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Abstract: The collision warning system (CWS) plays an essential role in vehicle active safety. How-
ever, traditional distance-measuring solutions, e.g., millimeter-wave radars, ultrasonic radars, and
lidars, fail to reflect vehicles’ relative attitude and motion trends. In this paper, we proposed a vehicle-
to-vehicle (V2V) cooperative collision warning system (CCWS) consisting of an ultra-wideband
(UWB) relative positioning/directing module and a dead reckoning (DR) module with wheel-speed
sensors. Each vehicle has four UWB modules on the body corners and two wheel-speed sensors on
the rear wheels in the presented configuration. An over-constrained localization method is proposed
to calculate the relative position and orientation with the UWB data more accurately. Vehicle ve-
locities and yaw rates are measured by wheel-speed sensors. An extended Kalman filter (EKF) is
applied based on the relative kinematic model to combine the UWB and DR data. Finally, the time to
collision (TTC) is estimated based on the predicted vehicle collision position. Furthermore, through
UWB signals, vehicles can simultaneously communicate with each other and share information, e.g.,
velocity, yaw rate, which brings the potential for enhanced real-time performance. Simulation and
experimental results show that the proposed method significantly improves the positioning, directing,
and velocity estimating accuracy, and the proposed system can efficiently provide collision warning.

Keywords: collision warning system; ultra-wideband; dead reckoning; time to collision

1. Introduction

The global status report on road safety 2018, launched by the WHO in December 2018,
highlighted that the number of annual road traffic deaths had reached 1.35 million [1]. Two-
vehicle and multi-vehicle collisions were the most severe types of accidents. Studies showed
that more than 80% of road traffic accidents resulted from drivers’ belated responses, and
more than 65% resulted in rear-end collisions [2]. Researches indicate that more than 80% of
accidents could have been averted if drivers had focused and driven correctly in three
seconds before the accident [3].

In recent years, more and more researchers have focused on advanced driving assis-
tance systems (ADAS) to raise consumers’ awareness of safety devices and to reduce the risk
of accidents caused by careless driving. As an essential component of the collision warning
system, the forward collision warning system (FCWS), can measure the distance with the
leading vehicle by itself and warn drivers when the distance between vehicles is less than
the safe distance. At present, FCWS using active sensors, such as laser [4,5], radar [6],
vision sensor [7–9], and infrared [10], has been widely studied. Sanberg et al. [11] presented
a stereo vision-based CWS suited for real-time execution in a car. Hernandez et al. de-
signed an object warning collision system for high-conflict vehicle-pedestrian zones using
a laser [12]. Coelingh et al. [13,14] proposed a collision avoidance and automatic braking
system using a car mounted with radar and camera. Srinivasa et al. [15] proposed an im-
proved CWS combining data from a forward-looking camera and a radar. Although these
sensors have high accuracy, they cannot work robustly in bad weather such as rain, snow,
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and fog and effectively identify dangerous vehicles in visual blind areas. Many advanced
algorithms have been proposed to overcome the defects of the sensors [16,17]. However,
these algorithms are always limited to particular scenarios, e.g., lane changing [18] and
turning [19].

CCWS is an effective solution to this issue, which combines traditional CWS with
vehicle-to-infrastructure (V2I) communication and V2V communication [20]. In CCWS, the
sensor defects of a single vehicle are supplemented by acquiring information from other ve-
hicles or infrastructures. A V2V-based system shares information among the on-board units
(OBU) of vehicles. In V2I systems, accidents and hazardous events are detected by roadside
units (RSU) and sent to the OBUs of vehicles [21]. Since vehicles can communicate directly
through V2V without dependence on infrastructures, it is more suitable for CWS than V2I.
Yang et al. [22] proposed a novel FCWS, which used license plate recognition and vehicle-
to-vehicle (V2V) communication to warn the drivers of both vehicles. Xiang et al. [23]
proposed an FCWS based on dedicated short-range communication (DSRC) and the global
positioning system (GPS). Yang et al. [24] proposed an FCWS combining differential global
positioning system (DGPS) and DSRC. Patra et al. [25] proposed a novel FCWS, in which
GPS provides the relative positioning information, and vehicles communicate through
a vehicular network integrated with smartphones. In general, CCWS can overcome the
limitations of the in-vehicle sensor-based CWS by sharing information such as vehicle
speed, location, and angle to surrounding vehicles. However, the current V2V based CWSs
implement relative positioning and communication separately using different technologies,
e.g., predicting collision warning based on radars but communicating through WIFI, which
may affect the real-time performance.

To address this issue, the UWB-based CCWS seamlessly combines CWS and V2V with-
out delay. UWB is a communication technology that uses nanosecond narrow pulse signal
to transmit data and to measure distances, which has become an effective transmission
technology in location-aware sensor networks [26]. Inherently, the UWB-based ranging
technology has the advantages of high time resolution and can achieve centimeter-level
ranging accuracy [27]. UWB is more adaptable to different environments than traditional
sensors used in CWS [28]. There has also been some research on UWB-based CCWS.
Sun et al. [29] proposed a UWB/INS (Inertial Navigation System)-based automatic guided
vehicle (AGV) collision avoidance system. Liu et al. [30] designed a vehicle collision-
avoidance system based on UWB wireless sensor networks. Marianna et al. used UWB to
obtain distance information and calculated the collision time to provide collision warnings
for workers [31]. Kianfar et al. presented a CWS for the underground mine, which predicted
collisions using distances between workers and the mining vehicle measured by UWB [32].
In summary, the existing UWB-based CCWS mainly has two technical routes, which are
based on absolute positioning and relative positioning, respectively. The former is hard
to popularize due to the small coverage area and high cost of base stations. For the latter,
most of the existing research only considers the relative distance between targets rather
than the position and ignores the information such as relative velocity and orientation.

To deal with the above problems, a CCWS based on UWB and DR is proposed in this
paper. In the proposed system, relative positioning and communication are implemented
by UWB simultaneously, which contributes to better real-time performance. Four UWB
modules are installed on each vehicle, which makes it possible to calculate not only two-
dimension (2D) relative positions but also relative orientations. An over-constrained
method is proposed to improve the positioning/directing accuracy. Then, the accuracy
and stability of the system are further improved, and the TTC can be estimated with the
integration of DR.

