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ABSTRACT Mayaro virus (MAYV), Venezuelan equine encephalitis virus (VEEV), and
chikungunya virus (CHIKV) are vector-borne alphaviruses that cocirculate in South
America. Human infections by these viruses are frequently underdiagnosed or misdi-
agnosed, especially in areas with high dengue virus endemicity. Disease may prog-
ress to debilitating arthralgia (MAYV, CHIKV), encephalitis (VEEV), and death. Few
standardized serological assays exist for specific human alphavirus infection detec-
tion, and antigen cross-reactivity can be problematic. Therefore, serological plat-
forms that aid in the specific detection of multiple alphavirus infections will greatly
expand disease surveillance for these emerging infections. In this study, serum sam-
ples from South American patients with PCR- and/or isolation-confirmed infections
caused by MAYV, VEEV, and CHIKV were examined by using a protein microarray as-
sembled with recombinant capsid, envelope protein 1 (E1), and E2 from nine New
and Old World alphaviruses. Notably, specific antibody recognition of E1 was ob-
served only with MAYV infections, whereas E2 was specifically targeted by antibod-
ies from all of the alphavirus infections investigated, with evidence of cross-reactivity
to E2 of o’nyong-nyong virus only in CHIKV-infected patient serum samples. Our
findings suggest that alphavirus structural protein microarrays can distinguish infec-
tions caused by MAYV, VEEV, and CHIKV and that this multiplexed serological plat-
form could be useful for high-throughput disease surveillance.

IMPORTANCE Mayaro, chikungunya, and Venezuelan equine encephalitis viruses are
closely related alphaviruses that are spread by mosquitos, causing diseases that pro-
duce similar influenza-like symptoms or more severe illnesses. Moreover, alphavirus
infection symptoms can be similar to those of dengue or Zika disease, leading to
underreporting of cases and potential misdiagnoses. New methods that can be used
to detect antibody responses to multiple alphaviruses within the same assay would
greatly aid disease surveillance efforts. However, possible antibody cross-reactivity
between viruses can reduce the quality of laboratory results. Our results demonstrate
that antibody responses to multiple alphaviruses can be specifically quantified within
the same assay by using selected recombinant protein antigens and further show that
Mayaro virus infections result in unique responses to viral envelope proteins.
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Alphaviruses are members of the Togaviridae family of single-stranded, positive-
sense RNA viruses that make up a major group of medically important, arthropod-

borne viruses (arboviruses). Human infections range from asymptomatic, mild, undif-
ferentiated, febrile illness to debilitating polyarthralgia, encephalitis, and death.
Alphaviruses impact human health around the world, often in areas with heavy disease
burdens from other arboviruses that cause infections that present similar early clinical
symptoms. Countries in the Americas and the Caribbean are experiencing a waning
epidemic encompassing over 2 million suspected infections from the new arrival in
2013 of chikungunya virus (CHIKV), an alphavirus that is associated with chronic and
debilitating polyarthralgias (1). CHIKV is an Old World alphavirus that was isolated in
1952 during an outbreak in Tanzania (2–4). Since then, local transmission has been
reported around the world, including 45 countries or territories throughout the Amer-
icas (5). The three distinct lineages of CHIKV (Asian, East Central South African, and West
African) (6) are global disease threats that form part of the Semliki Forest serocomplex
(7, 8). In addition to CHIKV, the current alphavirus disease burden in South America
includes a diverse range of medically important species that are limited in geographic
distribution to the New World. These viruses include the zoonotic Mayaro virus (MAYV),
another member of the Semliki Forest virus complex, as well as species of the
Venezuelan equine encephalitis, eastern equine encephalitis, and western equine
encephalitis serocomplexes (7). There is growing concern that MAYV is poised to
become the next emerging pathogen (9). Further, no licensed vaccines are available for
any of these alphaviruses and their close phylogenic relationships may complicate
specific immune responses. For example, immune antibody interference was docu-
mented in human vaccine trials involving the sequential administration of heterolo-
gous live attenuated alphaviruses that were not in the same serocomplex (10). Admin-
istration of an experimental CHIKV vaccine was sufficient to block human challenges
with an attenuated Venezuelan equine encephalitis (VEEV), and VEEV infection similarly
blocked human responses to a CHIKV vaccine challenge, likely because of CHIKV and
VEEV serological cross-reactivity (10).

