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Cadaverine is a bioactive substance derived from lysine degradation by lysine decarboxylase and has gained atten-
tion for its physiological effects. Studies in rodents have revealed its role as a cell growth regulator, particularly intestinal 
bacterial-produced cadaverine. However, the nutritional and physiological roles of cadaverine during the embryonic period 
remain unclear, especially considering the immature state of the gut microbiota and digestive functions during this stage. This 
study explored the potential functions of cadaverine as a nutritional and metabolic signal during chicken embryonic devel-
opment. Experiments were conducted using an in ovo administration method to evaluate the effects of nutritional bioactive 
substances on developing chicken embryos. Although there were no observable changes in body or organ weights of newly 
hatched chicks following in ovo cadaverine administration to day 18 chick embryos, plasma tryptophan, Nτ-methylhistidine, 
and Nπ-methylhistidine concentrations decreased and the gene expression of insulin/insulin-like growth factor 1 signaling in 
skeletal muscle was upregulated. These findings imply that cadaverine influences tryptophan metabolism and skeletal muscle 
catabolism during the embryonic period, suggesting its role as a bioactive factor contributing to energy metabolism signaling 
in skeletal muscle.
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Introduction

Cadaverine is a naturally occurring nitrogen-containing or-
ganic compound (alkaloid) generated through decarboxylation 
of the essential amino acid lysine. It falls under the category of 
polyamines because of its structure, which comprises a carbon 
chain with two amino groups[1]. Polyamines are generic terms 
for cationic organic compounds containing multiple amino 
groups. The chemical characteristics of polyamines allow them 
to function in cellular homeostasis, including in cell prolifera-
tion and differentiation[2], nucleic acid protection[3], apopto-
sis[4], autophagy[5], and antioxidant activity[6]. Other common 
polyamines found in vertebrates include putrescine, spermidine, 
and spermine, which are synthesized by the decarboxylation of 

ornithine[7]. Polyamines in the body originate from both in vivo 
production pathways (decarboxylation in tissues) and ex vivo 
pathways (derived from food intake and decarboxylation by in-
testinal bacteria)[8,9]. However, tissue production of cadaverine 
suggests the significance of its action, especially considering the 
relatively low activity of decarboxylase[2,5,8,9].

There are many reports of the function of cadaverine in birds, 
including its association with negative indicators of productiv-
ity, mainly as an indicator of spoilage (bacterial fermentation) 
of livestock products (muscle) and feed[10,11] and induction of 
glandular stomach damage in chickens[11]. In contrast, a study 
using metabolome analysis, a technology that comprehensively 
analyzes nutrients and their metabolites in the body, including 
amino acids, has shown that when broiler and layer chicks that 
have been improved through breeding and selection are com-
pared, plasma cadaverine concentrations in broiler chicks are 
higher than those in layer chicks[12]. It has also been suggested 
that the function of metabolites produced by the gut microbiota 
is important and that the gut microbiota develops in the diges-
tive tract of the chick embryo via inoculation from the mother 
hen’s oviduct[13,14]. Since insulin and insulin-like growth fac-
tors in the blood of chick embryos regulate subsequent energy 
metabolism, it is important to evaluate the relationship between 
the actions of these hormones and nutrient metabolites produced 
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by gut microbiota[15]. However, the relationship between early 
growth and nutritional and physiological functions of cadaverine 
in chicks and chickens is not well understood. In this study, the 
potential of cadaverine signaling as a nutrient signal during early 
growth was investigated by examining the variation in plasma 
free amino acid concentrations in newly hatched chicks after in 
ovo cadaverine stimulation and analyzing its effects on amino 
acids and related energy metabolism.

