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Abstract

Purpose To externally validate an intensive care unit

(ICU) mortality prediction model that was created using

the Ontario Critical Care Information System (CCIS),

which includes the Multiple Organ Dysfunction Score

(MODS).

Methods We applied the Transparent Reporting of a

multivariable prediction model for Individual Prognosis Or

Diagnosis (TRIPOD) recommendations to a prospective

longitudinal cohort of patients discharged between 1 July

2015 and 31 December 31 2016 from 90 adult level-3

critical care units in Ontario. We used multivariable

logistic regression with measures of discrimination,

calibration-in-the-large, calibration slope, and flexible

calibration plots to compare prediction model

performance of the entire data set and for each ICU

subtype.

Results Among 121,201 CCIS records with ICU mortality

of 11.3%, the C-statistic for the validation data set was

0.805. The C-statistic ranged from 0.775 to 0.846 among

the ICU subtypes. After intercept recalibration to adjust the

baseline risk, the mean predicted risk of death matched

actual ICU mortality. The calibration slope was close to 1

with all CCIS data and ICU subtypes of cardiovascular and

community hospitals with low ventilation rates. Calibration

slopes significantly less than 1 were found for ICUs in

teaching hospitals and community hospitals with high

ventilation rates whereas coronary care units had a

calibration slope significantly higher than 1. Calibration

plots revealed over-prediction in high risk groups to a

varying degree across all cohorts.

Conclusions A risk prediction model primarily based on

the MODS shows reproducibility and transportability after
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intercept recalibration. Risk adjusting models that use

existing and feasible data collection can support

performance measurement at the individual ICU level.

Résumé

Objectif Nous souhaitions faire une validation externe

d’un modèle de prédiction de la mortalité aux unités de

soins intensifs (USI) créé en utilisant le Système

d’information sur les soins aux malades en phase critique

(SISMPC) de l’Ontario, qui comporte le Score de

défaillance multisystémique (MODS).

Méthode Nous avons appliqué les recommandations de

communication transparente d’un modèle de prédiction

multivarié pour le pronostic ou le diagnostic individuel

TRIPOD à une cohorte longitudinale prospective de

patients. Ces patients devaient avoir reçu leur congé

entre le 1er juillet 2015 et le 31 décembre 2016 de 90 unités

de soins intensifs de niveau 3 pour adultes en Ontario.

Nous avons utilisé une méthode de régression logistique

multivariée accompagnée de mesures de discrimination,

d’étalonnage global, de pentes d’étalonnage et de

graphiques d’étalonnage afin de comparer la

performance du modèle de prédiction pour l’ensemble

des données dans son intégralité et pour chaque sous-type

d’USI.

Résultats Parmi les 121 201 dossiers du SISMPC

présentant une mortalité à l’USI de 11,3 %, la statistique

C pour l’ensemble de données de validation était 0,805. La

statistique C allait de 0,775 à 0,846 parmi les sous-types

d’USI. Après réétalonnage de l’ordonnée afin d’ajuster le

risque de base, le risque prédit moyen de décès

correspondait à la mortalité réelle à l’USI. La pente

d’étalonnage était proche de 1 pour toutes les données du

SISMPC et tous les sous-types d’USI des hôpitaux

cardiovasculaires et communautaires ayant de faibles

taux de patients ventilés. Des pentes d’étalonnage

significativement inférieures à 1 ont été observées pour

les USI dans les hôpitaux universitaires et les hôpitaux

communautaires ayant des taux de patients ventilés élevés,

alors que les unités de soins coronariens présentaient une

pente d’étalonnage significativement supérieure à 1. Les

courbes d’étalonnage ont révélé une sur-prédiction dans

les groupes à risque élevé à des degrés variables dans

toutes les cohortes.

Conclusion Un modèle de prédiction du risque se fondant

principalement sur le score MODS a montré sa

reproductibilité et son applicabilité après réétalonnage

de l’ordonnée. Les modèles d’ajustement du risque qui

s’appuient sur des collectes de données existantes et

réalisables peuvent aider à mesurer la performance au

niveau de l’USI individuelle.

