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This schematic drawing shows the most relevant connections 
within a cerebellar module. The mossy fibers contact granule 
cells (GrC) and deep cerebellar nuclei (DCN) cells which, in turn, 
receive inhibition from the same common set of Purkinje cells 
(PC). Moreover, the interior olive (IO) cells emit climbing fibers 
that contact DCN cells and Purkinje cells (PC), which also project 
to the same DCN cells. An activate group of GrCs is in (red), while 
others (yellow) are laterally inhibited by the GoCs. The active GrCs 
excite the overlaying PCs (dark red) according to a vertical organi-
zation pattern (Bower and Woolston, 1983). The PCs inhibit DCN 
neurons which in turn inhibit the IO neurons. Note that, within a 
cerebellar module, different circuit elements communicate in closed 
loops. The mossy fibers contact granule cells and DCN cells which, 
in turn, receive inhibition from the same common set of Purkinje 
cells. Moreover, the IO cells emit climbing fibers that contact DCN 
and PC, which also project to the same DCN cells.

The cerebellum has traditionally provided an ideal case for 
investigating the relationship between cellular neurophysiology and 
circuit functions, because of the limited number of neuronal types 
and the regular organization of its internal network (Figure 1). The 
Motor Learning Theory (Marr, 1969; Albus, 1971), which proposed 
the first computational model of cerebellar function, was inspired by 
morphological determinations of the number of neurons and syn-
apses but accounted for only very limited knowledge on functional 
properties of the cerebellar circuitry. In recent years, in associa-
tion with remarkable developments of physiological technologies, 
important achievements at the cellular level have suggested that the 
original view needs to be revisited (Rokni et al., 2008). The papers 
in this special issue are focused on the relationship between cellular 
properties and circuit responses, which hold the key to control spike 
timing and long-term synaptic plasticity (Hansel et al., 2001; De 
Zeeuw and Yeo, 2005; D’Angelo and De Zeeuw, 2009; D’Angelo 
et al., 2009) and eventually cerebellar functioning.

In the cerebellum, inputs are conveyed through a double system 
formed by the mossy fibers and the climbing fibers. These inputs 
converge onto Purkinje cells, which eventually inhibit the DCN, 
representing the sole output of the circuit (Figure 1). Despite the 
wealth of available information, outstanding issues remain open 
about the spatial organization of granular layer activity, the discharge 
of Purkinje cells and deep cerebellar neurons, the mechanisms of 
circuit inhibition, the forms of long-term synaptic plasticity and 
their relationship with behavior. These aspects are covered by the 
papers in this special issue combining a careful literature review 
with significant original data.

Signals coming into the cerebellum through the mossy fibers 
are first processed in the granular layer network. The mossy fibers 
show complex firing patterns, ranging from frequency-modulated 
discharges to short bursts (van Kan et al., 1993; Chadderton et al., 

2004; Rancz et al., 2007; Arenz et al., 2008; Prsa et al., 2009). With the 
intervention of the inhibitory circuits and synaptic plasticity, mossy 
fiber activity is transformed into new spatio-temporally organized 
spike sequences for further processing in Purkinje cells (Mitchell 
and Silver, 2003; Nieus et al., 2006; Mapelli and D’Angelo, 2007; 
D’Angelo, 2008; D’Angelo et al., 2009). Then, granule cell spikes 
propagate through the ascending axon and along the parallel fib-
ers. Despite the wealth of information on single cell properties, 
the spatio-temporal organization of activity in the granular layer 
network remains largely to be determined.

In this special issue, it is shown that afferent mossy fiber signals 
are differentially filtered and amplified depending on the intensity 
of local inhibition and on several receptor- and channel-dependent 
properties (Mapelli and D’Angelo, 2007; Mapelli et al., 2010a,b). 
These results lend support to the emerging concept that the granu-
lar layer performs complex transformations on the mossy fiber 
input by generating new spatio-temporal pattern with the aid of 
local circuitry and synaptic plasticity. These temporal patterns are 
likely to integrate with repetitive and coherent activity enhancing 
responses in the theta band (Pellerin and Lamarre, 1997; Hartmann 
and Bower, 1998; Courtemanche et al., 2009). These observations 
are integrated through the first realistic large-scale computational 
reconstruction of the granular layer providing a direct link between 
molecular, cellular, and network properties in the cerebellar net-
work (Solinas et al., 2010).