This paper is organized as follows: In Section 2, the three subsystems of CCWs are
introduced. Section 3 carries on a simulation to evaluate the performance of the system.
In Section 4, we conduct experiments and analyze the results. Finally, we summarize the
conclusions in Section 5.
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2. Algorithm and Modeling

The CWS consists of three parts, the UWB-based relative positioning and directing
system, the DR system based on wheel-speed sensors, and the TTC estimation system. In
the following sections, the UWB-based relative positioning/directing system is shortened
to the UWB system. In this section, the UWB and DR subsystems are established. Then, an
EKF-based fusion algorithm is proposed to integrate UWB with DR, which significantly
improves the accuracy of relative position, orientation, and velocity. Finally, the TTC
estimation method in several different collision scenarios is put forward.

2.1. The Relative Positioning and Directing System

According to the vehicle axis system regulated by ISO 8855: 2011 [33], as shown in
Figure 1, the origin is located at the automotive rear axle center. The X-axis points to the
forward of the vehicle, and the Y-axis points to the left. In this paper, all proposed systems
are established based on this axis system.
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Figure 1. Vehicle axis system.

Figure 2 shows the UWB system model. XOY represents the coordinate system of
vehicle 1. X’O’Y’ represents the coordinate system of vehicle 2. Points 1, 2, 3, and 4 represent
the UWB modules on vehicle 1, and points M, N, P, and Q represent the UWB modules on
vehicle 2. The coordinate of each UWB module in its own vehicle axis system is known
when installed. As Figure 2, XK = [xK, yK]

T is defined as the position of module K in the
axis system of vehicle 1 and X′K = [x′K, y′K]

T is defined as the position of module K in the
axis system of vehicle 2, where K =

(
1, 2, 3, 4, M, N, P, Q, C, O, O′

)
.
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With the distances measured by UWB and the coordinates of UWB modules, the
relative position and orientation [x, y, β]T can be calculated. [x, y]T is the position of
vehicle 2 in the axis system of vehicle 1. β is the relative orientation, which means the
intersection angle of the two vehicles’ driving directions.
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As the ranging precision of UWB is very sensitive to NLOS, not all UWB modules are
necessary at the same time. Therefore, only four modules, two on each vehicle, in LOS are
picked at the same time. The other modules are used to help distinguish multiple solutions.
On account of the high time resolution and low multipath effect of UWB signals, it is not
complex to distinguish NLOS and LOS signals.

Figure 2 shows a typical driving scenario. Vehicle 2 is changing lanes to the front of
vehicle 1. Apparently, rear-end collision risk exists if vehicle 1 drives faster than vehicle
2 and does not brake. Since the CWS is especially necessary in this condition, we take it
as an example to interpret our algorithm. In this case, points 1, 2, M, and N are in LOS.
Define d1, d2, d3, and d4 as the real distances shown in Figure 2, and d̂1, d̂2, d̂3, and d̂4
as the corresponding measurements ranged by UWB. Other known parameters include
X1 = [x1, y1]

T , X2 = [x2, y2]
T , X′M =

[
x′M, y′M

]T , X′N =
[
x′N , y′N

]T . Then, we have

d1 =
√
(xM − x1)

2 + (yM − y1)
2

d2 =
√
(xM − x2)

2 + (yM − y2)
2

d3 =
√
(xN − x1)

2 + (yN − y1)
2

d4 =
√
(xN − x1)

2 + (yN − y1)
2

. (1)

As d1, d2, d3, and d4 are unknown, d̂1, d̂2, d̂3, and d̂4 are substituted into Equation (1)
for the estimated positions of M and N, X̂M = [x̂M, ŷM]T and X̂N = [x̂N , ŷN ]

T . Then, the
estimated distance between M and N can be calculated by Equation (2).

d̂5 =

√
(x̂M − x̂N)

2 + (ŷM − ŷN)
2 (2)

However, when UWB modules are installed, the real distance between M and N is a
determined constant, which can be calculated by Equation (3).

d5 =

√(
x′M − x′N

)2
+
(
y′M − y′N

)2 (3)

When ranging error exists, d̂5 6= d5. In order to get the least square (LS) solutions that
could better meet all the distances, we rewrite Equation (1) as Equation (4).

d1 =
√
(xM − x1)

2 + (yM − y1)
2

d2 =
√
(xM − x2)

2 + (yM − y2)
2

d3 =
√
(xN − x1)

2 + (yN − y1)
2

d4 =
√
(xN − x1)

2 + (yN − y1)
2

d5 =
√
(xM − xN)

2 + (yM − yN)
2

(4)

Significantly, it is an overdetermined nonlinear equation set with five equations and
four unknowns. When ranging error exists, the equation set does not have exact solutions.
We define function g as shown in Equation (5).
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g(xM, yM, xN , yN) =

(
d̂1 −

√
(xM − x1)

2 + (yM − y1)
2
)2

+

(
d̂2 −

√
(xM − x2)

2 + (yM − y2)
2
)2

+

(
d̂3 −

√
(xN − x1)

2 + (yN − y1)
2
)2

+

(
d̂4 −

√
(xN − x2)

2 + (yN − y2)
2
)2

+

(
d̂5 −

√
(xM − xN)

2 + (yM − yN)
2
)2

(5)

Then, the positioning algorithm is converted to an optimization problem with the opti-
mized objective function g. According to the first-order necessary condition of optimization
problems, the partial derivative of the function g should be zero, which is

∂g
∂xM

=
∂g

∂yM
=

∂g
∂xN

=
∂g

∂yN
= 0. (6)

Several sets of local optimal solutions may be derived from Equation (6). Define[
x∗M, y∗M, x∗N , y∗N

]
as the global LS solution that minimizes the objective function g. Then,

we have
[x∗M, y∗M, x∗N , y∗N ]

T = argmin[g(xM, yM, xN , yN)]. (7)

The solutions of Equation (7) are much more accurate than those of Equation (1). It
will be proved later by simulation in Section 3. When no real solutions can be solved from
Equation (7), we can go back to Equation (1) for solutions instead.