MAYV is a reemerging arthritogenic alphavirus (7, 11–14) with three lineages (D, L,
and N) (15) that are found primarily in northern South America. However, the first MAYV
infection in Haiti was recently reported (16), possibly indicating an expanded disease
risk. The equine encephalitis viruses primarily infect equids but are also involved in
sporadic outbreaks of human disease, including encephalitis, caused by strains in the
eastern, western, and Venezuelan equine encephalitis serocomplexes (7, 17–19). More-
over, Madariaga viruses (7, 20), which are the South American members of the eastern
equine encephalitis serocomplex, were recently linked to human disease (19), while
reports of western equine encephalitis virus (WEEV) infections are declining (21, 22). In
contrast to the other equine encephalitis viruses, species of the Venezuelan equine
encephalitis serocomplex are associated primarily with larger disease outbreaks that
occur in many South American countries (7, 17, 23), extending into Central America and
Mexico (7). Specifically, disease outbreaks caused by epizootic/epidemic VEEV subtypes
IAB and IC can rapidly surge to several thousand cases (18, 24, 25). The enzootic VEEV
subtypes (ID and IE) have also been associated with clinical infections (18). Although
New World alphavirus human infection cycles tend to be relatively small and contained,
adaptation to new vector or host species by selective genetic mutations could con-
ceivably drive expansion into new geographic regions. Despite the importance of
monitoring infection dynamics, alphavirus disease surveillance remains problematic.
The majority of cases in the recent CHIKV epidemic in the Americas were not laboratory
confirmed (http://www.paho.org/hq/) but were instead classified by standard clinical
criteria, including acute-phase fever onset (�38°C) with severe arthritis. Yet, many
laboratory-confirmed cases of CHIKV infection do not meet the standard criteria of
clinical symptoms (26–28). Misdiagnosis and underdiagnosis of infections are also likely
because CHIKV, MAYV, and VEEV cocirculate with other arboviruses, including dengue
virus (DENV), Zika virus, and yellow fever virus, which often cause similar, undifferen-
tiated clinical features.
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New high-throughput methods are needed to track the changing disease landscape
of emerging infectious agents. While nucleic acid testing and virus isolation are
important to identify disease etiologies, results are dependent on viremia levels that are
only sufficient for detection during the first few days of infection. In the absence of
viremia, enzyme-linked immunosorbent assays (ELISAs) and plaque reduction neutral-
ization tests can be used to detect virus-specific antibodies, but these methods are not
amenable to high-throughput analysis, and live-virus assays may require biosafety level
3 laboratory containment. Alternatively, serological assays that employ individually
expressed viral proteins often yield species-specific signals with fewer cross-reactive
antibody interactions than those that use whole viruses (29, 30). Further, assays based
on protein microarrays are easily scaled to process large numbers of specimens against
expandable antigen panels (29–31). An examination of the alphavirus proteome sug-
gests several possible antigens that could be included in a microarray for analysis of
antibody responses. The single-stranded RNA genome (~11.5 kb) consists of an open
reading frame (ORF) encoding four nonstructural proteins (nsp1 to nsp4) that are
involved in viral RNA transcription and replication and a second ORF that encodes
envelope glycoproteins E1 and E2, capsid (C), and small polypeptides E3 and 6K (32).
The nucleocapsid core, structured by the RNA genome and 240 C molecules, is
surrounded by 240 E1-E2 heterodimers that are imbedded in a bilayered envelope of
host-derived lipid and tiled into 80 trimeric spikes protruding from the surface of the
virus. The E1 component of the spike protein is involved primarily in cell fusion, while
E2 binds receptors for cell entry (32–34). For most alphaviruses, surface-exposed E1 and
E2 are important targets of neutralizing antibodies (32). In addition, the C protein was
demonstrated to be a target of antibodies from humans and lab animals (35–37),
whereas the contribution of the remaining viral proteome to immune responses is not
well established. To examine antibody responses to infection, we assembled a microar-
ray with recombinant C, E1, and E2 antigens from four alphaviruses that cocirculate in
South America (MAYV, VEEV, CHIKV, and WEEV) and from eastern equine encephalitis
virus (EEEV), Ross River virus (RRV), and o’nyong-nyong virus (ONNV), which are
geographically limited to North America and the Caribbean, Oceania, and Africa,
respectively (7, 8, 20). Our study focused on MAYV, VEEV, and CHIKV infections that
recently occurred in South America to explore the utility of this multiplexed platform
for high-throughput disease surveillance.

RESULTS
Alphavirus antigen microarray. Genes encoding the structural proteins (C, E1, and

E2) of nine medically important alphaviruses were cloned and expressed (Table 1 and
Fig. 1; see Table S1 and Fig. S1 in the supplemental material) for inclusion in the
microarray by previously described methods (29). Arthritogenic CHIKV (three geno-
types: Asian, ECSA, and WAf), MAYV, ONNV, and RRV and encephalitogenic VEEV, EEEV,

TABLE 1 Alphaviruses represented in protein microarrays

Virus Lineage/subtype (strain) Abbreviation Serocomplexa

Chikungunya Asian (181/25) Asian CHIKV Semliki Forest
Chikungunya East/Central-South African