Materials and Methods

In ovo cadaverine administration and organ weights in newly-
hatched chicks

Fertilized broiler eggs (Ross 308) were purchased from a lo-
cal hatchery (ISHII, Iwate, Japan). The eggs were incubated at 
37.8 °C and 60% relative humidity, and on the 14th day of em-
bryonic development, eggs that had started to develop normally 
were selected and classified so that the average egg weights were 
equal. On the 18th day of incubation, a perforation was made 
in the eggshell using a needle and 500 µL of cadaverine or de-
ionized water was administered into the egg using the method 
of Ohta et al. [16]. After administration, the needle holes were 
closed with cellophane, incubation was resumed, and eggs were 
allowed to hatch. The cadaverine (Fujifilm Wako Chemical, 
Osaka Japan) used in the experiments was a five-step dilution 
of a cadaverine solution based on a report by Barnes et al. [11]. 
Hatched chicks were weighed and euthanized after blood col-
lection. Blood samples were collected after anticoagulation with 
heparin. Euthanized chicks were opened and sexed by observing 
the shape of their gonads. The weight of each organ (the whole 
brain, heart, pectoral muscle, liver, sartorius muscle, pancreas, 
and residual yolk sac) was measured. Pectoral muscle samples 
were flash-frozen in liquid nitrogen, blood samples were centri-
fuged at 4 °C, 4,000 × g, for 10 min, and plasma samples were 
collected. Each sample was stored at -80 °C until analysis. This 
study was approved by the Animal Experimentation Commit-
tee of Nippon Veterinary and Life Science University (Approval 

Nos. 2019 K-34, 2020 K-37, and 2021 K-62).
Determination of plasma free amino acid concentrations in 
newly hatched chicks

Following the method described by Sakano et al.[17], plas-
ma free amino acid (arginine, lysine, methionine, isoleucine, 
leucine, valine, phenylalanine, threonine, tryptophan, histidine, 
glycine, glutamic acid, glutamine, aspartic acid, serine, alanine, 
cysteine, tyrosine, proline, taurine, Nπ-methylhistidine, and Nτ-
methylhistidine) concentrations were determined using a fully 
automated amino acid analyzer (JLC-500/V2, Japan Electron 
Optics Laboratory, Tokyo, Japan) after plasma samples were de-
proteinized with 3% sulfosalicylic acid solution.
Gene expression analysis of insulin/insulin-like growth factor 
1 signaling in skeletal muscle of newly hatched chicks

Total RNA was extracted and purified from the collected pec-
toral muscle samples using IsoPlus RNA (Takara Biosciences, 
Shiga, Japan). A cDNA library derived from each organ was con-
structed using a PrimeScript cDNA Synthesis Kit (Takara Biosci-
ences, Shiga, Japan). The expression levels of insulin receptor 
(INSR), insulin-like growth factor 1 receptor (IGF1R), and insu-
lin receptor substrate 1/2 (IRS-1/2) genes in the pectoral muscles 
were amplified using real-time polymerase chain reaction (PCR) 
(Applied Biosystems 7500 Fast Real-Time PCR System, CA, 
USA). Gene expression levels were compared by relative quanti-
fication using the comparative Ct method, with ribosomal protein 
S17 (RPS17) serving as an internal standard. The PCR primer 
sequences are listed in Table 1.
Statistics

Differences in organ weight and plasma free amino acid con-
tent were compared using the Mann-Whitney U-test. Hatchabil-
ity and skeletal muscle gene expression levels were analyzed 
using the Kruskal-Wallis test. All analyses were performed us-
ing the commercially available software JMP version 11 (SAS 
Institute, Cary, NC, USA). Results are presented as the means ± 
standard error of the mean (SEM) and are considered statistically 
different at P < 0.05.
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Table 1. Gene-specific polymerase chain reaction primers used for chick gene expression analysis.
Gene Accession No. Primer sequence (5’→3’) Annealing 

Temperature (°C)
Product 
size (bp)