Keywords intensive care unit (ICU) � mortality �
prognostic model � external validation

Benchmarking can be used to identify opportunities for

quality improvement.1 Performance or benchmarks can be

monitored over time within a single practice, or compared

across different practices. These methods for performance

measurement and improvement require careful

interpretation of the results and awareness of limitations.2

In complex systems, such as intensive care units (ICUs), it

can be difficult to compare measures of quality since

patients present with heterogeneous illnesses and varied

disease severity. Methods have been proposed to account

for this heterogeneity, most commonly regression

techniques to risk-adjust the measure of interest.3-5

An ideal benchmarking system will use data that are

readily available and simple to interpret.6 Ontario is the

most populous province in Canada. In 2007, the Critical

Care Information System (CCIS) was implemented by the

provincial health ministry as part of a strategy to improve

the quality and efficiency of the critical care system.7 The

CCIS includes a measure of organ dysfunction on ICU

admission (Multiple Organ Dysfunction Score [MODS])8

and daily nursing workload measures (Nine Equivalents

Nursing Manpower Use Score [NEMS])9; however, this

data has not been used to perform risk-adjustment, likely

because validated models for this purpose are lacking. The

ability of MODS to predict mortality has been reported in

small, single-centre studies from Canada, Finland, and

other countries.10,11 We used CCIS data from the two

medical-surgical ICUs in our hospital to develop and

internally validate a prediction model for ICU mortality.12

None of these models have been externally validated.

External validation of a prediction model’s performance

is an important and necessary process prior to clinical

implementation.13-16 Access to ‘‘big data’’ is increasing as

evident by analysis of registry databases that contain

electronic health records for thousands or even millions of

patients from multiple practices and hospitals.17 The CCIS

is an example of a large e-health database that includes

data from different types of ICUs, and thus provides an

opportunity to assess both reproducibility (similar case-

mix) and transportability (different but related populations)

within the same study.18 The objective of this study was to

conduct and report a methodologically sound external

validation using guidelines and referenced statistical

articles from the Transparent Reporting of a

multivariable prediction model for Individual Prognosis

Or Diagnosis (TRIPOD) explanation and elaboration

document.19
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Methods

Approval for this study was granted by the Western

University Research Ethics Board on 15 February 2017.

Requirement for consent was waived.

Study design

We used an independent population-based cohort to

perform a validation study on a previously published ICU

mortality prediction model.12

Data source

We used data from the Ontario CCIS for this study. The

CCIS is a web-based data application that uses a

combination of methods to capture data. Demographic

data can be auto-populated directly from the hospital

electronic admission, discharge, and transfer system, but

most of the data are manually entered by clerical and

clinical staff as appropriate. Data elements used in this

study, a subset of those captured in CCIS, are shown in

Electronic Supplementary Material (ESM), eTable 1. All

ICUs in Ontario are required to enter data into the CCIS for

all admissions.

Data were obtained for all level-3 ICU admissions

between July 1 2015 and December 31 2016. Level 3 ICUs

are defined as those providing life support and mechanical

ventilation for more than 48 hours. Critical Care Services

Ontario has organized the ICUs into groups based on ICU

subtype (Table 1). The eligibility criteria, conditions,

definitions, and measurements in this validation study

were identical to those used in the original development

study.

The minimum effective sample size for external

validation has been reported as 100 outcome events.20

The data set included over 13,500 deaths. All ICU subtype

groups had well over 100 deaths except burn ICUs, which

were excluded from the subgroup analyses.

The validation data set was first subject to administrative

cleaning. We excluded admissions to pediatric and labour

and delivery level-3 ICUs. Also excluded were records

where patient age was reported as \ 18 yr or [ 115 yr,

length of ICU stay was reported as 0 days (entry errors), or

where duplicate MODS and/or NEMS entries were

reported. For duplicate records, the record with the later

time stamp was selected for linkage with the admission and

discharge data. Finally, any records with missing predictor

data were omitted from the analyses.

Complete case analyses were used to assess model

performance. Records with missing data represented

approximately 5% of all cases and exclusion of these

cases was not considered a threat to the validity of the

results.21 The outcome of interest was ICU mortality.