(LR2006_OPY1)
ECSA CHIKV Semliki Forest

Chikungunya West African (SH 3013) WAf CHIKV Semliki Forest
Mayaro D (TRVL 4675) MAYV Semliki Forest
O’nyong-nyong ONN (SG650) ONNV Semliki Forest
Ross River Lineage I (T48) RRV Semliki Forest
Venezuelan equine

encephalitis
IAB (TC-83) VEEV Venezuelan equine

encephalitis
Eastern equine

encephalitis
Lineage I (Florida91-4697) EEEV Eastern equine

encephalitis
Western equine

encephalitis
Group B2 (71V1658) WEEV Western equine

encephalitis
aSerocomplexes are according to reference 7.
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and WEEV were all represented in the microarray. All recombinant protein antigens
were deposited by Inkjet printing on nitrocellulose-coated glass surfaces. Antibody
recognition of printed antigens was assessed with reference mouse antisera (Fig. 2).
Antigen signal-to-cutoff ratios (SCRs) were calculated, and antigens with SCRs of �1
were considered positive. The mouse antibodies recognized C, E1, and/or E2 in a
virus-specific manner, with the highest IgG binding to alphavirus antigens from the
same species against which the antibodies were generated. In general, the antibody
recognition pattern of the arthritogenic viruses was against E1 and E2, whereas C and
E2 recognition was observed with encephalitis virus antibodies. Antibody cross-
reactivity correlated with antigens derived from closely related species within the same
antigen serocomplex (Table 1; Fig. S1D and E). With mouse CHIKV antiserum, for
example, the highest E2 SCRs were obtained with the three CHIKV genotypes (Fig. 2A),
which have sequence identities of 93 to 96% (Fig. S1), while the closely related ONNV
and MAYV E2 proteins (sequence identities to the CHIKV E2 proteins of 90 to 93% and
67 to 68%, respectively) were also positive but with lower signal levels than the CHIKV
E2 proteins. The mouse anti-CHIKV polyclonal antibody also recognized all three CHIKV
E1 antigens (sequence identities of 97 to 97.5%) and ONNV E1, while all other E1 signal
levels were 39 to 89% lower. Similarly, CHIKV rabbit antisera (Fig. S2) recognized all
three CHIKV E2 proteins with the highest signal levels, and detectable cross-recognition
was observed only with E2 proteins from ONNV and MAYV. The CHIKV rabbit antibodies
also recognized Asian and WAf CHIKV E1 proteins, ONNV E1, Asian and ECSA CHIKV C
proteins, and ONNV C protein, but all other antigens were not detected. Further, an
anti-WEEV E2 rabbit polyclonal antibody recognized WEEV E2 specifically with no
cross-reactivity to E2 proteins from the other alphaviruses (Fig. S2). Taken together, the
reference antisera demonstrated that specific alphavirus antigen-binding antibodies
were detectable with the protein microarray platform and supported further analysis
with patient serum samples from natural infections.

B

ECSA CHIKV Structural polyproteinA

C E3 6KE2 E1

1 1248

C E2tr E1tr

1 261 1 364 8 294

Protein domains expressed for protein microarrays

FIG 1 Schematic representations of structural proteins included in the alphavirus protein microarray. (A)
Schematics of ECSA CHIKV structural polyprotein (top) and domains that were cloned and expressed (bottom) with
residue numbers indicated. The expressed domains are full-length C (purple) and truncated E1 (light blue) and E2
(royal blue). (B) Structural models of chikungunya virus trimeric spike and C molecules from cryoelectron
microscopy (PDB code 3J2W). The E1-E2 heterodimer (colored as in panel A) is represented by a combination of
space fill and ribbon structures to show domains that were (space fill) or were not (ribbon) included in the
expression construct. The other two heterodimers (gray) are represented as ribbon structures and show the
orientation in the trimeric spike. The full-length C protein (purple) was expressed for the protein microarrays, but
only a partial C structure is available and is shown in the model.
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Alphavirus antigen recognition by human antibodies. Alphavirus infections were
identified through an established clinic-based study initiated by United States Naval
Medical Research Unit No. 6 (NAMRU-6) to ascertain the etiologic agents associated
with undifferentiated febrile illness in South America. Alphavirus infections for acute-
phase serum samples were identified by reverse transcription (RT)-PCR, virus isolation,
and indirect immunofluorescence (Table 2). Anti-alphavirus antibodies were detected in
all convalescent-phase serum samples by enzyme immunoassays (EIAs), demonstrating
substantial cross-recognition of whole viruses, especially in the MAYV cohort (Table 2).
Serum samples collected from patients with confirmed MAYV infections in Peru,
including acute- and convalescent-phase and follow-up specimens, were examined in
more detail with the protein microarray (Table 3). An increase in MAYV antigen
recognition by IgG from the acute phase to the convalescent phase for most patients
was observed in results from the protein microarray, and antibody levels decreased
during the follow-up period (Fig. 3). MAYV E1 had the greatest increase in antibody
recognition, but increases in MAYV C and E2 were also noted. In contrast, antibody
recognition of VEEV antigens remained low or at the background level over the

