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Abstract: Physical fitness is a pillar of U.S. Air Force (USAF) readiness and ensures that Airmen
can fulfill their assigned mission and be fit to deploy in any environment. The USAF assesses the
fitness of service members on a periodic basis, and discharge can result from failed assessments. In
this study, a 21-feature dataset was analyzed related to 223 active-duty Airmen who participated
in a comprehensive mental and social health survey, body composition assessment, and physical
performance battery. Graphical analysis revealed pass/fail trends related to body composition and
obesity. Logistic regression and limited-capacity neural network algorithms were then applied to
predict fitness test performance using these biomechanical and psychological variables. The logistic
regression model achieved a high level of significance (p < 0.01) with an accuracy of 0.84 and AUC of
0.89 on the holdout dataset. This model yielded important inferences that Airmen with poor sleep
quality, recent history of an injury, higher BMI, and low fitness satisfaction tend to be at greater risk for
fitness test failure. The neural network model demonstrated the best performance with 0.93 accuracy
and 0.97 AUC on the holdout dataset. This study is the first application of psychological features and
neural networks to predict fitness test performance and obtained higher predictive accuracy than
prior work. Accurate prediction of Airmen at risk of failing the USAF fitness test can enable early
intervention and prevent workplace injury, absenteeism, inability to deploy, and attrition.

Keywords: predictive modeling; military; risk management; physical fitness test; neural network

1. Introduction

The purpose of the Air Force Physical Fitness Test (APFT) is to promote year-round
physical conditioning resulting in increased productivity, decreased absenteeism, and
optimized readiness [1,2]. Failure to pass the APFT can directly impact mission capabilities,
ability to deploy, workplace injuries, and attrition. The U.S. Army Public Health Service
Center produces statistics annually for the US Army documenting the rising rates of
inactivity, obesity, and Army Physical Fitness Test failures. The 2015 report identified that
one in 20 active-duty Army Soldiers fail to pass their annual fitness test resulting in a
three-fold increased risk of inability to deploy [3]. The report also noted that it costs the
U.S. Army $137 million annually to recruit and train soldiers discharged due to test failure
($76,000 per recruit). An accurate predictive model could refer specific Airmen to targeted
wellness initiatives through established installation human performance services, such
as the Health Promotions Office, Fitness Facility, Aerospace Physiology, and Integrated
Operational Support Teams [4,5].

There is a growing need for studies to evaluate predictors of military fitness test failure
to address and reduce the impacts on health and deployment readiness [2]. One study
investigated attrition in the civilian recruit population prior to and during basic military
training and reviewed demographic, cognitive, mental health, physical health, and personal
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fitness [6]. While valuable for screening recruits, this study did not apply machine learning
algorithms to predict APFT performance.

Three prior studies used machine learning algorithms to predict either test or test
component performance, and they are summarized in Table 1. Orr et al. (2020) used age,
height, weight, initial fitness performance, and course duration to predict fitness test failure
in the Australian Army [7]. Sih and Negus (2016) used a time-series fitness and fatigue
phenomenological model to predict Army Basic Combat Training two-mile run time, which
is a component of the U.S. Army fitness assessment [8]. Finally, Allison, Knapick, and
Sharp (2006) used age, height, weight, initial test results, test scores, education, number of
dependents, and demographic data to predict U.S. Army fitness assessment failure [9].

Table 1. Prior machine learning analyses in the prediction of military fitness test failures.

Description of Work Method Used Performance Ref

Predict Fitness Assessment Failure
in Australian Army

Classification,
logistic regression. AUC = 0.70 [7]

Predict U.S. Army Fitness
Assessment 2-mile run time

Regression,
phenomenological

model.
R2 = 0.55–0.59 [8]

Predict U.S. Army Fitness
Assessment Failure

Classification,
logistic regression

AUC = 0.61–0.77 (F)
AUC = 0.61–0.80 (M) [9]

AUC: Area under the receiver operator characteristic (ROC) curve.

The prior works evaluated demographic and biomechanical variables into their pre-
diction models, but have not considered psychological and social variables as predictors,
such as workplace sleepiness, burnout, traumatic stress, and social wellness. They also
did not apply neural networks as a predictive algorithm. There is supporting evidence
that psychological factors are associated with physical activity engagement [10], improved
training effectiveness [11], and can predict dropout in military populations [12].