In the example scenario, we can get two sets of solutions that are symmetric about
the line determined by point 1 and point 2, as shown in Figure 3. Dealing with this,
ranging information between other UWB modules can be drawn. For example, in Figure 3,
distances M4 and Q2 can be used to distinguish the two sets of solutions.
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After
[
x∗M, y∗M, x∗N , y∗N

]
is solved, the relative orientation β and position [x, y]T can be

derived as
β = atan2(yM − yN , xM − xN)− π

2[
x
y

]
=

[
x∗

y∗

]
−
[

cos(β) − sin(β)
sin(β) cos(β)

][
x′

y′

]
(8)
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where
[

x∗

y∗

]
= 1

2

[
x∗M + x∗N
y∗M + y∗N

]
,
[

x′

y′

]
= 1

2

[
x′M + x′N
y′M + y′N

]
, atan2(y, x) =

2arctan
(

y√
x2+y2+x

)
.

2.2. The DR System Based on Wheel Speed Sensors

The proposed system consists of four wheel-speed sensors, which are installed on the
rear wheels of two vehicles. According to the Ackerman steering model shown in Figure 4,
the instantaneous center of a vehicle is located on the line of the rear axle. The velocity v,
yaw rate ω, and tuning radius r can be derived as shown in Equation (9).

v = vr+vl
2

ω = vr−vl
L

r = v
ω

(9)

where vr denotes the speed of the right wheel, vl represents the speed of the left wheel, and
L indicates the rear wheelbase.
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Then, the position [xt+∆t, yt+∆t]
T and yaw angle yawt+∆t of the vehicle in the global

axis system at time t + ∆t can be reckoned by [xt, yt]
T , vt, and yamt at time t as shown in

Equation (10).  xt+∆t
yt+∆t

yawt+∆t

 =

 xt + vt∆t cos(yawt)
yt + vt∆t sin(yawt)

yawt + ω∆t

 (10)

2.3. The EKF Based UWB/DR Fusion Model

We define Xk as the state vector at time k. It contains the relative position/orientation
Pk = [xk, yk, βk]

T, as well as yaw rates and velocities of the two vehicles Sk =
[
ω1k , ω2k , v1k , v2k

]T,
which can be expressed as Equation (11).

Xk =
[
xk, yk, βk, ω1k , ω2k , v1k , v2k

]T (11)

We define ∆t as the time period from time k − 1 to time k. Xk can be predicted by
Xk−1 based on the relative kinematics model shown in Figure 5. The state equation can be
expressed on the basis of Equation (10) as Equation (12).
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Xk =



xk
yk
βk

ω1k
ω2k
v1k
v2k


= f (Xk−1, W) =



C cos(θ) + D sin(θ)
−C sin(θ) + D cos(θ)

βk−1 − θ + ω2k−1 ∆t + 1
2 Wω2 ∆t2

ω1k−1 + Wω1 ∆t
ω2k−1 + Wω2 ∆t
v1k−1 + Wv1 ∆t
v2k−1 + Wv2 ∆t


, (12)

where
C = xk−1 − v1k−1 t + v2k−1 cos(βk−1)∆t−Wv1 ω∆t2/2 + Wv2 cos(βk−1)∆t2/2,

D = yk−1 + v2k−1 sin(βk−1)∆t + Wv2 sin(βk−1)∆t2/2,

θ = ω1k−1 ∆t + Wω1 ∆t2/2.

Then, the transition matrix of the state vector A can be derived as Equation (13).

A =
∂ f
∂X

=



cos(θ) sin(θ) A1,3 A1,4 0 − cos(θ)∆t A1,7
− sin(θ) cos(θ) A2,3 A2,4 0 sin(θ)∆t A2,7

0 0 1 −∆t ∆t 0 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1


, (13)

where
A1,3 = −cos(θ)sin(βk−1)v2k−1 ∆t + sin(θ)cos(βk−1)v2k−1 ∆t,

A1,4 = −Csin(θ)∆t + Dcos(θ)∆t,

A1,7 = cos(θ)cos(βk−1)∆t + sin(θ)sin(βk−1)∆t,

A2,3 = sin(θ)sin(βk−1)v2k−1 ∆t + cos(θ)cos(βk−1)v2k−1 ∆t,

A2,4 = −Ccos(θ)∆t− Dsin(θ)∆t,

A2,7 = −sin(θ)cos(βk−1)∆t + cos(θ)sin(βk−1)∆t.

Similarly, the transition matrix of process noise is:

G =
∂ f
∂W

=



G1,1 0 G1,3 G1,4
G2,1 0 G2,3 G2,4
−∆t2/2 ∆t2/2 0 0

∆t 0 0 0
0 ∆t 0 0
0 0 ∆t 0
0 0 0 ∆t


, (14)
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where
G1,1 = [−Csin(θ) + Dcos(θ)]∆t2/2,

G1,3 = −cos(θ)∆t2/2,

G1,4 = [cos(θ)cos(βk−1) + sin(θ)sin(βk−1)]∆t2/2,

G2,1 = [−Ccos(θ)− Dsin(θ)]∆t2/2,

G2,3 = sin(θ)∆t2/2,

G2,4 = [−sin(θ)cos(βk−1) + cos(θ)sin(βk−1)] ∆t2/2.

The error covariance matrix Q of process noise consists of error covariances of speeds
and yaw rates, that is:

Q = cov(W) =


σ2

ω1
0 0 0

0 σ2
ω2

0 0
0 0 σ2

v1
0

0 0 0 σ2
v2

. (15)

Thus, the predicting process of the model is:

X̂−k = f
(
X̂k−1

)
P−k = APk−1 A + GQG.

(16)

We define Zk as the observation vector, containing the relative position and orienta-
tion of vehicle 2 measured by the UWB system, four wheel-speeds measured by the DR
system, and the observation noise Vk. Then, the observation equation can be expressed as
Equation (17).

Zk =



xUWB,k
yUWB,k
βUWB,k

vr1,k
vl1,k
vr2,k
vl2,k


= HXk + Vk (17)

Referring to Equation (9), the velocities and yaw rates of the two vehicles can be
expressed by the velocities measured by wheel-speed sensors as Equation (18).

v1r
v1l
v2r
v2l

 =


L1/2 0 1 0
−L1/2 0 1 0

0 L2/2 0 1
0 −L2/2 0 1




ω1
ω2
v1
v2

 (18)

Then, the Jacobian matrix H is obtained as Equation (19).

H =



1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 L1/2 0 1 0
0 0 0 −L1/2 0 1 0
0 0 0 0 L2/2 0 1
0 0 0 0 −L2/2 0 1


(19)

The estimating process is:

Kk = P−k HT(HP−k HT + R
)−1

X− = X̂−k + Kk
(
Zk − HX̂−k

)
Pk = P−k − Kk HP−k .