FIG 2 Mouse polyclonal antibody recognition of alphavirus microarray proteins. Mouse polyclonal antibodies raised against
whole alphaviruses of the Semliki Forest complex (A: CHIKV, MAYV, ONNV, and RRV, top to bottom) or equine encephalitis
viruses (B: VEEV, EEEV, and WEEV, top to bottom). The mouse polyclonal antibody used is indicated in the upper left corner
of each graph. The ratio of the antigen signal to the cutoff value was determined for each replicate spot. Cutoff values were
determined as the mean signal of the control proteins plus 3 standard deviations. The average ratio for replicate antigen spots
was determined, and ratios �1 are shown, with error bars representing the standard deviation. Vertical lines separate antigens
into C, E1, and E2 groups.
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collection period (Fig. 3), with the exception of serum samples obtained from one
individual. On the basis of the results of the MAYV infections, convalescent-phase
serum samples from the MAYV, VEEV, and CHIKV infection groups were used to
compare specific and cross-reactive antigen recognition patterns (Table 4). Because
specimens were not collected prior to infection, serum samples from RT-PCR-confirmed
influenza A virus infections in Peru were used for controls (Table 2). For each alphavirus-
infected patient, the ratio of the antigen signal level to the mean antigen signal level
of the influenza A virus group was determined to examine patterns of antibody
recognition in each infection group (Fig. 4A). Across all of the alphavirus infection
groups, specific and statistically significant E2 recognition was noted (Fig. 4). Patients in
the MAYV-infected group presented statistically significant antibody binding to recom-
binant MAYV E1 (P � 0.0005) and E2 (P � 0.005) compared to that of noninfected
controls, while in two cases antibodies recognized only E1 or E2 (Fig. 4B). The nearest
neighbors of MAYV are RRV, CHIKV, and ONNV (Fig. S1E), all of which are members of
the Semliki Forest serocomplex. However, cross-recognition of MAYV antibodies with
the antigens of these viruses was not significant in the microarray assays (Fig. 4B). For
four of the MAYV serum samples, low levels of antibody recognition of EEEV E1 were
also detected. In the confirmed VEEV infections (Fig. 4B), the E2 antigen provided the
best specificity (P � 0.0005) and there were no significant antibody interactions with
any other alphavirus antigen. These data contrast with the mouse antiserum results
(Fig. 2), which also demonstrated recognition of C and E1. Finally, CHIKV antibody
interactions with E2 from all three CHIKV genotypes were significant (P � 0.05). On the
basis of the E2 results, the overall abundance of human antibodies resulting from CHIKV
infection was lower than that of human antibodies resulting from either MAYV or VEEV
infection, perhaps explaining why the level of antibody binding to E1 was not as high
as that demonstrated with the mouse and rabbit sera (Fig. 2; Fig. S2).

DISCUSSION

This report describes an analysis of serological immune responses to human MAYV,
VEEV, and CHIKV infections that occurred in Peru, Colombia, and Venezuela from 2011
to 2014. The results were obtained with a high-throughput microarray that incorpo-
rated structural proteins from nine medically important alphaviruses, including anti-
gens derived from alphaviruses that are not currently endemic to South America. One
objective was to determine if sufficient assay specificity could be obtained with the viral
structural proteins selected for inclusion in the microarray. Our results indicated that

TABLE 2 Standard laboratory assays used for infection diagnosis and confirmation

Infection

No. of samples positive/no. tested in:

Acute-phase assay Convalescent-phase EIA

RT-PCR Virus culturea

MAYV
IgM

MAYV
IgG

VEEV
IgM

VEEV
IgG

CHIK
IgM

MAYV 10/10 9/10 10/10 7/8 3/10 6/8 NDb

VEEV 10/10 10/10 0/10 3/10 9/10 9/10 ND
CHIKV 10/10 7/9 0/10 ND 0/10 ND 9/9
Influenza

A virus
10/10 10/10 0/10 0/1 0/10 1/1 ND

aViruses isolated in cultures were determined by immunofluorescence assay.
bND, not determined for any of the samples in that infection group.

TABLE 3 Human MAYV infection serum samples analyzed by protein microarrays

Infection phase
No. of serum
samples Time frame

Range of no. of days after acute-
phase diagnosis (mean � SD)

Acute 10 Jan 2011–May 2014 NAa

Convalescent 9 Jan 2011–Jun 2014 13�22 (17 � 3)
Follow-up 10 Apr 2011–Sept 2014 86�133 (100 � 15)
aNA, not applicable.
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antibody cross-reactivity with reference mouse and rabbit antisera correlated with
antigens derived from closely related species within the same antigen serocomplex.
Because previous reports suggested that human MAYV serum samples cross-react with
CHIKV and RRV antigens in ELISAs (38–40), another goal of the study presented here
was to provide a more detailed analysis of antigen cross-reactivity. In contrast to the
results obtained with animal reference antisera, we observed a high degree of speci-
ficity for the three human infection groups examined that was primarily based on
independently printed E1 and E2 antigens.

