
Pyroptosis in sepsis:
Comprehensive analysis of
research hotspots and core
genes in 2022

Demeng Xia1†, Sheng Wang2†, Renqi Yao3†, Yuexue Han4,
Liyu Zheng3, Pengyi He3, Ying Liu5* and Lu Yang6*
1Luodian Clinical Drug Research Center, Shanghai Baoshan Luodian Hospital, Shanghai University,
Shanghai, China, 2Department of Emergency, Changhai Hospital, Naval Medical University, Shanghai,
China, 3Translational Medicine Research Center, Fourth Medical Center and Medical Innovation
Research Division of the Chinese PLA General Hospital, Beijing, China, 4Department of Clinical
Medicine, Qing Dao University, Qing Dao, Shan Dong, China, 5Institute of Translational Medicine,
Shanghai University, Shanghai, China, 6Clinical Research Center, Shanghai Baoshan Luodian Hospital,
Shanghai University, Shanghai, China

Sepsis, a life-threatening disease caused by dysregulated host response to

infection, is a major public health problem with a high mortality and morbidity

rate. Pyroptosis is a new type of programmed cell death discovered in recent

years, which has been proved to play an important role in sepsis. Nevertheless,

there is no comprehensive report, which can help researchers get a quick

overview and find research hotspots. Thus, we aimed to identify the study status

and knowledge structures of pyroptosis in sepsis and summarize the key

mechanism of pyroptosis in sepsis. The data were retrieved and downloaded

from theWOS database. Software such as VOSviewer was used to analyze these

publications. Key genes were picked out by using (https://www.genecards.org)

and (http://www.bioinformatics.com). Then, Gene Ontology (GO) enrichment

analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway

analysis were used to performed these key genes. From 2011 to 2021, a

total of 299 papers met the search criteria, and the global interest in

pyroptosis in sepsis measured by the value of (RRI) has started to increase

since 2016. China ranked first in the number of publications, followed by the

USA. The journal Frontiers in Immunology published the most relevant articles.

Through keyword co-occurrence analysis, the high-frequency subject terms

were divided into three clusters like “animal research”, “cell research,” and

“molecular research” clusters. “mir,” “aki,” “monocyte,” and “neutrophil” were

the newest keywords that may be the hotspot. In addition, a total of 15 genes

were identified as hub genes. TNF, IL-1β, AKT1, CASP1, and STAT3 were highly

expressed in lung tissues, thymus tissues, and lymphocytes. KEGG analysis

indicated that pyroptosis may play a vital role in sepsis via the NOD, PI3K/AKT,

and MAPK/JNK pathways. Through the quantitative analysis of the literature on

pyroptosis in sepsis, we revealed the current status and hotspots of research in

this field and provided some guidance for further studies.
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Introduction

Pyroptosis is a pro-inflammatory programmed cell death. In

2001, a review (Boise and Collins, 2001) summarized the

discovery of a different pattern of cell death caused by

caspase-1 during infection from traditional apoptosis and

named this pattern “pyroptosis” (Cookson and Brennan,

2001). Pyroptosis occurs rapidly, which is characterized by

membrane disruption and release of cytoplasmatic contents

with a pronounced inflammatory response (Fink and

Cookson, 2006). Martinon et al. (2002) reported the findings

of inflammasome first in 2002, which elucidated the key question

on the activation of the crucial constituents of the inflammasome.

The inflammasome is a multi-protein complex that identifies

infectious and non-infectious stimuli, inducing the activation of

caspase-1 and caspase-4/5/11, resulting in the activation of

gasdermin D, which will disrupt cell membrane integrity

(Ding et al., 2016). At this time, a vast set of pro-

inflammatory factors were released and initiated inflammatory

responses, leading to a cytokine storm (Evavold et al., 2018).

Sepsis is defined as life-threatening organ dysfunction due to

a dysregulated host response to infection (Vincent et al., 2014;

Singer et al., 2016). Although there have been significant

advances in the management of septic shock in recent

decades, the morbidity and mortality rate of patients with

sepsis remain high in the world, especially in developing

countries (Vincent et al., 2006; Fleischmann et al., 2016; Liao

et al., 2016; Rudd et al., 2020). Moreover, sepsis is also an

important issue in public health with a high therapeutic cost

and poor eventual prognosis (Iwashyna et al., 2010).