(20)
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In Equation (20), R represents the error covariance matrix of Zk. It can be divided into
the error covariance matrix of the UWB system RUWB and the error covariance matrix of
the DR system RDR. That is:

R = cov(Vk) =

[
RUWB 0

0 RDR

]
, (21)

where RUWB =

 σ2
x 0 0

0 σ2
y 0

0 0 σ2
β

, RDR =


σ2

vr1
0 0 0

0 σ2
vl1

0 0
0 0 σ2

vr2
0

0 0 0 σ2
vl2

.

RDR is decided by measurement errors of the wheel-speed sensors directly, whereas
RUWB is decided by positioning and directing errors, which is indirectly decided by the
ranging error of UWB modules. Define D = [d1, d2, d3, d4]. On the basis of Equation (5), we
can derive the relationship between the deviation D and the deviation of UWB modules’
position XM and XN as Equation (22). d5 is ignored because it is not a measurement but a
constant, which means dd5 = 0.

dD =


dd1
dd2
dd3
dd4

 =
∂D

∂(xM, yM, xN , yN)


dxM
dyM
dxN
dyN

 = FD


dxM
dyM
dxN
dyN

, (22)

FD can be derived as Equation (23).

FD =


xM−x1

d1

yM−y1
d1

0 0
xM−x2

d2

yM−y2
d2

0 0
0 0 xN−x1

d3

yN−y1
d3

0 0 xN−x2
d4

yN−y2
d4

. (23)

where d1 = d̂1, d2 = d̂2, d3 = d̂3, d4 = d̂4, xM = x∗M, yM = y∗M, xN = x∗N , yN = y∗N .
From Equation (8), we can get the relationship between the deviation of the vehicle

position and orientation XUWB = [x, y, β] and the deviation of the UWB modules’ position
XM and XN as Equation (24).

dXUWB =

 x
y
β

 =
∂XUWB

∂(xM, yM, xN , yN)


dxM
dyM
dxN
dyN

 = FXUWB


dxM
dyM
dxN
dyN

. (24)

FXUWB can be derived as Equation (25).

FXUWB =

 F1,1 F1,2 F1,3 F1,4
F2,1 F2,2 F2,3 F2,4

− (yM−yN)

d2
5

(xM−xN)

d2
5

(yM−yN)

d2
5

− (xM−xN)

d2
5

, (25)

where
F1,1 = 1/2 +

[
x′M cos(β)− y′M sin(β)

]
(yM − yN)/d2

5,

F1,2 = −
[
x′M cos(β)− y′M sin(β)

]
(xM − xN)/d2

5,

F1,3 = 1/2−
[
x′M cos(β)− y′M sin(β)

]
(yM − yN)/d2

5,

F1,4 =
[
x′M cos(β)− y′M sin(β)

]
(xM − xN)/d2

5,

F2,1 =
[
y′M cos(β) + x′M sin(β)

]
(yM − yN)/d2

5,

F2,2 = 1/2−
[
y′M cos(β) + x′M sin(β)

]
(xM − xN)/d2

5,
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F2,3 = −
[
y′M cos(β) + x′M sin(β)

]
(yM − yN)/d2

5,

F2,4 = 1/2 +
[
y′M cos(β) + x′M sin(β)

]
(xM − xN)/d2

5,

x′MN =
(

x′M + x′N
)
/2, y′MN =

(
y′M + y′N

)
/2,

xM = x∗M, yM = y∗M, xN = x∗N , yN = y∗N .

Then, RUWB can be expressed as Equation (26).

RUWB = FXUWB

(
FT

DFD

)−1
FT

DRDFD

(
FT

DFD

)−1
FT

XUWB
, (26)

where RD = diag
(

σ2
d1

, σ2
d2

, σ2
d3

, σ2
d4

, σ2
d5

)
is determined directly by UWB ranging

error covariance.

2.4. The Collision Warning Model

CWS mainly works in two ways, headway measurement warning (HMW) and TTC-
based warning [34]. Both of them need to measure the distance to the front vehicle but
estimate the collision time with different speeds as Equation (27).

Headway Collision Time = Headway
vRearVehicle

TTC = Headway
vRearVehicle−vFrontVehicle

(27)

The TTC-based system takes relative velocity into account, so it provides a more
accurate collision warning. In this paper, the proposed system allows vehicles to share
information through UWB, such as velocities. The TTC method is apparently the bet-
ter choice.

Two vehicles driving on the road have the probability of collisions in various types,
such as head-to-head collision, rear-end collision, and side collision. Different kinds of
collisions may happen at different times. That means all cases need to be taken into account
in order to obtain the exact TTC. Before establishing the collision warning model, we
simplified the shape of a vehicle as a rectangle. With this assumption, all kinds of collisions
can be described as point-to-edge collisions. Edge-to-edges collisions and point-to-point
collisions are also covered by point-to-edge collisions, as shown in Figure 6.
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After unifying different collision types, TTC can be calculated in the same way. We
take the collision type shown in Figure 7 as an example. In this case, the front left corner of
vehicle 2 collides on the right edge of vehicle 1. As we defined in Section 2.1, the coordinate
of a point in the axis system of vehicle 1 is expressed as Xk = [xk, yk]

T , and Xk
′ = [xk

′, yk
′]T

in the axis system of vehicle 2. Ri (i = 1,2,3,4) represents the four corners of vehicle 1.
Fi (i = 1,2,3,4) represents the four corners of vehicle 2. Therefore, the coordinate of Ri
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is XRi =
[
xRi , yRi

]T , which is known by measuring the size of the vehicle 1. Similarly,

X′Fi
=
[

x′Fi
, y′Fi

]T
is also known by measuring the size of vehicle 2. The relative position

of X = [x, y]T and the relative orientation β are estimated by the UWB/DR system. Then,
the coordinates of vehicle 2′s corners in the axis system of vehicle 1 can be derived as
Equation (28). [

XF1 , XF2 , XF3 , XF4

]
= R

[
X′F1

, X′F2
, X′F3

, X′F4

]
+ X[1, 1, 1, 1] (28)

where R =

[
cos(β) − sin(β)
sin(β) cos(β)

]
.