Generally, outbreaks of alphavirus infections in the Americas have been sporadic
and contained. However, cocirculation of closely related MAYV, VEEV, and CHIKV
presents the potential for an increased public health concern. Before CHIKV spread
throughout South America, one study of febrile illness etiologies encompassing mul-
tiple sites in Bolivia, Ecuador, Paraguay, and Peru found evidence of MAYV and VEEV
infections in up to 8.2 or 7.0% of the subjects tested, respectively (17). Additional
reports found MAYV exposure in at least 34% of the subjects at certain study sites (41,
42), while VEEV exposure was reported in up to 84% of the populations studied (18).
After the recent spread of CHIKV throughout the New World, a study of acute febrile
illness in Brazil identified CHIKV antibodies in 5 (6.7%) out of 75 DENV-negative samples
and MAYV antibodies were detected in 15 (55.6%) out of 27 DENV- and CHIKV-negative
samples (43). Misdiagnosis, especially in countries where DENV is endemic, can be
problematic. For example, a study of acute febrile illness patients in Brazil with a clinical
diagnosis of DENV found that infections in 13% of 46 arbovirus nucleic acid-positive
samples were caused by MAYV (44). Misdiagnosis or immune interference caused by

FIG 3 Recognition of MAYV antigens by antibodies from human MAYV infections. Serum samples from
patients (n � 10) with PCR-confirmed MAYV infections were used to probe protein microarrays consisting
of MAYV and VEEV antigens to detect IgG binding. Acute-phase, convalescent-phase, and follow-up
serum samples were analyzed for subjects 1 to 9, while acute-phase and follow-up serum samples were
analyzed for subject 10. For each individual, antigen signal levels were plotted relative to the acute-phase
signal level.

TABLE 4 Human infection serum samples analyzed by protein microarrays

Infection Lineage
No. of serum
samples Country(ies) Time frame

Days after acute-
phase diagnosis
(mean � SD)

VEEV ID 10 Peru Apr 2013–Jul
2013

10�30 (18 � 8)

CHIKV NDa 10 Colombia,
Venezuela

Jul 2014–Dec
2014

11�27 (19 � 5)

Influenza virus A 10 Peru Aug 2012–Sept
2014

12�28 (18 � 5)

aND, not determined.
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cocirculating viruses is more likely with the arrival and widespread occurrence of CHIKV,
as recently noted for MAYV infections occurring in Brazil between December 2014 and
January 2016 that were misreported as CHIKV infections (45). Further, arthritogenic
CHIKV and MAYV should remain on surveillance watch lists for potential involvement in
disease outbreaks, and improved surveillance tools are needed for this purpose.
Interestingly, human serum samples from natural infections used in our study demon-
strated highly specific antibody recognition with recombinant antigen probes, while we
found a greater level of cross-reactivity with the reference mouse polyclonal antibodies.
For MAYV infections, responses to E1 appeared to dominate the serological immune
response, and 90% of the serum samples from MAYV infections recognized at least one

FIG 4 Antibody specificity of human alphavirus infections to alphavirus structural antigens. Serum samples from patients with
alphavirus or influenza A virus (Flu A) infections were used to probe alphavirus protein microarrays to detect specific
antigen-IgG binding. All serum samples, except one MAYV follow-up sample, were collected within 10 to 30 days of infection
confirmation by RT-PCR. The signal levels of the alphavirus-infected subjects were compared to the mean signal level of each
antigen in the influenza A virus group. Signal ratios were calculated as described in Materials and Methods. (A) Graphs showing
individual and mean signal ratios for 10 patients per alphavirus infection group for MAYV (top), VEEV (middle), and CHIKV
(bottom) with error bars representing the standard error of the mean. Vertical lines separate antigens into C, E1, and E2 groups.
Horizontal dotted lines indicate an alphavirus infection signal to influenza A virus signal ratio of 1. (B) M statistics were used
to identify antigens with significant recognition by antibodies in the alphavirus versus influenza A virus infection groups.
Antigens with significant signal levels in the alphavirus infection groups, prevalence, and statistical significance are shown.
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of the MAYV envelope proteins, while antibodies from two individuals recognized only
E1 or E2. The mouse data also suggested that the MAYV and RRV antigens share a low
level of antibody recognition, yet we did not observe significant antigen cross-reactivity
with serum samples from human MAYV infections or those of any other Semliki Forest
complex members. Further, we observed specific antibody responses to VEEV E2 from
the epizootic IAB lineage with 80% of the infections that were caused by enzootic VEEV
subtype ID, and neither significant cross-reactivity to other E2 antigens nor human
serum recognition of VEEV E1 or C was observed. Although differences in VEEV IAB and
ID antigen sequences may account for reduced C and E1 recognition, further studies are
needed to determine this conclusively. We noted that antibodies of some subjects in
the MAYV disease group recognized the more distantly related EEEV E1 or VEEV E2
protein. Evaluations of EEEV infection patients, which were not included in the study
described here, may help to determine if EEEV E1 antigen recognition by the MAYV
serum is due to a low level of antibody cross-reactivity or prior alphavirus exposure.
Recognition of VEEV E2 by convalescent-phase serum from one MAYV infection subject,
without an apparent rise in levels of IgG for VEEV E2 compared to the acute-phase
serum, indicated a possible history of prior exposure to VEEV. VEEV and MAYV are
known to cocirculate, and one study showed that approximately 10% of VEEV infection
serum samples also had MAYV IgM (17). These results suggest that the protein
microarray can be used to detect possible prior exposures to alphaviruses, as well as
increased antibody-antigen recognition from recent infections. Only E2 antigens of all
three CHIKV lineages and ONNV were recognized by CHIKV human serum, in contrast
to the reference mouse and rabbit antisera that also recognized E1 and C. As ONNV is
the nearest neighbor of CHIKV, some degree of antibody cross-reactivity was not
unexpected. Some reports have detected CHIKV C, E1, and/or E2 antibody recognition
by serum samples from human CHIKV patients (36, 46–48), while the recognition of
each antigen may be dependent on the sampling time postinfection. A possible change
in specific antibody levels over time may explain why we observed antibody recogni-
tion of CHIKV E2 but not C or E1. Taken together, these data show that a side-by-side
comparisons of antigen recognition in the multiplexed platform can be used to detect
infection-specific antigen recognition patterns and to distinguish diseases caused by
related viruses.