This study examines both biomechanical and psychological variables to predict fitness
test failure, and focuses on the following research question: Using available biopsychosocial
data, how well can classical machine learning and neural network algorithms predict
failure in the Air Force Physical Fitness Test in a population of active-duty Airmen? It was
hypothesized that combining biomechanical and psychosocial features would yield a better
predictive model with included features that are significant (α ≤ 0.05), an area under the
receiver operator characteristic curve (AUC) that improves upon the prior work in Table 1
(AUC ≥ 0.80), and accuracy > 0.90, which is consistent with other medical studies [13].
Additionally, it was hypothesized that applying a neural network model would yield better
model performance than a logistic regression model.

2. Methods

This study was conducted on an existing dataset collected from a support squadron
at a U.S. Air Force Base [14,15]. This support squadron was comprised of ~280 active-
duty personnel. Data collection occurred across multiple days in February and July 2021.
Advertisement for participation was conducted by word of mouth, squadron emails, and
flyers. All potential participants were informed that the data collected would be anonymous
and that the fitness testing would not be counted as their official diagnostic APFT. This was
done to reduce fear of reprisal and boost participation. All data was collected as a part of
the operational mission of an embedded, multidisciplinary health and wellness team [15].
Informed consent was collected on all participants and data was deidentified at the point of
collection. The 223-sample dataset is summarized in Table 2 and includes features ranging
from demographics, mental health surveys, fitness participation surveys, injury history
surveys, physical performance measures, and body composition assessments.
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Table 2. Feature Summary Statistics.

Variable Mean Max Std Dev Data Distribution Notes/Definition

Age * 28.15 59 6.60 ~Log-Normal —

Gender 0.25 1 0.43 Binary
0 = Male (174 members)

1 = Female (49 members)
ORS Total * 7.63 10 1.95 ~Log-Normal Outcome Rating Scale [16]
ORS Social 7.29 10 2.05 ~Log-Normal —

ORS Interpersonal 7.59 10 2.08 ~Log-Normal —
ORS Individual 7.35 10 2.02 ~Log-Normal —

PTSD 9.28 68 11.75 Right-skewed
Post-Traumatic Stress Disorder

Checklist (PCL-5) [17]
Sleep 7.32 22 3.92 ~Normal — [18]

Burnout 2.14 7 0.81 ~Normal — [19]
InjuryEval 0.30 1 0.46 Binary 1 = Recent injury evaluated by provider

InjuryNoEval 0.12 1 0.33 Binary
1 = Recent injury not evaluated

by provider
DLC 0.09 1 0.29 Binary 1 = Duty Limiting Condition
FitSat 3.32 5 0.81 Categorical Fitness Satisfaction

PhysRestr 0.27 1 0.45 Binary
1 = Recent injury resulting in physical

activity restriction
BMI 27.13 42.3 4.10 ~Normal Body Mass Index [20]

BodyFatPerc 0.29 0.49 0.82 ~Normal Body Fat Percentage [20]
MusclePerc 0.33 0.47 0.06 ~Normal Muscle Mass Percentage [20]

FMS_Shldr 0.12 1 0.33 Binary
1 = Functional Movement Screen (FMS)

Shoulder Pain [21,22]
FMS_Ext 0.21 1 0.41 Binary 1 = FMS Low Back Pain [21,22]
FMS_Flex 0.06 1 0.23 Binary 1 = FMS Hip Pain [21,22]
FMS Total 14.28 20 2.60 ~Normal FMS Composite Score [21,22]

* indicates the variable will be log-transformed prior to modeling. The variable names are defined with references
on the right side of the table.

Data Understanding and Preparation

The data were prepared, processed, and analyzed using the Scikit-learn, Keras, and
TensorFlow frameworks within Python version 3.7. The cross-industry standard process
for data mining (CRISP-DM) was followed, with the phases of data understanding, data
preparation, modeling, and evaluation [23].

An interview with the embedded health team that provided the data described the
protocol of the testing day [15].

• Participants would start with the physical and mental health questionnaires, mental
health questionnaires were proctored by a licensed clinical psychologist, immediately
followed by a body composition assessment proctored by a registered dietitian.

• Next, the participants moved on to performing the Functional Movement Screen (FMS)
proctored by a certified and credentialed athletic trainer. The FMS protocol is described
well in the literature [21,22,24–26].