Sensors 2021, 21, x FOR PEER REVIEW 11 of 25 
 

 

After unifying different collision types, TTC can be calculated in the same way. We 
take the collision type shown in Figure 7 as an example. In this case, the front left corner 
of vehicle 2 collides on the right edge of vehicle 1. As we defined in Section 2.1, the coor-
dinate of a point in the axis system of vehicle 1 is expressed as 𝑋 = [𝑥 , 𝑦 ] , and 𝑋 ′ =[𝑥 ′, 𝑦 ′]  in the axis system of vehicle 2. 𝑅  (𝑖 = 1,2,3,4) represents the four corners of 
vehicle 1. 𝐹  (𝑖 = 1,2,3,4) represents the four corners of vehicle 2. Therefore, the coordi-
nate of 𝑅  is 𝑋 = 𝑥 , 𝑦 , which is known by measuring the size of the vehicle 1. Sim-
ilarly, 𝑋 = 𝑥 , 𝑦  is also known by measuring the size of vehicle 2. The relative po-
sition of 𝑋 = [𝑥, 𝑦]  and the relative orientation 𝛽 are estimated by the UWB/DR system. 
Then, the coordinates of vehicle 2′s corners in the axis system of vehicle 1 can be derived 
as Equation (28). 

 
Figure 7. The collision warning model. 

𝑋 , 𝑋 , 𝑋 , 𝑋 = 𝑅 𝑋 , 𝑋 , 𝑋 , 𝑋 + 𝑋[1,1,1,1] (28) 

where 𝑅 = cos(𝛽) − sin(𝛽)sin(𝛽) cos(𝛽) . 

We define all the points at the collision time as 𝑅  and 𝐹 , and their coordinates as 𝑋 = 𝑥 , 𝑦 , 𝑋 = 𝑥 , 𝑦 . The velocity vectors of the two vehicles are known 
for the UWB/DR system, which are 𝑉 = [𝑣 cos(𝛽 ) , 𝑣 cos(𝛽 )]  (𝛽 = 0)  and 𝑉 =[𝑣 cos(𝛽 ) , 𝑣 sin(𝛽 )]  (𝛽 = 𝛽). Assume that point 𝐹  collides on the edge between 𝑅  
and 𝑅  at time 𝑡 , . Then 𝑋 , 𝑋 , and 𝑋 can be expressed as Equation (29). 𝑋 = 𝑋 + 𝑉 𝑡 ,  𝑋 = 𝑋 + 𝑉 𝑡 ,  𝑋 = 𝑋 + 𝑉 𝑡 ,  

(29) 

Point 𝐹  collides on the edge between 𝑅  and 𝑅  means 𝐹  is on the segment 𝑅 𝑅 , which can be expressed as Equation (30). 𝐹 𝑅 ⃑ 𝐹 𝑅 ⃑ = − 𝐹 𝑅 ⃑ 𝐹 𝑅 ⃑  (30) 

Solution 𝑡 of Equation (30) is the collision time under the condition that corners of 
vehicle 2 collide on edges of vehicle 1, including 16 different conditions altogether. In the 
other 16 cases in which the corners of vehicle 1 collide on the edges of vehicle 2, the colli-
sion times can be calculated similarly. Thirty-two collision times can be calculated in total. 
Ignoring negative values, the minimum of the rest value is TCC. That is: 

Figure 7. The collision warning model.

We define all the points at the collision time as RCi and FCi , and their coordinates

as XRCi
=
[

xRCi
, yRCi

]T
, XFCi

=
[

xFCi
, yFCi

]T
. The velocity vectors of the two vehicles are

known for the UWB/DR system, which are VR = [vR cos(βR), vR cos(βR)]
T (βR = 0) and

VF = [vF cos(βF), vF sin(βF)]
T (βF = β). Assume that point Fi collides on the edge between

Rj and Rk at time tFi ,Rjk . Then XFCi
, XRCj

, and XRCk
can be expressed as Equation (29).

XFCi
= XFi + VFtFi ,Rjk

XRCj
= XRj + VRtFi ,Rjk

XRCk
= XRk + VRtFi ,Rjk

(29)

Point Fi collides on the edge between Rj and Rk means Fci is on the segment RCj RCk ,
which can be expressed as Equation (30).

⇀
FCi RCj ·

⇀
FCi RCk = −‖

⇀
FCi RCj‖‖

⇀
FCi RCk‖ (30)

Solution t of Equation (30) is the collision time under the condition that corners of
vehicle 2 collide on edges of vehicle 1, including 16 different conditions altogether. In
the other 16 cases in which the corners of vehicle 1 collide on the edges of vehicle 2, the
collision times can be calculated similarly. Thirty-two collision times can be calculated in
total. Ignoring negative values, the minimum of the rest value is TCC. That is:

TTC = min
(

tRi ,Fjk , tFi ,Rjk

)
, (i = 1, 2, 3, 4; jk = 12, 23, 34, 41),

tRi ,Fjk ≥ 0, tFi ,Rjk ≥ 0.
(31)

When TTC→ ∞ or TTC < 0, there is no risk of collision.
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3. Simulation

In this section, simulation is conducted to evaluate our algorithm. Firstly, the accuracy
of the UWB positioning and directing system is validated by comparing the algorithm with
and without the constraint of d5. Secondly, the accuracy of the UWB/DR fusion model
based on EKF is compared to the accuracy of UWB and DR separately. Finally, plenty of
driving scenarios are generated to evaluate the success rate of the CWS.

3.1. Simulation of the Overconstrained UWB Positioning and Directing System

In Section 2.1, a relative positioning/directing algorithm with the constraint of d5
is proposed. Its performance is simulated in this section. Firstly, a driving scenario is
established in the driving scenario designer of MATLAB as shown in Figure 8. The blue
cube represents vehicle 1, and the red cube represents vehicle 2. The lines in blue and
red denote their driving track. Kinematic parameters of vehicle and positions of UWB
modules and wheel sensors in their own vehicle axis system are defined in the model. The
UWB ranging error is set to σd = 0.05 m, and the wheel speed error is set to σv = 0.2 m/s
referring to the sensors we will use in experiments. Calculating results of our algorithm
are compared to the real values exported by the model.
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Solutions of the algorithm with and without the constraint of d5 are compared in
Figure 9 and Table 1. The improvement of accuracy with the derivation of d5 is very intu-
itive, especially for x and β. In Table 1, the root mean square error (RMSE) is recommended
to compare their accuracy quantitatively.
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Table 1. RMSE of the algorithm with and without d5.