The inflammatory/immune response during sepsis can

initially defend against invading pathogens, which minimizes

tissue damage. However, uncontrolled inflammation leads to

tissue damage and possibly organ failure (Nedeva et al., 2019).

Over the last few decades, accumulating evidence demonstrates

that pyroptosis mediated by inflammasome activationmay be the

key mechanism of sepsis (Esquerdo et al., 2017; Wang et al.,

2018). Currently, the treatment strategies of inhibiting the

caspase-1 signaling pathway and the caspase-11 pathway have

been confirmed effectively in several sepsis models (Liu et al.,

2017; Song et al., 2018). Thus, it is important to explore the

pathophysiological mechanism of pyroptosis in sepsis.

By using literature databases and literature metrology

characteristics as research objects, bibliometrics can analyze

publications quantitatively and qualitatively (Share, 1976).

Since bioinformatic analysis is widely used for interpreting

highly dimensional biological data and sepsis is a complex

disease involving multiple pathways, this method would be

suitable to investigate the intricate mechanism of pyroptosis

in sepsis. In this study, we summarized the publication trends

of pyroptosis in sepsis. In addition, a systematic visual analysis

was conducted using VOSviwer and Citespace software.

Additionally, we investigated underlying mechanisms of

pyroptosis in sepsis through Gene Ontology (GO) and

Kyoto Encyclopedia of Genes and Genomes (KEGG)

(Huang et al., 2007; Franceschini et al., 2013). Based on

these results, we analyzed recent developments in

pyroptosis in sepsis and trends since 2011, as well as

identified key genes and mechanisms associated with

pyroptosis, so as to provide new ideas or directions for

future basic and clinical research.

Materials and methods

The Web of Science is the largest and most comprehensive

database of academic information available on the Internet. The

search strategies were set as follows: (pyroptotic or pyroptosome

or pyroptosis) AND (sepsis OR (septic shock) OR (endotoxemia)

OR [SIRS OR (systemic inflammatory response syndrome)] OR

(systematic inflammatory response syndrome) AND Language =

English. The strategy of manual retrieval requires the overall

evaluation of the research content of the article rather than just

looking at the keywords. We make the initial judgment based on

the abstract, and then make the second judgment based on the

full text if there is any doubt. From the correlative publications,

including titles, keywords, authors, publication dates, original

countries and regions, institutions, references, H-index, and so

on. Microsoft Excel 2016, VOSviewer version 1.6.12, and the

Online Analysis Platform of Literature Metrology were used to

analyze the country/region and institutional distribution, author

contributions, core journals, keywords, and timeline viewer

(Synnestvedt et al., 2005). The genes of pyroptosis and sepsis

were comprehensively retrieved from GeneCards. The following

keywords were used as search strategies: “pyroptosis” and

“sepsis.” The results returned 235 and 2,775 entries,

respectively. The two gene sets were intersected by using the

online website (http://www.bioinformatics.com), resulting in a

new intersection containing 139 key genes, which was used for

subsequent analysis. The obtained gene sets were analyzed with

Gene Ontology (GO) enrichment analysis and Kyoto

Encyclopedia of Genes and Genomes (KEGG) pathway

analysis. Following that, the network was displayed by

Cytoscape software (Shannon et al., 2003). The genes were

ranked according to their degree of connectivity with other

genes, showing the map of the top 15 hub genes. For the five

core genes in hub genes, we visualized and analyzed their

expression levels in normal tissues.
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Results

For bibliometrics content, from 2012 to 2021, there were

318 articles related to the topic, 306 remained after limiting the

type of articles and limiting the language to English, and 299 that

met our inclusion criteria remained after screening (Figure 1). By

analyzing and aggregating the data, the results will show the

contribution of different journals, contribution of different

countries, contribution of different institutions, and the top

10 articles in each related field. The specific process of the six

aspects of contribution keywords of different institutions and

contributions from related fields was shown in Figure 3. In order

to avoid changes in the rank of genes caused by daily updates to

the database (Figure 2A), the 139 genes most related to sepsis and

pyroptosis were screened on 4 January 2022, and KEGG/GO

analysis was conducted on the 139 genes (Figure 2B), analyzing

the cellular components, molecular functions, biological

processes, and signal pathways involved in iron death. We

used CytoScope software to calculate and screen 15 hub genes

from the 139 genes. Based on bibliometrics prediction of future

development, 15 hub genes were applied to tissue expression.