• The mental health questionnaires evaluated participant’s rating of wellbeing across
multiple social domains [16], traumatic stress symptoms [17], sleepiness during the
workday [18], and reported level of burnout [19].

• The physical questionnaires assessed (1) their six-month history of musculoskeletal
injury and whether the member sought medical evaluation for that injury, (2) if
the member sustained an injury within the last six months, and if it impacted their
participation in physical activities, (3) whether or not they were currently on a duty-
limiting medical profile, and (4) on a five-point Likert scale the member indicated their
perceived satisfaction with their current fitness level.

• BMI, body fat percentage, and muscle mass percentage were assessed by using the In-
Body230 (InBody LTD, Seoul, Republic of Korea) bioelectrical impedance analyzer [20].
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• The assessment concluded with the administration of the APFT, which is further
described below.

The APFT is comprised of a timed 1.5-mile run, one minute of push-ups, and one
minute of sit-ups; all components were performed on the same day of the collected mea-
surements in accordance with the documented protocol within the Air Force manual for
Fitness Testing [27]. The 1.5-mile timed run was performed outdoors on a standard 400-m
track. The push-ups and sit-ups were performed indoors with options for a 1-inch pad
and/or toe-bar. The APFT was performed and proctored by certified Air Force Physical
Training Leaders. Raw APFT scores were collected, scored according to the manual, and
then categorized into a binary category of either pass (≥75% composite score and passed
all components) or fail (<75% composite score or failed a component).

The binary dependent variable was whether the participant successfully passed all
components of the APFT. This variable was unbalanced, as 70.4% of the participants passed
the APFT. Preliminary modeling was conducted as a part of data preparation and selected
categorical input variables were removed. Rank, Section, and Flight were removed as they
each contained numerous categories and had a minimal influence on performance. The
remaining numeric and ordinal categorical features were graphically analyzed for normality.
Age and Outcome Rating Scale were identified as not normal and were log-transformed
to increase their normality. While the Post-Traumatic Stress Disorder Checklist (PCL-5)
feature was right-skewed, it was not transformed as various transformations did not create
a normal distribution. The feature distributions are shown in the Figure 1 raincloud plot.
To facilitate the visualization of the histograms, the features were temporarily min-max
standardized prior to creating the figure.

Figure 1. Cont.



Sports 2022, 10, 54 5 of 14

Figure 1. Selected numeric and ordinal categorical variable histograms. Acronyms and abbreviations:
logAge, log-transformed age variable; logORS, log-transformed outcome rating scale variable; PTSD,
post-traumatic stress disorder questionnaire; BMI, body mass index; FMS_Tot, functional movement
screen composite score.

3. Statistical Analysis
3.1. Metrics

In this analysis, the classification metrics of AUC, precision, recall, and accuracy are
used to measure and compare the performance of the classical and neural network models.
In the dataset, the positive class (1) is passing the APFT. In the case where an Airman failed
the APFT, it is critical that a model prediction of passing (false positive) be avoided—this
would result in the negative consequence of an at-risk Airmen not receiving assistance. As a
result, a high value of precision is important to emphasize false positives and true positives.
The confusion matrix false positives and the receiver operator characteristic (ROC) curve
false positive rate were examined. Finally, precision and accuracy were selected as accurate
predictors of true positives and to facilitate a comparison to prior work.

3.2. Classical Modeling

For the classical modeling part of the study, the python Logit logistic regression
algorithm was used. The original dataset was split into a 70/30 train/test split for perfor-
mance evaluation and overfitting monitoring. The split was stratified to ensure an equal
percentage of pass/fail in each set.

Several feature selection approaches in logistic regression modeling were used to
provide a robust comparison. Two models were created with a backwards stepwise feature
selection approach, with an α = 0.05 p-value selection method. Recursive feature elimination
(RFE) was also investigated, which fits the model and rank orders all features by importance,
removing the weakest feature recursively. Lastly, the select-K-best method was used; this
method selected the best predictors for the dependent variable using a Ψ2 function score.
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A summary of the logistic regression variations and their respective results are included in
Table 3.

Table 3. Logistic Regression Model Results as measured on the test/holdout dataset. The weighted
average between the pass/fail classes are presented for precision and recall. The features used in
each model are represented in the footnotes, and gray text indicates a trivial model.