RPS17 NM_204217.1 F: AAGCTGCAGGAGGGAGGAGAGG 68.2 136 bp
R: GGTTGGACAGGCTGCCGAAGT

INSR AF111857.1 F: GTCTGCTTTTCTCCCCTCCACA 68.6 146 bp
R: GACAACCAGTCAACTTGGCAAA

IGF1R NM_205032.3 F: GGCCATACGGATTGAGAAGAAC 65.5 110 bp
R: TCGGAGGCTTATTTCCAACAAT

IRS-1 NM_001031570.1 F: TCGCCTTCTCTATGCTGCAA 65.9 122 bp
R: GAACCTGATGGTGGGGATGT

IRS-2 XM_425588.4 F: ACTCGGACAGCTTCTTCTTCAT 63.1 152 bp
R: GAACTCGGACAGCTCCTTTAGA

F, forward primer; INSR, insulin receptor; IGF1R, insulin-like growth factor 1 receptor; IRS-1, insulin receptor substrate-1; IRS-2, insulin receptor 
substrate-2; RPS17, ribosomal protein S17; R, reverse primer.
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Results

In ovo cadaverine administration and organ weights in newly 
hatched chicks

When administered to embryos at various concentrations 
(0–50 mM) on the 18th day of incubation, cadaverine caused a 
dose-dependent decrease in chicken hatchability. Notably, no sig-
nificant differences were observed between the concentrations of 
0.25 and 0.5 mM; however, hatchability decreased significantly 
at concentrations of 2 mM and above (Table 2). Table 3 pres-
ents the body and organ weights of newly hatched chicks from 
embryos treated with 0.25 mM cadaverine on the 18th day after 
the start of incubation. No differences were observed in the body 
weight at hatching or in the weights of the whole brain, heart, 
pectoral muscle, liver, thigh muscle, pancreas, or remaining yolk 
sac weight per body weight between the cadaverine-treated and 
control groups.
Plasma free amino acid concentrations in newly hatched chicks

The plasma free amino acid concentrations of newly hatched 
chicks administered 0.25 mM cadaverine to embryos 18 d after 
the start of incubation are shown in Table 4. Among the free ami-
no acids measured in this study, tryptophan, Nπ-methylhistidine, 
and Nτ-methylhistidine levels were significantly lower after ca-
daverine administration. However, the levels of other amino ac-
ids were not affected.
Gene expression analysis of INSR/IGF1R signaling in the skel-
etal muscle of newly hatched chicks

INSR (Fig. 1 A) and IGF1R (Fig. 1 B) levels were significantly 
upregulated by 0.25 mM cadaverine administration and the gene 
expression of the intracellular signal proteins IRS1 and IRS2 was 

also significantly upregulated by 0.25 mM cadaverine exposure 
(Fig. 1 C-D).

Discussion

Some alkaloids, including polyamines, exert important bio-
logical effects; some alkaloids are toxic, whereas others have 
useful pharmacological effects depending on their actions[1,18]. 
In the present study, the subsequent growth of chick embryos 
after treatment with cadaverine was investigated and the hatch-
ability rate was 50% or less at doses of 2 mM or higher, whereas 
the target zone and hatchability rate were not affected at concen-
trations between 0.25 mM and 0.5 mM. These data indicated the 
toxic effects of high concentrations of cadaverine on individuals, 
as high concentrations resulted in developmentally arrested eggs. 
Although there were no significant changes in hatchling weight, 
brain, heart, liver, skeletal muscle, pancreas, or remaining yolk 
sac weights of chicks in the 0.25–0.5 mM treatments, regulation 
of nutrient metabolism involving these metabolic organs is im-
portant during the embryonic period[19–22]. In the regulation 
of nutrient metabolism during the embryonic period, free amino 
acids in the blood are a source of raw materials for protein syn-
thesis, proteolytic products, and glucose synthesis, and are used 
as important indicators of energy metabolism and nutritional 
status assessment[23,24]. The variations in plasma free amino 
acid concentrations in chicks immediately after hatching were 
investigated. Plasma tryptophan, Nt-methylhistidine and Nπ-
methylhistidine concentrations were significantly decreased.