Specific results are shown in Figure 3.

Bibliometrics content

Overall, 299 articles met our inclusion criteria, with China

ranking first in the number of publications at 173 (54.4%)

(Supplementary Figure S1). Considering the number of all-

field publications, RRI values have risen (Supplementary

Figure S1). Supplementary Figure S2 shows that China has the

closest communication with the United States. As shown in

Supplementary Figure S3, the University of Pittsburgh in the

U.S. published the most papers among institutions worldwide,

with 24 publications, representing 8.03% of all publications. The

number of papers published in Frontiers in Immunology (IF =

7.561) was the highest with 16 records. In terms of impact factors,

Immunity (IF = 31.745) was ranked first. The most cited article

about pyroptosis in sepsis in the world is caspase-11 cleaves

gasdermin D for non-canonical inflammasome signaling, which

was written by Kayagaki, N in the USA, and this article has been

cited 1,325 times (Supplementary Table S1). Among the most

important parts of a paper are keywords. Analysis of keywords

provides a summary of research topics in a field and explores

hotspots and various directions for future research. Utilizing

VOSviewer, we reviewed the keywords extracted from

299 publications. As presented in Figure 4A, in the process of

the analysis, 130 keywords, defined as terms appearing at least

nine times throughout the title and abstracts of all papers, were

FIGURE 1
Flowchart of literature screening. The detailed process of
screening and enrollment.

FIGURE 2
Strategy and results of bioinformatic analysis. (A) Flowchart of
gene screening. (B) The Venn diagram shows the intersection
between pyroptosis and sepsis genes.
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identified and grouped into three clusters: “animal research,”

“cell research,” and “molecular research.” Figure 4A shows the

results of a co-occurrence analysis of all incorporated keywords.

As shown in Figure 4B, the blue color indicates that the word

appeared relatively early in the research stage, while the yellow

color indicates a more recent appearance. For example, “liver

injury” (cluster one, animal research) has an AAY of 2,020.2 in

the early stages of pyroptosis research and could be a new target.

Among the first cluster of topics, “mir” and “aki” (cluster one,

appearing 15 times and 13 times) with an AAY of 2,020.6 and

2,020.4, respectively, were noted as new topics. In the second

cluster, “monocyte” (cluster two, cell research), with an AAY of

2,019.5, was the most recently emerging words, which appeared

15 times. Among the third cluster, “neutrophil” (cluster three,

molecular research) was the most recent word, with an AAY of

2,019.7, which occurred 15 times.

Functional enrichment analysis and
expression of the top five hub genes

The functions of 139 genes were further explored by GO

enrichment analysis and KEGG pathway enrichment analysis.

The results of GO enrichment analysis indicated that key genes

that play a role in sepsis are mainly involved in biological

processes such as inflammatory response, apoptotic, and

innate immune response, and they play an identical protein-

binding role in cell membranes and membrane rafts (Figures

5A–C). KEGG pathway analysis revealed that the predicted genes

were mainly closely related to microRNAs in cancer, the hepatitis

B pathway, and the NOD-like receptor signaling pathway

(Figure 5D). Subsequently, a network of 15 hub genes was

constructed and visualized by Cytoscape (Figure 6). For the

screened hub genes, we selected the top five genes (TNF, IL-

1β, AKT1, CASP1, and STAT3) sorted by Cytoscape software,

and these five genes were exactly the key to the hub gene network.

We used the gene expression website (http://gepia.cancer-pku.

cn/) to evaluate the expression levels of these five genes in

different tissues, and the results indicated that the expression

levels of these five genes were highly expressed in lung tissues,

thymus tissues, and lymphocytes (Figure 7).