Predictor variables, available within the first 24 hr of

critical care admission, were defined as follows: 1) age

group (18–39, 40–79, C 80 yr); 2) sex (M or F); 3) NEMS

group (0–22, 23–29, C 30); 4) MODS group (0, 1–4, 5–8,

9–12, C 13); 5) admission source (operating

room/postanesthesia care unit, emergency department,

unit/ward, other hospital and other); 6) admitting

diagnosis (cardiovascular/cardiac/vascular, respiratory,

gastrointestinal, neurologic, trauma, other); and 7)

readmission to critical care during the same hospital stay.12

Since we chose to restrict our analyses to variables

contained within the CCIS data set, we modified our

previously published model 12 by excluding the Charlson

Comorbidity Index. eTable 1 (available as ESM) is

Table 1 CCIS level-3 ICU subtype groups and number of critical care units

Criteria # Critical care units

Teaching hospitals (medical surgical ICU) 17

Community hospitals (medical surgical ICU) with ventilator patient day rate above the mean rate* 28

Community hospitals (medical surgical ICU) with ventilator patient day rate equal to or less than the mean rate* 23

Cardiac/cardiovascular unit 10

Coronary care units� 10

Burn units 2

*Ventilator patient day rate = (ventilator days/patient care days) * 100 based on fiscal year 2016–2017; mean rate = 43.61%
� Coronary care units that provide invasive ventilation for longer than 48 hr

CCIS = Critical Care Information System; ICU = intensive care unit
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provided as supplemental digital content and shows the

equation for Logit [ICU Mortality].

Statistical analyses

The relatedness of the development and validation data sets

was reviewed using two approaches. First, the distribution

of context-important patient characteristics, including

predictors and outcomes, were compared. Descriptive

analyses of these characteristics were performed for the

development and validation data sets and for the latter, also

stratified by CCIS ICU subtype. Continuous data elements

are expressed as mean (standard deviation [SD]) or median

[interquartile range (IQR)] as appropriate. Categorical data

elements are reported as proportions. To quantify the extent

of the relatedness in case-mix between the development

and validation samples, a binary logistic regression model

(membership model) was created to predict the probability

that an individual record belonged to either sample.22

Independent variables were the predictors and outcome

from the prediction model. The discriminative ability of the

model was quantified using its C-statistic with lower values

indicating similarity between the data sets.

Three measures were used to assess the performance of

the model in the validation data set: 1) calibration-in-the-

large, 2) calibration slope, and 3) discrimination.

Calibration-in-the-large represents the level of agreement

between observed and predicted mortality. It was

calculated as the logistic regression model intercept given

that the calibration slope equals 1 (logit(y)=a ?

logit(ŷ)).22,23 Where calibration-in-the-large was

significantly different from 0, intercept recalibration was

performed by fitting a new logistic regression model with

an intercept only and an offset term for the linear predictor.

Calibration slope reflects whether predicted risks are

appropriately scaled with respect to each other over the

entire range of possible values. It was estimated from the

recalibration model equation logit(y)=a ? boverall

logit(ŷ).22,24 Loess-based calibration plots were created

with predicted risk on the x-axis and observed mortality on

the y-axis to illustrate the agreement across the range of

predicted risks.23 Discrimination refers to the ability of the

prediction model to separate individuals that died and those

that survived. The concordance statistic was used to

evaluate the discriminative value of the prediction model.

For those observations excluded from the analyses

because of missing predictors, comparisons with the

observations used in the validation were also made. All

analyses were performed using SAS 9.4 (SAS Institute Inc.,

Cary, NC, USA).

Results

After applying the exclusion criteria, 121,201 records were

available for external validation (Fig. 1). The demographic

and clinical characteristics (predictors) and ICU mortality

of the patient population included in the development

model and external validation data set are shown in

Table 2. The C-statistic for the membership model

comparing the development data set to the entire CCIS

cohort was 0.764. Values between 0.7 and 0.8 are generally

considered to reflect acceptable discrimination25 and in the

case of this membership model, represent a data set that is

somewhat related to the development data set, but not

strongly so where a C-statistic of\0.7 would be expected.