The emergence and spread of alphaviruses occur through genetic changes gener-
ated during viral replication that can lead to adaptation to new vector or host species
(49–53). The global expansion of CHIKV, for example, was facilitated in part by adaptive
genetic changes that produced increased vector competency in the urban mosquitos
Aedes aegypti and A. albopictus (49–51, 54), which feed on human hosts. Interestingly,
laboratory studies concluded that MAYV and VEEV could be transmitted by A. aegypti
and A. albopictus (55–60), though neither virus has been confirmed to be naturally
spread by these mosquitoes. Multiplexed surveillance assays that include both endemic
and nonendemic viruses will be important for monitoring disease outbreaks and spread
to new geographic regions. Further, the ability to expand this multiplex assay by the
addition of new antigens that are synthesized from sequence data will provide a means
to rapidly incorporate assays for new pathogens into disease surveillance matrices
(29–31, 61).

MATERIALS AND METHODS
Ethics statement. Research on human subjects was conducted in compliance with Department of

Defense, Federal, and State statutes and regulations relating to the protection of human subjects and
adhered to principles identified in the Belmont report (62). All of the human samples and associated data
used in this study were gathered under an institutional review board-approved protocol, no.
NAMRU6.2010.0010, and were authorized by study volunteers for future use. Use of the samples for
retrospective analysis in this study was determined as not human subject research by the NAMRU-6
Research Administration Program (NAMRU6.2016.0001) and the USAMRIID Office of Human Use and
Ethics (FY16-07).

Study cohort and sample collection. Samples were collected and archived as part of a study to
determine the etiology of febrile illnesses in Latin America. The criteria for inclusion in this study required
subjects to present to selected health facilities with an elevated temperature (�38°C oral, tympanic, or
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rectal; �37.5°C axillary) that had lasted no more than 5 days. Patients who presented with readily
diagnosable sources of infection or who were not 5 years old or older were excluded. The sample subset
used in this study was collected from patients in Peru (MAYV, VEEV, and influenza A virus) or Colombia
and Venezuela (CHIKV). Acute-phase samples were tested for arboviral infections by isolation and/or
RT-PCR (Table 2) as previously described (11, 17, 23). For positive samples, convalescent-phase samples
were collected within 10 to 30 days postdiagnosis and EIAs for IgM and IgG were performed as previously
described (Table 2) (11, 17). Follow-up samples were collected from MAYV-infected patients approxi-
mately 3 months after the acute infection phase.

Alphavirus gene cloning. Synthetic genes or alphavirus cDNAs were used for PCR amplification and
cloning of alphavirus genes for the expression of C, E1, and E2 proteins from nine alphavirus species
(Table 1; Table S1). Cloning was designed such that all C-encoding genes expressed full-length proteins,
while all E1- and E2-encoding genes were truncated to express the following regions of the ectodomains:
E1 domains I and II (starting with the first proline at the N terminus) and E2 domains A, B, and C (Fig. 1;
Fig. S1). To clone E1 and E2 from Asian CHIK, VEEV, MAYV, and RRV, cDNA templates for PCR were
produced by RT with viral RNAs and the SuperScript III First-Strand Synthesis System (Invitrogen,
Carlsbad, CA). Asian CHIKV (strain185/25) and VEEV (strain TC-83) RNAs were obtained from Integrated
BioTherapeutics, Inc. (Rockville, MD). For MAYV RNA, Phase Lock Gel-Heavy tubes (Eppendorf, Haup-
pauge, NY) were used with a MAYV TRIzol preparation (strain TRVL 4675) obtained from the World
Reference Center for Emerging Viruses and Arboviruses/National Institute of Allergy and Infectious
Diseases (WRCEVA/NIAID; Robert Tesh). RRV RNA was extracted from freeze-dried infected suckling
mouse brain (strain T48) purchased from the American Type Culture Collection (Manassas, VA) with the
QIAamp Viral RNA Minikit (Qiagen, Germantown, MD). The PCR amplification product of the EEEV
C-encoding gene was kindly provided by Pamela Glass (USAMRIID). Gene synthesis was used to produce
templates for the following targets (Table 1): C (Asian CHIKV, ECSA CHIKV, WAf CHIKV, MAYV, RRV, ONNV,
VEEV, and WEEV), E1, and E2 (ECSA CHIKV, WAf CHIKV, ONNV, EEEV, and WEEV). Most synthesized genes
were provided as gene fragments produced by Integrated DNA Technologies, Inc. (Coralville, IA), or Life
Technologies, Inc. (Carlsbad, CA), except the EEEV and WEEV E2-encoding genes, which were synthesized
and cloned into pUC57 (GenScript, Piscataway, NJ). All synthesized genes were codon optimized for
expression in Escherichia coli, except those for E1 and E2 of ECSA CHIK, WAf CHIK, EEEV, and WEEV. PCR
amplification of genes was performed with Phusion High-Fidelity PCR master mix (New England Biolabs,
Ipswich, MA), and purified PCR products were inserted into the pENTR/TEV/D-TOPO plasmid (Life
Technologies, Inc.) by TOPO cloning. Colony PCR and sequencing were performed to identify entry
clones with the appropriate insert. Sequence-verified entry clones were shuttled into pDEST17 (Life
Technologies, Inc.), an N-terminally 6�His-tagged expression plasmid, with LR Clonase II (Life Technol-
ogies, Inc.).