Discussion

Research trends of pyroptosis in sepsis

There has been a steady increase in the number of studies on

pyroptosis in sepsis based on the volume of publications. The

study of pyroptosis in sepsis can be divided into three phases:

“infancy” (2011–2014), “outbreak” (2014–2017), and “rapid

development” (2017–2021). In view of the development trend,

FIGURE 3
Bibliometrics and bioinformatics analysis flow chart of pyroptosis in sepsis studies.

Frontiers in Molecular Biosciences frontiersin.org04

Xia et al. 10.3389/fmolb.2022.955991

http://gepia.cancer-pku.cn/
http://gepia.cancer-pku.cn/
https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org
https://doi.org/10.3389/fmolb.2022.955991


the study of pyroptosis in sepsis remains a subject for future

studies and has huge development potential. In its infancy,

pyroptosis has been poorly studied in sepsis, and at this time,

research on pyroptosis is gradually being refined. In 2013, Dixit

VM’s team published a paper in Science demonstrating that

gram-negative bacteria can activate caspase-11 in cells by using

LPS independent of the traditional LPS extracellular receptor

TLR4 (Kayagaki et al., 2013). However, the mechanism of LPS-

activated caspase-11 has not been fully elucidated. However, with

the further research in this field, it has been proved that berberine

alkaloids (Yuan et al., 2021), bacterial endotoxin (Yang et al.,

2019), and heparin (Tang et al., 2021) all affect the coke decay of

cells by affecting caspase-11. During the outbreak period,

research on pyroptosis in sepsis proliferated, which showed 4/

5/11 can bind LPS produced by intracellular bacteria without the

need for other intracellular receptors, which can directly activate

caspase-11 without the action of caspase-1 and then cause

pyroptosis (Shi et al., 2014). In 2015, Shao Feng’s group and

the Dixit VM’s team published papers in nature, respectively, to

clarify that GSDMD is the common substrate for activated

caspase-4 and caspase-11 (Kayagaki et al., 2015; Shi et al.,

2015). In 2017, the work of Shao Feng et al. further

confirmed that the gasdermin family is the ultimate effector

protein that directly triggers the pyroptosis process (Ding et al.,

2016). The research on pyroptosis in sepsis has also ushered in a

period of rapid development, and a large number of literature

studies have emerged (Supplementary Figure S1).

From a distribution point of view, pyroptosis research in

sepsis is mostly conducted in China and the United States

(Figure 4), which may be because the research on pyroptosis

FIGURE 4
The co-occurrence analysis of all keywords in publications of pyroptosis in sepsis. (A) Mapping of the keywords in the area of pyroptosis in
sepsis. The words were divided into three clusters in accordance with different colors generated by default: “animal research” (right in green), “cell
research” (left in red), and “molecular research” (up in blue). The size of the circle represented the frequency of keywords; (B) The distribution of
keywords was presented according to the average time of appearance. The blue color represented early appearance, and the yellow color
stood for late appearance. Two keywords were considered co-occurred if they both occurred on the same line in the corpus file. A smaller distance
between two keywords indicates relatively higher co-occurrences of the keyword.
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in China and the United States started earlier, with sufficiently

influential research institutions and leading figures. In addition,

the cooperation and exchanges between China and the

United States are close, which also promotes the development

of research to a certain extent (Scarazzati andWang, 2019). In an

era of globalization, the promotion of research on pyroptosis in

sepsis requires cooperation and coordination between countries.

Accounting for 2.1%, immunity (if = 31.745) is the influential

journal in the field (Supplementary Table S1). Half of the top ten

cited papers are from the United States, which is consistent with

the results in Supplementary Figure S1.

Research focused on pyroptosis in sepsis

Cellular pyroptosis relies on cysteine-aspartate proteases

(caspase) to activate programmed cell death patterns. It is

characterized by micropores in the cell membrane, swelling

and rupture of cells, release of cell contents, secretion of

inflammatory factors, and promotion of innate immunity and

cell death. Inflammasome activation and cytokine storm play an

important role in the development of sepsis. Pyroptosis also

destroys infected cells and promotes the release of pathogens to

be phagocytosed and killed by immune cells, thus promoting the

presentation of antigens and the elimination of intracellular

FIGURE 5
Enrichment analysis of key genes. (A) The enrichedGO terms in the component (CC). (B) The enrichedGO terms in themolecular function (MF).
(C) The enriched GO terms in the biological process (BP). (D) KEGG enrichment analysis.

