amount of viscous dissipation on the inertial eigenmodes, including the spin-over 
mode, of an axisymmetric spheroid has been computed by Zhang et al. (2004). The damping factor σ of the 
spin-over mode and its frequency ω are given by:
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where ϵ is the eccentricity of the bounding spheroid and E is the Ekman number. With no-slip boundary 
conditions as assumed here, most of the kinetic energy is dissipated within the boundary layer. The damp-
ing factor σ in Equation B1 depends only to second order in the eccentricity ϵ. Given that ϵ2 ∼ 0.007 for the 
Earth's CMB, a spherical approximation would introduce a relative error on the energy dissipation smaller 
than 1%.

Data Availability Statement
The code implementing the model described in this study is freely available at https://bitbucket.org/repepo/
kore/src/master. All the scripts and associated data necessary to reproduce all the figures in this paper are 
archived along with the code.
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