Model p-Value AUC Precision Recall Accuracy

Full <0.01 0.82 0.79 0.79 0.79
5-feature p-value 1 <0.01 0.86 0.82 0.82 0.82
4-feature p-value 2 <0.01 0.89 0.83 0.84 0.84

Recursive feature elimination
(RFE) 3 <0.01 0.87 0.75 0.75 0.75

Select K Best 4 <0.01 0.86 0.82 0.82 0.82
Chance – 0.50 0.56 0.48 0.48

Always Predicts Pass – 0.50 0.51 0.72 0.72
Goal – 0.80 – – 0.90

1: ‘Gender’, ‘Sleep’, ‘BMI’, ‘FitSat’, ‘PhysRestr’. 2: ‘Sleep’, ‘BMI’, ‘FitSat’, ‘PhysRestr’. 3: ‘Gender’, ‘InjuryNoEval’,
‘PhysRestr’, ‘FitSat’, ‘FMS_Flex’. 4: ‘MusclePerc’, ‘BodyFatPerc’, ‘FitSat’, ‘PhysRestr’, ‘DLC’.

3.3. Neural Network Modeling

The Python 3.7 TensorFlow and Keras libraries were used to create neural networks
to predict whether an Airman will pass their APFT. Binary cross-entropy was selected as
the loss function since this was a binary classification problem. The Adaptive Moment
Estimation (Adam) optimization algorithm was used as it is recommended for multi-layer
networks [28,29]. The rectified linear unit (ReLU) activation function was used for all layers
except for the final layer, which used a sigmoid activation function [30]. All non-output
layers used L2 regularization with λ = 0.001. The same log transformations were applied
as in the classical modeling, and then the data were z-score normalized.

One concern with this dataset was the relatively low ratio of 223 data points to 21 input
variables. This concern was mitigated in two ways, and the first was to limit the capacity
of the neural network. In the 1st International Conference on Neural Networks, Widrow
proposed that the number of recommended datapoints P is the number of weights (neurons
× (inputs + 1)) divided by the desired error level, according to the equation 1 below [31].
For our goal accuracy (0.90) the recommendation is 1 neuron for 21 inputs, and 4 neurons
for 5 inputs. As a result, the capacity of the neural network was limited to within an order
of magnitude of these recommendations, and potential overfitting was closely monitored.

P =
neurons × (inputs + 1)

error
(1)

The second method to address the low ratio of data points to input variables was
to use a two-way dataset split with cross validation instead of the typical three-way
train/test/holdout split used in neural networks. This maximized the number of datapoints
available for training. The same 70/30 train/test stratified split was used as in the classical
modeling, and three-fold cross validation was applied in the following manner:

• A multi-dimensional hyperparameter search (neurons, layers, learning rate, epochs,
and batch size) was performed on the training dataset using three-fold cross validation.
Total neuron count was limited by the Widrow recommendation [31].

• Overfitting was monitored by comparing the accuracy of each fold. Models with >5%
inter-fold accuracy variance were not considered for selection.

• An optimal set of hyperparameters was determined by the highest mean fold accuracy
of the remaining models.

• Using the optimal hyperparameters, the model was then retrained on the entire
training dataset.

• The model was validated by measuring metrics on the holdout dataset.
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This process was used twice: with all features and ≤10 total neurons and also on the
four features from the best classical model (Sleep Score, BMI, Fitness Satisfaction, Physical
Restriction) with ≤40 total neurons.

4. Results

Graphical analysis revealed two trends that are highlighted in Figures 2 and 3. The
first trend is the influence of body composition on the ability to pass the APFT. As shown in
Figure 2a, there was a clear correlation between increased muscle percentage and passing
the APFT. This trend plateaued once the member’s muscle percentage reached 40%. As
a corollary, Figure 2b shows an increase in the failure rate once the member’s body fat
percentage increased past 20%.

Figure 2. Graphical analysis of the ratio of passing/failing the APFT vs. (a) muscle percentage and
(b) body fat percentage.

Figure 3. Gender differences in body composition and APFT pass/fail results for (a) male service
members and (b) female service members. The figure is overlaid with biological gender-based body
fat norms [32].