N = 130,353 
(Admi�ed Jul 1, 
2015 - Dec 31, 

2016)

N = 127,712

N = 127,708

External 
Valida�on

N = 121, 201

N = 6,507 
Missing Predictor

N = 4 
Labour & 
delivery

N = 2,641 
Administra�ve 

cleaning

Fig. 1 Flow chart of patient records included in the external

validation. Administrative cleaning includes the following: n =

1,609 (duplicates), n = 427 (admitted in error), n = 88 (ICU LOS = 0),

n = 511 (age\18 yr), n = 6 (age[105 yr). ICU = intensive care unit;

LOS = length of stay
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Table 2 Baseline and clinical characteristics and outcomes of patients in the development and external validation data sets

Development External validation

Included Missing

Total number of subjects, n 4,321 121,201 6,507

Sex

% Female 42.7 40.2 38.7

N missing 3

Age (yr)

0–39 13.5 9.1 8.7

40–79 72.8 73.4 72.5

C 80 13.7 17.5 18.8

N missing 0

ICU admission source

Operating room/postanesthesia care unit 21.6 28.3 25.6

Other hospital 18.3 11.4 13.5

Emergency department 29.3 36.1 32.1

Other source* 8.8 9.7 15.0

Unit/ward 22.2 14.5 13.8

N missing 28

ICU admission diagnosis

Cardiovascular/cardiac/vascular 15.1 43.1 55.6

Other diagnosis� 23.1 21.1 18.1

Gastrointestinal 10.5 6.1 5.7

Respiratory 32.5 19.3 13.7

Trauma 6.6 2.3 1.5

Neurologic 12.2 8.0 5.5

N missing 0

Multiple Organ Dysfunction Score (MODS)

0 5.7 16.9 21.1

1–4 39.9 46.0 47.7

5–8 40.1 29.0 22.8

9–12 12.3 7.2 7.3

[ 13 2.0 0.9 1.1

N missing 5607

Nine Equivalents Nursing Manpower Use Score (NEMS)

0–22 12.9 36.4 43.1

23–29 32.5 26.3 23.6

C 30 54.6 37.3 33.3

N missing 2280

Re-admission to ICU (same hospital admission) 9.1 5.8 6.4

N missing 128

Mortality 22.8 11.2 11.9

N missing 28

� Other diagnosis includes patients with the following diseases: Metabolic/endocrine, Genitourinary, Musculoskeletal, Skin, Oncology,

Hematology, Other

*Other source includes patients admitted from the following locations: Home – within or outside LHIN, Level 2 unit or step-down unit, Level 3

unit (medical/surgical or specialty unit), Complex continuing-care facility, Rehabilitation facility, Outside province, Other

ICU = intensive care unit; LHIN = Local Health Integration Network
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This is confirmed by some key differences illustrated in

Table 2. Specifically, the development population was

younger, had a different source distribution (less from the

operating room and emergency department, more from the

ward and referrals from other hospitals), as well as higher

levels of organ dysfunction upon admission, daily nurse

workload, readmission, and ICU mortality. Admitting

diagnosis also differed between the data sets with the

development sample having a higher proportion of

admissions for respiratory issues and a lesser proportion

of cardiovascular-related admissions.

These same analyses were performed for each ICU

subtype group. The discrimination of the membership

models indicated varying degrees of relatedness to the

development sample. Relatedness to the development

sample was found in teaching hospital medical-surgical

units (C-statistic = 0.660) and community hospital medical-

surgical units with high rates of mechanical ventilation (C-

statistic = 0.740) but discordance in community hospital

medical-surgical units with low rates of mechanical

ventilation (C-statistic = 0.836), cardiac/cardiovascular

units (C-statistic = 0.969), and coronary care units (C-

statistic = 0.974). eTable 2 (available as ESM) is provided

as supplemental digital content and shows the

characteristics and outcomes for each individual ICU

subtype group compared with those for the entire cohort.

The demographic and clinical profile of cases excluded

from the analyses because of missing data were similar to

those included in the external validation (Table 2), and as

such, data were considered to be missing completely at

random.

Calibration-in-the-large represents overall calibration of

the model. Perfect agreement between observed and

predicted values has an intercept value of 0. For all data

combined and also for all ICU subtype groups except

medical-surgical units in teaching hospitals, the intercept

value was less than 0 indicating that the model over-

predicted ICU mortality.22 This over-estimation was

greatest in cardiac/cardiovascular and coronary care units.

In the medical-surgical units in teaching hospitals, the

intercept value was greater than 0 showing a slight under-

estimation of mortality (Table 3). Given the differences

between actual ICU mortality and predicted risk, an

intercept recalibration was performed for all models

resulting in calibration-in-the-large values that are

essentially 0.