FIGURE 6
The top 15 hub genes. The network of the top 15 hub genes
by CytoScope.
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pathogens. Moderate pyroptosis can protect the body against

pathogen infection, but excessive activation of pyroptosis may

aggravate sepsis and septic shock.

Through co-occurrence analysis of key words, three groups

were obtained, namely, animal research, cell research, and

molecular research (Figure 4A). Among them, we can find

that the current research direction is shifting from the

exploration of the mechanism of pyroptosis to the application

of pyroptosis in sepsis (Figure 4B). Among research hotspots,

liver injury (cluster one) in animal research is the latest.

Experiments showed that hepatic cell pyroptosis was

correlated with the degree of septic liver injury, and

pyroptosis-related proteins such as caspase-1 and

NLRP3 significantly increased. In addition, the application of

pyroptosis-related protein inhibitors can also alleviate liver

damage (Chen et al., 2016). The excessive activation of

hepatocyte pyroptosis can cause the release of a large number

of inflammatory cytokines, such as IL-6, TNF-α, and IL-1β,
further aggravating liver cell damage. In 2001, Menzel et al.

(2011) found that caspase-1 can alleviate liver injury and

inflammatory response; Zhao et al. (2016) found that

activated NLRP1 and NLRP3 can promote the secretion of IL-

1β. These results indicate that caspase-1, NLRP3, and

NLRP1 play an important role in sepsis. Cao et al. (2015)

used caspase-1 inhibitor, AC-YVAD-CMK, to reduce CLP-

induced acute kidney injury, which may provide target in the

treatment of the sepsis. As the activation form of cell pyroptosis,

caspase-1 and caspase-11 are the core points. Pyroptosis is

GSDMD-pore–induced cell swelling and rupture, and caspase-

1 activated maturation and secretion of inflammatory factors

such as IL-1β and IL-18: these are the characteristic

manifestations of pyroptosis. The activation mechanism of

caspase-11 is completely different from that of caspase-1. The

activation of caspase-11 does not require the participation of the

ASC gene. At present, the specific mechanisms of caspase-11

destroying cell integrity, inducing cell pyroptosis, and regulating

inflammatory response need further study. In the second and

third clusters, monocyte is the most recently emerging word. In

sepsis, innate immunity is the first line of defense against

invading pathogens. In the early stage of sepsis, monocytes

can not only prevent the increase of pathogenic bacteria by

recognizing and intercepting antigens, but can also

differentiate into macrophages to play an immunomodulatory

role. However, induction of pyroptosis in monocytes causes a

systemic inflammatory cascade that ultimately leads to tissue and

organ damage (Oliva-Martin et al., 2016). These

keywords appear in hotspots and represent the latest research

directions.

FIGURE 7
Expression of five hub genes in different tissues. (A)
Expression of TNF in different tissues. (B) Expression of IL-1B in
different tissues. (C) Expression of AKT1 in different tissues. (D)
Expression of CASP1 in different tissues. (E) Expression of
STAT3 in different tissues.
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Analysis of gene functional enrichment
and hub genes

KEGG pathway analysis identified significant enrichment of

NOD-like receptor signaling pathways related to the immune

system (p < 0.05). Oligomerization nucleotide-binding

domain–like receptors (NLRs) are a family of cytoplasmic

proteins that are crucial in intracellular ligand recognition.

These NLRs are responsible for recognizing specific pathogen

molecules or host-derived damage signals in the cytoplasm and

triggering innate immune responses. NLRP3 and NLRP1 are also

members of the NLR family. Among these, the

NLRP3 inflammasome is the most extensively studied

inflammasome. The NLRP3 inflammasome promotes the

maturation and secretion of pro-inflammatory cytokines and

triggers pyroptosis after activation (Schroder and Tschopp,

2010). Consequently, inhibiting the NLRP inflammasome has

emerged as an attractive therapeutic target for sepsis. Protein-

protein–related interaction analysis was performed on key genes,

and most of the encoded proteins have interaction relationships.