The second trend is shown in Figure 3, which shows the relationship of obesity to
passing the APFT. The figure is overlaid with biological gender-based body fat norms for
men (Figure 3a) and women (Figure 3b) from the American Council on Exercise (ACE) [32].
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A significant proportion of Airmen in the dataset are obese according to the ACE body fat
norms, and a trend is apparent in Figure 3 that there is a much higher failure rate for those
service members that are classified as obese. This is an important finding not only due to
the correlation between higher body fat and failing the APFT, but also because of the health
risks associated with obesity, such as heart disease and type 2 diabetes.

While 64% of overall Airmen were obese and 30% of overall Airmen failed the APFT,
82% of female Airmen were obese and 51% of female Airmen failed the APFT. Female
Airmen also rated their satisfaction with their fitness lower than male Airmen: Only 21% of
females rated their fitness satisfaction a 4 or higher (out of 5), while 41% of males did. While
it is acknowledged this dataset is small and is not representative of the entire USAF, the
trends regarding obesity and lack of fitness, especially for female Airmen, are noteworthy.

4.1. Model Results

The performance metrics are presented in this section for the five variations of classical
logistic regression and three variations of neural network modeling. For comparison,
metrics are also calculated for two trivial models: One that predicts randomly (Chance) and
one that always predicts the majority class (Always Predicts Pass), also known as the no
information rate model.

4.2. Classical Modeling

The 5 classical models developed in this work showed significance with a p-value < 0.01,
and their AUC, precision, recall, and accuracy are presented in Table 3. For comparison,
these performance metrics are also presented for the two trivial models, Chance and Always
Predicts Pass. The goals of this study are also shown in the bottom row of the table.

The four-feature p-value model was found to be the best classical model, with a higher
combination of accuracy, precision, recall, F1-score, and AUC compared to all other models.
The following input variables were contained in this model: Sleep (p-value = 0.014), body
mass index (BMI, p-value = 0.015), self-report of fitness satisfaction (FitSat, p-value < 0.01),
and recent injury resulting in physical restriction (PhysRestr, p-value < 0.01). This model
was better at predicting APFT pass (f1 = 0.89) than APFT failure (f1 = 0.77).

For the four-feature p-value model, the confusion matrix from the holdout dataset is
shown in Figure 4a along with the ROC curves from both the training and holdout datasets
in Figure 4b. The confusion matrix showed that this model had eight false positives out of
19 APFT failures and three false negatives out of 48 APFT passing results. The ROC curve
shows an acceptable 5% level of overfitting when comparing the AUC from the train and
holdout datasets. While the selected classical model possessed good performance, it did
not meet all the study goals.

4.3. Neural Network Modeling

Three neural network models are presented in this work: a baseline model on the
entire dataset followed by models selected from multidimensional hyperparameter sweeps
on two sets of input features. The baseline model was created with inputs to a single
10-neuron ReLU layer and a single-neuron sigmoid output layer. The first dataset for the
hyperparameter sweeps was the entire 21-feature dataset, and the second dataset contained
the 4 features from the best classical model: Sleep Score, BMI, Fitness Satisfaction, and
Physical Restriction. The hyperparameter sweeps were performed using the GridSearchCV
algorithm within the ranges shown in Table 4.

For each family of models, metrics were collected and used to select the best model.
As three-fold cross validation was used in all modeling, the accuracy for each fold was
retained and used in two ways: (1) The mean accuracy was calculated across the three
folds, and (2) the maximum variance was determined between the three folds. The best
model was selected as the model with the highest mean accuracy that possessed the lowest
inter-fold variance. These metrics for the families of models that resulted from the two
variations is shown in Figure 5, along with an arrow that indicates the best model.
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Table 4. Neural network model hyperparameter search ranges.

Hyperparameter Full Model Range Limited Model Range

Neurons 2, 3, 4, 5, 10 1, 2, 3, 4, 5, 7, 9, 12
Hidden layers 0, 1, 2 0, 1, 2, 3

Batch size 16, 32 16, 32
Epochs 15, 20, 60, 100, 140 15, 20, 60, 100, 140

Learning rate 0.01, 0.001, 0.0005 0.01, 0.001, 0.0005

Figure 4. Performance graphs for the best (four-feature p-value) classical logistic regression
model. (a) the confusion matrix resulting from the holdout dataset, where APFT Failure = 0 and
APFT Pass = 1. (b) ROC curves from the training dataset, holdout dataset, and trivial Chance model.
TPR: True positive rate; FPR: False positive rate.