The calibration plots in Figs 2a and 2b show that some

over-prediction remains following intercept recalibration,

specifically when the risk of death is higher. The extent of

over-prediction varies across ICU subtype groups but

represents a small proportion of patients.

The calibration slope reflects whether the predicted risks

are scaled appropriately to each other over the complete

range of predicted probabilities and was another measure

used to evaluate the model’s predictive performance in the

validation samples. Calibration slopes not significantly

different from 1 include all CCIS data, as well as

community hospital medical-surgical units and

cardiac/cardiovascular units. The calibration slope for

teaching hospital medical-surgical units were significantly

less than 1, showing higher variation in predicted

probabilities (Table 3). Specifically, the variation

between predicted and observed risks is too low for low-

outcome risks and too high for high-outcome risks. The

coronary care unit data set has a calibration slope

significantly above 1 indicating too little variation in the

predicted risks; predicted risks are systemically too high.

Discrimination for all CCIS data and the individual ICU

subtype groups ranged from acceptable to very good

(Table 3). The validation data sets with the lowest area

under the curve (AUC) [IQR] were teaching hospital

medical-surgical units (C = 0.781 [0.774 -0.788]) and

cardiovascular/cardiac units C = 0.768 [0.747 - 0.789]).

The data sets including all CCIS data and all other ICU

subtype groups had areas under the curve greater than 0.80.

Discussion

We used a prospectively collected, population-based cohort

to perform external validation on a risk prediction model

for ICU mortality. We found that an intercept update was

required, which greatly improved the calibration-in-the-

large for the entire cohort as well as for all ICU subtype

groups. Over-estimation for higher predicted risk groups

remains, but this population represents relatively few

patients. Since the intention of the model is for

performance measurement and not individual patient

prognosis, the model fit is acceptable for the entire

cohort of ICUs.

The development and application of robust prognostic

models are essential for valid performance measurement

and many existing prognostic models have a limited life

span because of changes in clinical practice and healthcare

over time that can alter the risk of mortality for a given

clinical situation. Prognostic models require periodic

updating. Current prognostic models for mortality were

published between 2005 and 2007 including Acute

Physiology and Chronic Health Evaluation (APACHE)

IV (AUC = 0.88),5 Simplified Acute Physiology Score

(AUC = 0.848,)26 and Mortality Probability Admission

Model (MPM0)-III (AUC = 0.823).27 The organ

dysfunction scores that assess the presence and severity

of organ dysfunction include MODS (AUC = 0.695),

Sequential Organ Failure Assessment (SOFA) (AUC =

0.776), and Logistic Organ Dysfunction Score (AUC =

123
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0.805).11 The AUC we report here for the entire cohort and

for ICU subtype groups compares favourably with these

other models.

The development model showed strong agreement

between observed and expected mortality as assessed

using the Hosmer-Lemeshow goodness-of-fit test.

Limitations of this decile-based analysis include the

influence of sample size and the arbitrary selection of the

risk categories.28-30 In this external validation, calibration

was assessed using loess-based calibration plots,

calibration-in-the-large, and calibration slope.23 Although

the results are not directly comparable, the underlying

conclusions are that the model has acceptable calibration in

both the development and validation data sets, indicating

good overall agreement between observed and expected

ICU mortality.

Discriminative ability increased slightly in this external

validation and the membership model did indicate some

case-mix differences. We anticipated that a data set

containing over 120,000 patients would include a more

diverse case-mix than the developmental model.

Differences in case-mix can include the distribution of

predictor values, varied participant or setting

characteristics, and incidence of the outcome.18 This

increase in heterogeneity would enhance discriminative

ability in the validation cohort, and has several effects on

model performance across different settings and

populations.31,32 In fact, case-mix variation can lead to

differences in the performance of a prediction model, even

when the true predictors’ effects are consistent.31

Benchmarking is an approach to identify and implement

best practices.1,33 Indicators selected for benchmarking can

be compared over time within a single unit or practice,

across units or practices or against a predetermined goal.