The low plasma free tryptophan concentration in chicks 
hatched after cadaverine administration was attributed to tryp-
tophan metabolism. Tryptophan is an essential amino acid that 

Table 2. Influence of cadaverine administration on chick hatchability.
Cadaverine conc. (mM)

0 0.25 0.5 2 10 50
Number of embryos 31 19 19 12 12 12
Hatchability (%) 87.1 a 89.47 a 84.21 a 50 b 25 b 0.08 b

Dissimilar letters are significantly different at P < 0.05.

Table 3. Hatching weight and tissue weight of in ovo cadaverine-administrated chicks.
Control Cadaverine P value

BW P0 (g) 44.35 ± 0.82 46.3 ± 1.51 0.61
Brain/BW 2.24 ± 0.06 2.13 ± 0.07 0.63
Heart/BW 0.76 ± 0.02 0.68 ± 0.03 0.2
Pectoral muscle/BW 0.59 ± 0.03 0.63 ± 0.04 0.31
Liver/BW 2.41 ± 0.03 2.22 ± 0.05 0.18
Sartorius muscle/BW 0.42 ± 0.01 0.47 ± 0.03 0.07
Pancreas/BW 0.17 ± 0.01 0.15 ± 0.02 0.64
Yolk/BW 10.05 ± 0.45 12.04 ± 0.81 0.06

Values are the mean ± the standard error of the mean. Number of chicks in the control group: n = 8, cadaverine-treated group: n = 5. BW, 
body weight; P0, post-hatch day 0
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is metabolized as a substrate in the kynurenine, serotonin, and 
indole pathways[25,26]. These metabolic pathways function as 
biomarkers for immune and stress responses in chickens, as well 
as in intestinal microflora[27–29]. In other words, these data sug-
gest that low tryptophan levels in the blood due to cadaverine 
signaling during egg incubation may be responsible for the func-
tionality of these tryptophan metabolites.

Furthermore, plasma Nt-methylhistidine and Nπ-
methylhistidine levels decreased after cadaverine administration. 
Since these amino acids are metabolites of histidine, an essential 
amino acid, and are often used as indicators of muscle proteoly-
sis in various animals[30–33], these data suggest that skeletal 
muscle proteolysis in hatched chicks is inhibited by cadaverine 
administration during the embryonic period. In fact, the gene ex-
pression levels of receptors for INSR and IGF1R, which regulate 
the suppression of muscle proteolysis, and intracellular signaling 
regulatory proteins for these receptors, were upregulated by ca-
daverine administration. Since cadaverine stimulation promotes 
insulin secretion in cultured mouse pancreatic beta cell lines[34], 
the phenomenon observed in this study suggests that cadaverine 
signaling during the embryonic period may act on pro-insulin/
insulin-like growth factor synthesis or secretion. These findings 
suggested that cadaverine signaling during the embryonic period 
promoted the synthesis or secretion of insulin and insulin-like 

growth factors. Although no obvious differences in metabolic 
organ weights were observed in these experiments, cadaverine 
signaling might have contributed to the action of insulin/insulin-
like growth factors during chick embryogenesis. Further analysis 
of the molecular mechanisms, such as transcriptional regulation 
and post-translational modulation, is anticipated with regard to 
organ development.

During the late embryonic period (E14-) of chick embryo-
genesis, energy metabolism, including blood glucose regulation, 
is activated in preparation for hatching[15]. Blood glucose is an 
essential nutrient utilized as an energy source in the body before 
and after hatching[35]. During late embryogenesis, glycogen-
esis facilitates a rapid increase in glucose levels[36]. In birds, 
including chickens, the embryonic stage is a closed trophic en-
vironment in the eggshell, independent of the mother; the sub-
strates for glycogenesis are amino acids and glycogen in the egg, 
as well as amino acids derived from the degradation of muscle 
proteins[35,36]. Considering these data, inhibition of skeletal 
muscle proteolysis by cadaverine signaling during the embryonic 
period suggests that cadaverine itself may act as a nutrient signal 
and control energy consumption by the entire embryo in a labor-
saving manner. Indeed, in studies using organ culture techniques, 
fluctuations in TCA cycle metabolite levels were observed after 
cadaverine stimulation (unpublished data). These data suggest 
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Table 4. Effect of in ovo cadaverine administration on plasma free amino acid concentrations in newly hatched chicks.
Control Cadaverine P value