Algorithm RMSEx (m) RMSEy (m) RMSEβ (◦)

With d5 0.70 0.73 46.29
Without d5 0.21 0.58 2.42

3.2. Simulation of the UWB/DR Fusion Algorithm

We also take the scenario in Section 3.1 as an example to validate the performance of
the UWB/DR fusion algorithm. The comparison results are shown in Figure 10 and Table 2.
The proposed UWB/DR fusion method based on EKF significantly improves the accuracy
and stability of positioning and directing.

Sensors 2021, 21, x FOR PEER REVIEW 13 of 25 
 

 

(a) (b) (c) 

Figure 9. Comparison of relative positioning and directing algorithm with and without the constraint of 𝒅𝟓: (a) The rela-
tive longitudinal position x; (b) The relative lateral position y; (c) The relative orientation β. 

Table 1. RMSE of the algorithm with and without 𝑑 . 

Algorithm 𝑹𝑴𝑺𝑬𝒙 (m) 𝑹𝑴𝑺𝑬𝒚 (m) 𝑹𝑴𝑺𝑬𝜷 (°) 
With 𝑑  0.70 0.73 46.29 

Without 𝑑  0.21 0.58 2.42 

3.2. Simulation of the UWB/DR Fusion Algorithm 
We also take the scenario in Section 3.1 as an example to validate the performance of 

the UWB/DR fusion algorithm. The comparison results are shown in Figure 10 and Table 
2. The proposed UWB/DR fusion method based on EKF significantly improves the accu-
racy and stability of positioning and directing. 

(a) (b) (c) 

Figure 10. Comparison of positioning and directing performance using UWB and fusion of UWB/DR: (a) The relative 
longitudinal position x; (b) The relative lateral position y; (c) The relative orientation β. 

Table 2. RMSE of position and orientation estimated by UWB and UWB/DR. 

Algorithm 𝑹𝑴𝑺𝑬𝒙 (m) 𝑹𝑴𝑺𝑬𝒚 (m) 𝑹𝑴𝑺𝑬𝜷 (°) 
UWB 0.21 0.58 2.42 

UWB+DR (EKF) 0.06 0.17 0.83 

Figures 11 and 12 and Table 3 compare the accuracy of yaw rates and velocities esti-
mated by UWB/DR to DR. They are improved significantly as well, which contributes to 
the better prediction accuracy of TTC in the next section. 

Figure 10. Comparison of positioning and directing performance using UWB and fusion of UWB/DR: (a) The relative
longitudinal position x; (b) The relative lateral position y; (c) The relative orientation β.

Table 2. RMSE of position and orientation estimated by UWB and UWB/DR.

Algorithm RMSEx (m) RMSEy (m) RMSEβ (◦)

UWB 0.21 0.58 2.42
UWB + DR (EKF) 0.06 0.17 0.83

Figures 11 and 12 and Table 3 compare the accuracy of yaw rates and velocities
estimated by UWB/DR to DR. They are improved significantly as well, which contributes
to the better prediction accuracy of TTC in the next section.
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Figure 12. Comparison of velocities measured by DR and estimated by UWB/DR: (a) Velocity of vehicle 1; (b) Velocity of
vehicle 2.

Table 3. RMSE of velocities and yaw rates estimated by DR and UWB/DR.

Algorithm RMSEω1 (◦/s) RMSEω2 (◦/s) RMSEv1 (m/s) RMSEv2 (m/s)

DR 8.92 8.71 0.14 0.15
UWB + DR (EKF) 5.07 4.60 0.12 0.08

3.3. Simulation of CWS based on TTC Estimation

In this section, we generate plenty of driving scenarios with different velocities, relative
positions, and relative orientations, as shown in Figure 13. The ranges of parameters are
set as outlined in Table 4.
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Table 4. Ranges of parameters in TTC simulation.

Parameters Range

v1&v2 (km/h) 0~75
x (m) −200~200
y (m) −15~15
β (◦) 0~360

TTCreal is certain when a scenario is established, and TTCest estimated by CWS is
calculated every 10 ms. The collision warning threshold is set to 3.0 s. It means that when
TTCest ≤ 3.0 s, the CWS will send an alert. TTCerr = TTCest – TTCreal denotes the TTC error
at the warning time as Figure 14.
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In order to guarantee driving safety, we set 2.7 s as the latest warning time. If the
system does not work when the vehicle is colliding within 2.7 s, the collision warning
evaluation is failed. In addition, in order not to disturb the driver too much, if the system
sends alerts when vehicles have no risk of collision within 4 s, we regard the warning as
false. Then, TTCerr can be divided into three conditions corresponding to three evaluations
of collision warning as Equation (32).

TTCerr


> 0.3 Failed
∈ [−1, 0.3] Correct
< −1 False

(32)

• “Failed” denotes warning too late or not warning;
• “Correct” denotes warning in the proper time period;
• “False” denotes warning too early or warning by mistake.

The scenario marked with gray background is the typical rear-end collision scenario,
which is the most critical function of a collision warning system. One hundred and ninety-
six rear-end collision scenarios are generated, and Table 5 shows the results. In all the
196 simulation scenarios, two of them behave false, which means that the collision warning
is triggered too early. All of the others perform correctly. It shows the reliability of the
proposed CWS in the most common rear-end collision scenarios.

Table 5. Collision warning evaluation in rear-end scenarios.

Evaluation Quantity

Failed 0
Correct 194

False 2

Then, we emulate other scenarios in which two vehicles drive in any lanes from
any positions to any directions defined in Figure 13 and Table 4. Results are shown in
Table 6. The scenarios with initial TTCreal less than 3 s will not be considered. In the remaining
10,823 scenarios, 10,593 of them perform correctly. The collision warning success rate is 97.9%.
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Table 6. Collision warning evaluation in random scenarios.

Evaluation Quantity

Failed 0
Correct 10,596

False 227

4. Experiments

In this section, experiments are divided into two parts: straight driving experiments
and curved driving experiments. The straight driving experiments are conducted referring
to JT/T883-2014, which describes the standard experiments for FCWS, published by the
Ministry of Transport of the People’s Republic of China (MOT). As JT/T883-2014 only
regulates straight driving experiments, to further validate the performance of our system,
curved driving experiments are conducted in addition. Since the CWS is implemented
based on the UWB/DR relative positioning/directing system, the positioning/directing
accuracy can reflect the performance of the CWS. Therefore, in the curved experiments,
we drive through complex routes and compare the positioning/directing accuracy to the
parameters of a commercial millimeter-wave radar (MMWR) used for collision warning.