By further analysis of the network, 15 hub genes were obtained as

follows. These genes are mainly involved in the cytokine–cytokine

receptor interaction pathway (TNF, IL-1B, IL-18, and CXCL8),

toll-like receptor signaling pathway (TLR2, TLR9, and MYD88),

NOD-like receptor signaling pathway (NLRP3), etc. Cytokines

associated with sepsis, including interleukins, tumor necrosis

factor, chemokines, high-mobility group proteins, and other

molecules, play a key role in the inflammatory process of

sepsis. ILs are the most important cytokines released during

infection; they initiate signaling and promote the activation,

proliferation, migration, and necrosis of immune cells.

Interleukin 1β (IL-1β) is a key mediator of the body’s response

to inflammation with multiple biological effects, and its deficiency

can lead to a variety of diseases. IL-1β is mainly produced by

monocytes and macrophages in innate immune system cells, and

its biosynthesis and release are regulated by pathogen-associated

molecular patterns (PAMPs) and damage-associated molecular

patterns (DAMPs). PAMP/DAMP induces activation of the

NLRP3 inflammasome in macrophages and production of pro-

inflammatory cytokine—IL-1B, thus promoting sepsis (Hughes

et al., 2014). There is substantial evidence that a series of

treatments of monocytes, macrophages, and dendritic cells with

LPS and ATP induce rapid and efficient releases of IL-1β (Molteni

et al., 2018). Interleukin-18 (IL-18) is a pro-inflammatory cytokine

that is encoded in humans by the IL-18 gene. Many cell types,

including hematopoietic and non-hematopoietic cells, have the

potential to produce IL-18 (Wawrocki et al., 2016). Excessive

production of IL-18 has been associated with critical illnesses,

includingmyocardial ischemia and acute kidney injury. The higher

the serum IL-18 level, the more severe the liver and kidney

function and pathological injury, which is considered as a

potential biomarker for sepsis patients. Previous studies have

shown that NLRP3 inflammatory vesicles also regulate the

release of IL-18 (Nakahira et al., 2011). The pathogen-

associated molecular patterns and damage-associated molecular

patterns in sepsis activate NLRP3 and caspase-1 to release

inflammatory cytokines such as IL-18 and IL-1β, aggravating
the inflammatory response (Abderrazak et al., 2015). Toll-like

receptors (TLRs) are members of the pattern recognition receptors

(PRRs) that contribute to identifying pathogenic microorganisms,

mediating cellular signaling systems, and releasing inflammatory

factors. TLR4 is the principal receptor that recognizes the

lipopolysaccharide of the outer cell wall of gram-negative

bacteria, and knockdown of the TLR4 gene helps to defend

against endotoxemia (Luo et al., 2012). This is due to the fact

that activated TLR4 causes an excessive inflammatory response,

which in turn leads to a systemic inflammatory response. In

summary, nucleotide-binding oligomerization domain–like

receptors (NLRs) are a family of 23 receptors that play a key

role in the regulation of the host innate immune response. Several

studies have found that NLRP3 inflammatory vesicles play a key

role in the development and progression of sepsis, and more

studies have found inhibiting NLRP3 to be an effective

treatment for sepsis (Guo et al., 2015; Piippo et al., 2018).

TLRs, along with the NOD signaling pathway, enable the

integration of multiple signal pathways as a network that plays

a synergistic role in the infection and immunity of sepsis.

Conclusion

We expect the total number of global publications to grow,

according to RRI. Importantly, our analysis shows that animal

studies will be the subject of this field in the future, and liver injury,

AKI, monocytes, and neutrophils may be hotspots for future

research. The 139 genes associated with pyroptosis and sepsis

play a crucial role in the expression of microRNAs in the cancer

pathway, hepatitis B pathway, and NOD-like receptor signaling

pathway. Hub genes such as TNF, IL-1B, AKT1, CASP1, and

STAT3 play a central role in this study, and they are highly

expressed in lung tissues, thymus tissues, and lymphocytes.
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