Alphavirus protein expression and purification. Sequence-verified alphavirus constructs were
expressed in E. coli BL21-AI by using Luria broth (300 ml) supplemented with 100 �g/ml ampicillin and
0.1% glucose. Proteins were induced at mid-log phase with the addition of 0.2% arabinose. Optimal
induction conditions were determined for each protein, and bacteria were grown at either 30°C (3 to 4 h)
or 18°C (18 to 20 h) (CHIK E1tr, 25°C for 18 h) prior to harvesting by centrifugation. Cell pellets were
stored at �80°C prior to lysis with 10 ml of Bacterial Protein Extraction Reagent (Thermo, Fisher Scientific,
Waltham, MA) containing 0.2 mg/ml lysozyme (Sigma-Aldrich, St. Louis, MO), EDTA-free 2� Halt protease
inhibitor cocktail (Thermo, Fisher Scientific), 2 mM phenylmethylsulfonyl fluoride, and 100 U of DNase I
(Pierce). Soluble and insoluble proteins were separated by centrifugation (15,000 � g, 10 min) and
analyzed by SDS-PAGE (Bio-Rad, Hercules, CA), followed by Coomassie staining and Western blot analysis
with a mouse anti-polyhistidine monoclonal antibody (clone HIS-1; Sigma-Aldrich) detected with horse-
radish peroxidase-conjugated goat anti-mouse antibody (Bio-Rad). All expressed proteins were present
in inclusion bodies and purified as previously described, with some modifications (29, 63). Briefly,
insoluble protein pellets were washed twice with a buffer consisting of 50 mM Tris-HCl (pH 7.4), 1 M urea,
and 1% Triton X-100 and then washed once with 50 mM Tris-HCl (pH 7.4) with centrifugation at 15,000 �
g for 10 min between washing steps. Pellets were resuspended in 50 mM Tris-HCl (pH 7.4) prior to storage
at �80°C. Purified inclusion body suspensions were thawed and centrifuged at 17,000 � g for 10 min.
Pellets were resuspended in solubilization buffer containing 50 mM HEPES (pH 7.3), 140 mM NaCl, 2 mM
DL-dithiothreitol (DTT), and 1% sodium dodecyl sulfate (SDS) and heated to 99°C for 5 to 15 min.
Solubilized protein was centrifuged at 17,000 � g for 10 min, and glycerol (25%) was added to the
supernatant prior to storage at �80°C. Solubilized proteins were analyzed by SDS-PAGE, and protein
concentration and purity were determined with the Agilent protein 230 kit and a Bioanalyzer 2100
instrument (Agilent Technologies, Santa Clara, CA).