4.1. Experimental Equipment and Environment

Figure 15 shows the equipment used in the experiments. Two vehicles are required
in the experiments for relative positioning and directing. UWB modules are installed on
the corners of the vehicles. Four wheel-speed sensors designed by our team are installed
on the centers of the wheels. The wheel-speed measurements are transmitted to a receiver
inside the vehicle wirelessly, which receives the velocity information from the four wheels
and then sends it to the controller area network (CAN) bus. In the proposed system, only
the speeds of the rear wheels are used. UWB modules are also developed by our team
based on DW1000. Two vehicles share data through UWB. All data are transferred to the
CAN bus and recorded by the computer using a USB-CAN adapter. A computing terminal
receives sensor data from the CAN bus and calculates the relative position, direction,
velocity, and TTC. Results from the computing terminal are compared to the measurement
of a high-precision integrated positioning system, which combines dual-antenna real-time
kinematic (RTK)-GPS and INS. The long-range radio (LoRa) antenna is used to receive
differential signals from the RTK-GPS base station, which is installed in the testing ground.
A total station is used to measure the relative coordinates of the UWB modules to the main
RTK-GPS antenna. It should be noted that the main GPS antenna is not right above the
center of the rear wheels. The deviation needs to be derived from measurements of the
total station and compensated in the algorithm.
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Figure 16 shows the testing ground in which we conduct experiments. The driving
routes of the two types of experiments are also marked in Figure 16.
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4.2. Straight Driving Experiments

According to JT/T883-2014 [35], experiments for FCWS consist of three tests. Each
test needs repeating seven times. Only if five of them were passed, and no two consecutive
failed tests exist could the test be evaluated as passed. In the standard experiments, the
headway distances, velocities, and accelerations of vehicles need controlling around specific
values, so we design software as shown in Figure 17, with necessary parameters displayed,
which helps drivers better control vehicles and records necessary data. The TTC derived
from the data of the RTK-GPS/INS is recognized as real TTC.
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4.2.1. Test 1

Test 1 is designed as shown in Figure 18. The rear vehicle drives at the speed of
72 km/h toward the parked front vehicle from an inertial headway distance of 150 m. If
the collision warning system is triggered before the real TTC is 2.7 s, the test is passed.
Otherwise, the test is failed.
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Figure 18. Test 1 in the straight driving experiments.

4.2.2. Test 2

Test 2 is designed as shown in Figure 19. The rear vehicle drives at the speed of
72 km/h toward the front vehicle, which drives at the speed of 32 km/h, from an initial
headway distance of 150 m. If the collision warning system is triggered before the real TTC
is 2.1 s, the test is passed. Otherwise, the test is failed.
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Figure 19. Test 2 in the straight driving experiments.

4.2.3. Test 3

Test 3 is designed as Figure 20. The rear vehicle drives at the speed of 72 km/h
toward the front vehicle, which drives at the speed of 32 km/h and decelerates with the
acceleration of −0.3 g. If the collision warning system is triggered before the real TTC is
2.4 s, the test is passed. Otherwise, the test is failed.
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4.2.4. Results Analysis of the Straight Driving Experiments

During each test, two TTC values are calculated: (1) TTCreal, which is derived from the
RTK-GPS/INS information; (2) TTCCWS, which is estimated using the UWB/DR measure-
ments. Since the terminating conditions in the three experiments are different, to satisfy all
the three tests and reserve some margin, we set the warning TTCCWS to 3.0 s. The software
in Figure 17 will send a warning when either TTCreal or TTCCWS reaches its marginal value.
If TTCreal reaches the regulated marginal value when TTCCWS is still greater than 3.0 s, the
test is terminated and evaluated as failed. In the standard, only the minimum threshold of
the collision warning time is regulated, whereas the maximum threshold is not. In other
words, the standard only cares about “how safe” the warning is, with no consideration
of “how accurate” it is. However, as we explained in Section 3, too early warnings are
annoying and offensive, so we set 4.0 s as the upper limit. If the CWS is triggered when
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TTCreal > 4.0 s, we also regard the test as failed. According to JT/T883-2014, each test needs
repeating seven times. Tables 7–9 show the results of the three tests, respectively.

Table 7. Results of Test 1.

1 2 3 4 5 6 7

TTC(CWS) 2.9987 2.9907 2.9759 2.9814 2.9729 2.9722 2.9799
TTC(Real) 3.0047 3.0069 2.9925 2.9963 2.9902 3.0136 3.0219
Evaluation Pass Pass Pass Pass Pass Pass Pass

Table 8. Results of Test 2.

1 2 3 4 5 6 7

TTC(CWS) 2.9863 2.9810 2.9987 2.9804 2.9954 2.9899 2.9673
TTC(Real) 3.0423 3.1166 3.0245 3.0354 3.1283 3.1269 3.0226
Evaluation Pass Pass Pass Pass Pass Pass Pass

Table 9. Results of Test 3.

1 2 3 4 5 6 7

TTC(CWS) 2.9782 2.9905 2.9947 2.9789 2.9942 2.8623 2.8958
TTC(Real) 2.7560 2.8110 2.7877 2.6851 2.6511 2.5831 2.8975
Evaluation Pass Pass Pass Pass Pass Pass Pass

According to Tables 7–9, all the tests were passed, which proves that the proposed
system can satisfy the requirement of MOT and has the ability to provide collision warning
for vehicles in time.

4.3. Curved Driving Experiments

JT/T883-2014 only regulates the straight driving experiments but does not request or
give advice to curved driving experiments. However, to further validate the superiority
of our system, we conduct curved driving experiments and compare its accuracy to a
commercial MMWR, Aptiv (Electronically Scanning RADAR) ESR 2.5, which is used in
CWS. The MMWR measures the relative distance, relative azimuth, and relative velocity.
Table 10 shows the accuracy of Aptiv ESR 2.5 according to its datasheet. ρ, θ, and v
represent the relative distance, azimuth angle, and velocity, respectively. The MMWR has
two working modes, middle-distance mode and long-distance mode, and the accuracies
are different.

Table 10. The accuracy of the MMWR.