These papers also contribute to sheds light on the mechanisms 
of transmission from granular layer to Purkinje cells and molecu-
lar layer interneurons. This process has been the object of debate, 
in which evidence for spots-like or beam-like activation has been 
contrasted (Rokni et al., 2007). Here, it is suggested that native 
bursts are amplified along the vertical transmission line, thereby 
generating activity spots (Mapelli et al., 2010b). Then, the effect 
of bursts along the parallel fibers is filtered, probably through 
molecular layer interneurons (Bower, 2010), generating weaker 
and frequency-independent responses. This effect was proposed 
to explain the “spot vs. stripe” controversy, since spots would easily 
emerge following burst transmission generated following punctu-
ate stimulation.

The Purkinje cells receive inputs both from parallel fibers and 
climbing fibers originating from the inferior olive. The inferior 
olive itself is an oscillator (Llinas and Yarom, 1981a,b; Chorev et al., 
2007; Khosrovani et al., 2007; Van Der Giessen et al., 2008), which 
can produce theta-frequency patterns influencing Purkinje cells 
and inhibitory interneurons of the molecular layer (Barmack and 
Yakhnitsa, 2008). Although much less numerous than parallel fib-
ers, the climbing fibers exert a powerful effect on the Purkinje cells 
eliciting the complex spikes. The complex spike has been variously 
interpreted as a signal carrying either an error or an instruction for 
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specific groups of Purkinje cells. Interestingly, the mossy fiber input 
can play a critical role in determining both the spike-to-spike vari-
ability and the UP/DOWN state of Purkinje cells, generating a 
complex blend of dynamics on multiple time-scales. Purkinje cell 
synchrony and the repercussion of PC firing on DCN neurons have 
been investigated in vivo (Jorntell and Ekerot, 2006; Baumel et al., 
2009; Bengtsson and Jorntell, 2009) and novel information on PC 
functioning has been provided through the development of geneti-
cally expressed fluorescent proteins in these neurons (Akemann 
et al., 2009).

The cells of DCN consists of diverse neuronal populations with 
distinct integrative properties (Uusisaari et al., 2007) and gener-
ate the sole cerebellar output. Both mossy fibers and to a lesser 
extent climbing fibers make collateral connections on to neurons 
of the DCN. DCN neurons also inhibit the IO cells regulating their 
coupling. IN DCN cells, intrinsic dynamics generate silent pauses, 
and possibly rebound excitation, producing alternating phases of 
activity. The DCN, in addition to act as a “relay station” between 
cerebellar mossy fiber input and cerebellar output to premotor 
areas, either directly or via the cerebellar cortex may also act as 
the substrate of motor memory storage (Raymond et al., 1996; 
Aizenman et al., 1998; Aizenman and Linden, 2000; Ito, 2006). It has 
been hypothesized that the synchronous oscillations in the Purkinje 

generating synaptic plasticity at the parallel fiber – Purkinje cell syn-
apse (Ito and Kano, 1982; Ito et al., 1982). Moreover, it has recently 
been demonstrated that both the climbing fiber and the parallel 
fiber inputs may influence the bistable transition of Purkinje cells 
between UP and DOWN states (Loewenstein et al., 2005; Jacobson 
et al., 2008), at least in anesthetized animals (Schonewille et al., 
2006). Both the mechanisms of olive activation and of climbing 
fiber control of plasticity are incompletely understood. Moreover, 
it is still debated which kind of coding is used by Purkinje cell and 
how molecular layer inhibition could control it.

In this special issue, the Purkinje cell processing mechanisms 
have been considered. Purkinje cells are spontaneously active and 
their discharge is modulated by the activity coming from the granu-
lar layer and the inferior olive. It was recently shown that the molec-
ular layer can sustain synchronous gamma band (30–80 Hz) and 
high-frequency (100–200 Hz) oscillations entraining the Purkinje 
cells (de Solages et al., 2008; Middleton et al., 2008). Purkinje cells 
were proposed to act as perceptrons (Brunel et al., 2004) and to 
process spike pauses (Steuber et al., 2007), and may live in a bistable 
UP–DOWN state (Loewenstein et al., 2005). Here, it is proposed 
that, in Purkinje cells, regulation of firing precision seems a more 
creditable coding strategy than frequency modulation (Rokni et al., 
2009). Moreover, superposition of UP/DOWN states can engage 

Figure 1 | Functional organization of the olivo-cerebellar system: a dynamic view.
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