Alphavirus protein microarrays. Prior to printing of purified recombinant antigens, samples were
diluted to 200 ng/�l in protein microarray printing buffer (50 mM HEPES, 140 mM NaCl, 2 mM DTT,
pH 7.3) with glycerol (40%). Replicate spots (n � 6) of alphavirus proteins and controls were printed onto
microporous-nitrocellulose-coated slides (ONCYTE SuperNOVA; Grace Bio-Labs, Inc., Bend, OR) with an
Inkjet microarray printer (ArrayJet, Roslin, United Kingdom) at 65% humidity. Control proteins included
bovine serum albumin (BSA), E. coli-expressed Rift Valley fever virus glycoprotein, and antigens from
DENV and influenza virus hemagglutinin proteins (Immune Technology Corp., New York, NY), along with
human, mouse, monkey, goat, and rabbit IgG (Rockland Immunochemicals Inc., Limerick, PA). The printed
microarray slides were desiccated (12 h) and stored frozen (�20°C) until use. Spot deposition and the
quality of spotted proteins were determined with SYPRO Ruby protein stain and mouse anti-polyhistidine
monoclonal antibody (clone HIS-1; Sigma-Aldrich).
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Protein microarray assays. Mouse polyclonal antibodies were provided by the WRCEVA/NIAID and
were produced as mouse hyperimmune ascitic fluid with intraperitoneal injections of alphavirus-infected
newborn mouse brain homogenate (R. Tesh, personal communication). The strains used to generate
mouse polyclonal antibodies were CHIKV Ross (ECSA lineage), ONNV MP-30, VEEV TC-83 (IAB lineage),
EEEV Alabama, and others not specified. Rabbit polyclonal antibodies that were raised against sucrose-
purified CHIKV 181/25 or a WEEV E2 peptide were obtained from Integrated BioTherapeutics, Inc.
(Rockville, MD). Assay steps were performed at 22°C protected from light. Slides were blocked for 1 h with
Super G blocking buffer (Grace Bio-Labs, Inc.) and washed three times (5 min each time) with wash buffer
(1� PBS [pH 7.4], 0.2% Tween 20, 1% BSA) prior to the addition of samples. Anti-alphavirus mouse serum
(1:50), anti-CHIKV and -WEEV E2 polyclonal antibodies (1:500), and human serum samples (1:150) were
diluted in probe buffer (1� PBS [pH 7.4], 0.1% Tween 20, 1% BSA) and incubated with E. coli lysate
(1 mg/ml; Promega, Madison, WI) for 1 h with gentle mixing to preclear the samples of nonspecific
antibodies. Samples were pelleted at 17,000 � g for 5 min, and the cleared supernatant was added to
the microarrays. Samples were incubated for 1.5 h with gentle rocking and then washed five times (5 min
each time) with wash buffer. Alexa Fluor 647-conjugated secondary antibodies were diluted in probe
buffer and used to detect antibodies bound to the microarrayed antigens. Goat anti-mouse IgG (1:2,000;
Invitrogen), goat anti-rabbit IgG (1:2,000; Invitrogen), or goat anti-human �-specific IgG (1:1,000; South-
ern Biotechnologies, Birmingham, AL) was incubated with the arrays for 1 h. Arrays were washed with
wash buffer (3�, 5 min each time), rinsed with ultrapure water (2�, 2 min each time), and dried (16 h,
22°C).

Microarray data acquisition and analysis. Microarray slides were imaged with a GenePix 4400A
confocal laser scanner (Molecular Devices, Sunnyvale, CA) at a wavelength of 635 nm. GenePix Pro 7
software was used to obtain local background-subtracted median fluorescence intensity for all data
analyses. For mouse or rabbit polyclonal antibodies, scanner settings (power and gain) were adjusted for
an optimal signal without saturation (�65,000 relative fluorescence units [RFU]) of antigen spots. Outliers
among the data replicates that were identified with a modified Z score (median absolute deviation, �3.5)
were excluded from the final analyses. Cutoff values for each assay were determined from the fluores-
cence signals of the antigen control spots and were calculated as the mean plus 3 standard deviations.
Antigen SCRs were calculated, and an SCR of �1 was considered positive. For human serum samples, the
scanner power was set to 100 and the gain setting was adjusted for each infection group to achieve an
optimal signal without antigen signal saturation for any of the samples. Intra-array normalization of data
from the acute-phase, convalescent-phase, or follow-up MAYV samples was done by using the negative-
control spots. Subsequently, for each individual, the acute-phase antigen signal levels were set to 1 and
the antigen signal levels from the convalescent-phase and follow-up time points were adjusted relative
to the acute-phase antigen signal levels. For comparisons of convalescent-phase human alphavirus
infection sample groups to the influenza A virus-infected group, ProtoArray Prospector v5.1 (Invitrogen)
was used to quantile normalize the data. An M statistics analysis, with a minimal signal of 500 RFU and
a minimal signal gap of 200 RFU, was used for serum group comparisons to identify antigens with
significant reactivity. Microarrays probed with serum samples from the influenza A virus group or an
alphavirus-naive study volunteer cohort from the United States were compared to confirm that the
influenza A virus group did not have significant recognition of the printed alphavirus proteins (data not
shown). Further, antigens that were significantly recognized by antibodies among the alphavirus
infection group compared to the influenza A virus control group were identified on the basis of the M
statistics test (ProtoArray Prospector v5.1). Signal ratios were determined after data outliers were
identified and removed, as described above, to compare the antibody-binding signal levels of the
alphavirus infection groups and the influenza A virus group. The antibody-binding signal levels in each
array probed with serum samples from the alphavirus infection groups were divided by the mean signal
levels from the influenza A virus group.

Sequence alignments and molecular phylogeny. Multiple-sequence alignments of the C, E1, and
E2 amino acid sequences of the nine alphaviruses represented on the protein microarray were generated.
Three alignments generated by Clustal W2 (64) by using BLOSUM62 as the substitution matrix and gap
opening penalties of 5, 10, and 25 with all other settings as default were applied in T-Coffee Combine
(65, 66) to obtain a single optimized alignment. Sequence identities and similarities in the optimized
alignment were determined by using the sequence identity matrix and pairwise alignment features of
BioEdit software (v7.2.5) (67). Phylogenetic trees were generated by using the PhyML interface (v3.0) for
maximum-likelihood trees (68) with the BLOSUM62 matrix, and the number of substitution rate cate-
gories was set to four. The starting tree was BioNJ with optimization by using tree topology and branch
length and tree improvement using subtree pruning and regrafting. Phylogram images were generated
by using the Newick format tree output in TreeView v1.6.6 (69).
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