Mode Coverage (m) RMSEρ (m) RMSEθ (◦) RMSEv (m/s)

Middle Distance 50 0.25 1 0.12
Long Distance 100 0.5 0.5 0.12

In order to facilitate comparison, the curved experiments are also divided into a
middle-distance experiment under vehicle distances within 50 m and a long-distance
experiment under vehicle distances within 100 m. The estimated values of the relative
position [x, y] are converted to the polar coordinate [ρ, θ], and the velocities of the two
vehicles [v1, v2] are converted to the relative velocity v, as shown in Figure 21. In addition,
the relative orientation β cannot be measured by MMWR directly.

4.3.1. Middle-Distance Experiments

The proposed CWS and MMWR are all dynamic systems, so the vehicle distance is
not kept to a constant value but changes in the experiment. During the middle-distance
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experiment, the vehicle distance changes between 10 and 50 m. In our system, the vehicle
distance represents the distance between the real axle centers of the two vehicles, so it
cannot be zero.
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4.3.2. Long-Distance Experiments

During the long-distance experiment, the vehicle distances change between 10 and 100 m.

4.3.3. Results Analysis of the Curved Experiments

According to Figures 22 and 23, the accuracy of the proposed system improves signif-
icantly after fusion, which reaches the same conclusion as the simulation results shown
in Figure 12. The relative position is described as Cartesian coordinate [x, y] in the sim-
ulation but as polar coordinate [ρ, θ] in the experiments. Both x and y improve after
fusion as shown in Table 2, whereas only θ without ρ improves after fusion according to
Tables 11 and 12. That is because the accuracy improvement of θ can contribute to better
accuracy of both x and y, as Figure 21. Therefore, the experimental results are consistent
with the simulation. The comparison result of the proposed system and the MMWR is
shown in Table 13, which combines Tables 11 and 12 with Table 10.

Table 11. The accuracy of the MMWR.

Mode RMSEρ (m) RMSEθ (◦) RMSEv (m/s) RMSEβ (◦)

No Fusion 0.14 0.76 0.22 1.84
Fusion 0.14 0.31 0.11 0.39

Table 12. The accuracy of the MMWR.

Mode RMSEρ (m) RMSEθ (◦) RMSEv (m/s) RMSEβ (◦)

No Fusion 0.18 0.77 0.22 1.86
Fusion 0.17 0.31 0.12 0.40

Table 13. Accuracy comparison of the proposed system and the MMWR.

Mode System RMSEρ (m) RMSEθ (◦) RMSEv (m/s) RMSEβ (◦)

Middle
Distance

MMWR 0.25 1 0.12 None
Proposed System (No Fusion) 0.14 0.76 0.22 1.84

Proposed System (Fusion) 0.14 0.31 0.11 0.39

Long
Distance

MMWR 0.5 0.5 0.12 None
Proposed System (No Fusion) 0.18 0.77 0.24 1.86

Proposed System (Fusion) 0.17 0.31 0.12 0.40
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The distance accuracy of the proposed system is always much better than the MMWR,
no matter with or without fusion. The azimuth accuracy without fusion is about 0.76◦ in
both experiments, which is better than the middle-distance MMWR but is inferior to
the long-distance MMWR. However, velocity accuracy without fusion is worse than the
MMWR in both modes. As for the fusion system, the accuracy of relative distance and
azimuth performs significantly better than the MMWR, and the relative velocity accuracy
also improves to a similar level as the MMWR in both middle and long-distance modes.
Table 14 shows the accuracy enhanced rates of the proposed system to the MMWR.

Table 14. Enhanced rate of the proposed system to the MMWR.

Mode RMSEρ (m) RMSEθ (◦) RMSEv (m/s)

Middle Distance 44% 69% 8%
Long Distance 66% 38% 0%

In addition, the proposed system can provide the relative orientation, which is not
available directly in the MMWR system.

5. Conclusions

In this paper, we proposed a CWS combining UWB and DR. An improved relative
positioning/directing algorithm based on UWB is presented, and a DR model based on the
speeds of the rear wheels is established. Then, a fusion algorithm using EKF is proposed
to improve the accuracy of relative position, orientation, and velocity. Afterwards, the
advantage of the proposed system is preliminarily verified by simulation. Finally, experi-
ments are conducted to further validate the performance of our system, and the experiment
results are compared to a commercial MMWR used in CWS. The main conclusions are
summarized as follows:

• The proposed relative positioning/directing algorithm with an additional distance
constraint significantly improves the relative positioning/directing accuracy, espe-
cially the directing accuracy, as shown in Figure 9 and Table 1.

• The fusion method significantly improves the relative positioning/directing accu-
racy and slightly improves the velocity accuracy according to the simulation and
experiment results.

• The proposed CWS passes the regulated tests in JT/T883-2014 published by MOT,
which proves the feasibility of the proposed system.

• In middle-distance mode up to 50 m, compared to the MMWR, the proposed system
improves the relative positioning/directing accuracy by 44%, 69%, and 8%, respec-
tively, in the relative distance, azimuth angle, and velocity. As for in long-distance
mode, the enhanced rate is 66% and 38%, respectively, for the relative distance and
azimuth angle. The relative velocity accuracy of the proposed system is similar to
the MMWR.

• In both middle and long-distance modes, the proposed system can provide relative
orientations with errors no more than 0.4◦ RMSE, which is not available directly
in MMWR systems, but it is very beneficial to the CWS.

The inadequacy of the proposed system is the velocity accuracy. Although it performs
at the same level as MMWR in terms of velocity accuracy, it can be further improved.
To facilitate comparison of the proposed system and the MMWR, the velocity data of
the experiments are shown as relative velocity. We also analyze the accuracy of absolute
velocities of two vehicles. In the middle-distance experiment, RMSEv1 = 0.16 m/s and
RMSEv2 = 0.13 m/s, and in the long-distance experiment, RMSEv1 = 0.16 m/s and
RMSEv2 = 0.16 m/s. Both of them are inferior to the simulation results. It is because the
DR system is established based on a theoretical Ackerman steering model, which ignores
the stiffness of suspensions and tires. In the actual situation, vehicle dynamic parameters
such as side-slip angles will also affect the precision of the algorithm. Therefore, our
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research direction in the future is the system with a more accurate vehicle dynamic model
and with more sensors integrated such as IMU and GPS.
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