Arginine 100 ± 7.95 101.24 ± 12.49 0.93
Lysine 100 ± 6.25 97.85 ± 14.04 0.87
Methionine 100 ± 5.94 83.21 ± 7.22 0.08
Isoleucine 100 ± 3.04 97.19 ± 5.94 0.64
Leucine 100 ± 3.72 97.4 ± 7.69 0.73
Valine 100 ± 2.73 93.89 ± 4.97 0.24
Phenylalanine 100 ± 3.18 97.23 ± 6.86 0.67
Threonine 100 ± 9.97 81.01 ± 6.64 0.16
Tryptophan 100 ± 2.86 a 80.22 ± 8.57 b 0.02
Histidine 100 ± 7.99 86.69 ± 9.23 0.28
Glycine 100 ± 3.58 97.7 ± 5.10 0.69
Glutamic acid 100 ± 6.44 89.73 ± 5.43 0.25
Glutamine 100 ± 5.76 87.57 ± 3.39 0.11
Aspartic acid 100 ± 6.03 99.71 ± 7.27 0.97
Serine 100 ± 2.96 95.21 ± 4.68 0.35
Alanine 100 ± 5.75 81.45 ± 8.60 0.07
Cysteine 100 ± 4.67 91.85 ± 5.69 0.27
Tyrosine 100 ± 6.35 86.33 ± 10.81 0.24
Proline 100 ± 8.92 103.62 ± 5.61 0.75
Taurine 100 ± 9.34 69.26 ± 18.56 0.11
Nπ-methylhistidine 100 ± 5.01 a 75.22 ± 7.96 b 0.01
Nt-methylhistidine 100 ± 6.97 a 61.33 ± 15.73 b 0.02

Data are expressed as percent change (%) with the mean value of the control area set at 100, and then expressed as the mean ± the standard error 
of the mean. Dissimilar letters are significantly different at P < 0.05.
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that cadaverine may act as a substrate for energy metabolism; 
therefore, in the future, the relationship between each organic 
acid as a TCA cycle metabolite, its effect on mitochondrial func-
tion in energy delivery, and its direct bioactive action in metabol-
ic organs should be analyzed. Findings from these studies may 
lead to better nutritional control of chicks before and after hatch-
ing, and improve animal management methods to mitigate stress 
responses, including excessive muscle protein catabolism during 
hatching. There were no detected sex-related differences attribut-
able to the administration of cadaverine. Because sex differences 
in plasma beta-alanine, hypotaurine, and thyroid hormones have 
been observed in newly hatched broiler chicks[12,15], investi-
gating these amino acid metabolic pathways and their relation-
ship with steroid hormones may reveal new nutritional functions 
in cadaverine signaling.

In summary, this study revealed that cadaverine, a lysine 
metabolite, affected tryptophan and histidine metabolism in em-
bryonic chicks and acted as an anabolic signal that inhibited ca-
tabolism, promoting insulin/insulin-like growth factor signaling, 
especially in skeletal muscle tissue.
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Fig. 1. Gene expression of insulin/insulin-like growth factor signaling in pectoral muscle 
of newly-hatched chicks after cadaverine administration to 18-day-old embryos. (A) In-
sulin receptor (INSR), (B) Insulin-like growth factor I receptor (IGF1R), (C) Insulin receptor 
substrate 1 (IRS1), and (D) Insulin receptor substrate 2 (IRS2) are expressed relative values (%) 
to the mean of the control. The values are the mean ± the standard error of the mean (SEM). 
Number of chicks used: Control, 8; 0.125 mM cadaverine, 7; 0.25 mM cadaverine, 7. Dissimilar 
letters are significantly different at P < 0.05.
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