Many potential indicators will not require risk or case-mix

adjustment, while this will be needed for most patient-

related outcomes such as mortality and length of stay. We

caution against use of simple rank ordering or

comparisons of one unit to another since regression

models, such as the one we report, provide an estimated

risk based on the average of the entire cohort. While our

recalibration has reduced the bias across this cohort,

estimates for subgroups or individual ICUs will remain

biased. As can be seen in our data, it appears that teaching

hospitals perform worse than average, community hospitals

with high ventilator usage perform better than average, and

cardiac units perform much better than average.

Nevertheless, this would be a false conclusion since the

differences across subgroups must cancel out across the

entire cohort. At most, evaluation of subgroups or

individual ICU results should only be compared with the

average estimated performance and include confidence

intervals.3 Models could be recalibrated for specific ICU

subtypes but this involves subjective categorization of units

and will not resolve the bias for individual ICUs. One

randomized trial used quantiles to identify achievable

performance levels for groups of units and reported

improved performance in individual units.34 Ultimately,

we believe that models such as these should be used to

monitor performance over time only within individual

ICUs. One such approach incorporates risk-adjusted

measures into statistical process control methods.35,36

There are numerous strengths to this study. First, the

breadth of the units that submit data to the CCIS allows for

testing of both reproducibility (similar ICU subtype

groups) and transportability (different ICU subtype

groups), and the size of the CCIS data set provided

ample statistical power for the required analyses. The

TRIPOD framework indicates that a model’s predictive

performance should be evaluated in relation to subgroups

of interest, such as age or sex, specific settings or

population rather than just across all individuals

combined, which can mask any deficiencies in the

model.19 It is increasingly recognized that the predictive

performance of a model tends to vary across settings,

populations, and periods,22,31,37,38 which implies there is

often heterogeneity in model performance and that multiple

external validation studies are needed to fully appreciate

the generalizability of a prediction model.22 In this study,

we have conducted subgroup analyses for each ICU

Fig. 2 a Loess-based calibration plots for validation of entire CCIS

cohort. CCIS = Critical Care Information System. b Loess-based

calibration plots for validation of individual ICU subtype groups. ICU

= intensive care unit; TH = teaching hospitals; CH = community

hospitals
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subtype to evaluate performance in specific ICU patient

populations. Another strength is adherence to the TRIPOD

guidelines, which include references to appropriate analytic

methods and complete reporting of the results.15,22,39,40

Next, both MODS and NEMS are relatively easy to collect,

making this prediction tool more apt for risk-adjustment

compared with more complex scoring systems. MODS

requires only eight routinely collected variables and, in

contrast to SOFA, is not dependent on treatment.41 NEMS

assesses ICU resource utilization and efficiency that has

been validated as a nurse workload measure in large

cohorts of ICU patients.42 It is easy to use with minimum

inter-observer variability,9,42 but has not been evaluated as

a mortality or risk prediction tool.

Limitations of this study include our inability to adjust

for chronic health status as these data are not captured in

the CCIS. Linkage to other data sets containing

comorbidity data such as the Canadian Institute for

Health Informatics Discharge Abstract Database could

resolve this limitation, but we did not have access to

identifiable patient information and such linkage was not

possible. Another limitation is that, although ICU mortality

is a proximal metric that can be used to evaluate quality of

care in the ICU and ultimately improve patient outcomes,

ICU survival is not a patient-centred goal. We found a low

frequency of patients within the range of severity where

mortality is over-predicted; however, this would need to be

monitored regularly to ensure that results are interpreted

correctly. Also, we could not evaluate the burn ICU

subtype group accurately because of the low number of

deaths. Finally, although there are no published studies on

the accuracy of the CCIS data, we previously reported that

inter-observer variability in data collection appears to be

randomly distributed.43

Conclusion

Following an intercept update to adjust for the difference in

mortality between the development and validation data

sets, our ICU mortality prediction model performs well and

shows both reproducibility and transportability. Some ICU

subtype groups show inferior model fit compared with

others, but the over-estimation of mortality occurs

primarily in risk groups with low prevalence and thus has

a minimal impact on overall calibration. These models

could be used to provide risk-adjusted mortality rates to

support performance measurement over time within

individual ICUs using data that is easy and feasible to

collect. Since the model represents an average of all the

patients in the cohort, we recommend it should not be used

for simple comparisons between ICUs or ICU subtypes.
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