Figure 5. Families of models from the multidimensional hyperparameter sweeps on the full dataset
(left), and the limited dataset (right). On each subfigure, an arrow indicates the best model.

Using these criteria, the give neural network models that possessed the highest mean
fold accuracy are presented in Table 5 for the full 21-feature dataset (top) and limited
four-feature dataset (bottom). Their associated hyperparameters and inter-fold variance
are shown as well. Bold text indicates the best models, which had an excellent combination
of performance and limited complexity.

Concerning the selected “best” models, the neural network structure, accuracy vs.
epoch training curves, ROC curves and AUC, and confusion matrix are shown in Figure 6.
The left side of Figure 6 shows the model information for the full-dataset model, and the
right side shows the limited-dataset model. There is a difference between the three-fold
cross validation metrics and the final neural network performance metrics—for example,
the accuracy for the full model in Table 5 (84.6%) is lower than the accuracy shown in
Figure 6 panel b1 (93%). The authors propose this is due to the variation of training dataset
size between the models. Three-fold cross validation (used for hyperparameter selection)
used subdivisions of the training dataset, while the final model used those hyperparameters
on the full training dataset.
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Figure 6. For the full model (left) and limited model (right): (a1,a2) Network structure where green
are the input features, blue are neurons, and red is the output neuron; (b1,b2) training curves for the
training (blue) and holdout (orange) datasets; (c1,c2) ROC curves and AUC for the training (blue)
and holdout (orange) datasets; and (d1,d2) confusion matrix.
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Table 5. Hyperparameters and metrics for the five best neural network models for the full 21-feature
dataset (top) and the limited four-feature dataset (bottom). Bold text indicates the best model.

Dataset Neurons Layers Learn
Rate

Batch
Size Epochs Mean Fold

Accuracy (%)
Inter-Fold

Variance (%)

Full
21

feature NN

10 1 0.001 16 140 87.2 13
10 1 0.01 32 20 85.9 15
3 0 0.01 16 15 84.6 4
3 2 0.01 32 140 84.6 8
5 2 0.01 16 20 84.0 2

Limited
4

feature NN

5 0 0.01 16 40 91.7 4
3 1 0.01 16 100 91.7 10
3 0 0.01 16 60 91.0 6

40 1 0.001 32 60 91.0 10
5 0 0.01 32 60 91.0 8

The impacts of normalization on the neural network models were then investigated.
The performance shown in Table 5 includes z-score normalization, and the hyperparameter
search was repeated with normalization removed. Models were discarded that contained
more that 10 neurons (full dataset model) or 40 neurons (limited dataset model). In this
case the best full model with <5% inter-fold variance possessed a mean fold accuracy of
80.8%, which is 3.8% less than the model created from the z-score normalized dataset. The
best limited model with <5% inter-fold variance possessed a mean fold accuracy of 84.0%,
which is 7.7% less than the model created from the z-score normalized dataset.

The metrics for the neural network models presented in this work are summarized in
Table 6 and were measured on the holdout dataset. Precision and recall are calculated as
the weighted average between the majority and minority classes.

Table 6. Neural network modeling results as measured on the holdout dataset. The weighted average
between the pass/fail classes are presented for precision and recall.

Model AUC Precision Recall Accuracy

Baseline 0.94 0.89 0.90 0.90
Full 21-input model 0.97 0.92 0.93 0.93

Limited 4-input model 0.96 0.93 0.93 0.93
Goal 0.80 – – 0.90

5. Discussion

In the current study, predictors of Air Force Physical Fitness Test failure were evaluated
using logistic regression and limited-capacity neural networks. The models developed in
this study demonstrated better performance than prior work to predict physical fitness
test failure [7–9], and the neural network model achieved the highest level of performance.
All models demonstrated an acceptable <5% level of overfitting between the training and
holdout datasets.

The best logistic regression model was significant (p-value < 0.01), but it did not
achieve the precision and accuracy goals of this study. While the logistic regression model
underperformed the neural network, it yielded valuable inferences that poorer sleep quality,
higher BMI, recent history of an injury, and a self-report of lower fitness satisfaction are
potential indicators of APFT failure. Importantly, these features are modifiable with health
promotion and workplace wellness interventions, which has the potential to change the
likelihood of APFT failure.

A method of hyperparameter sweeps, regularization, and model selection enabled the
neural network to outperform the logistic regression model. The 21-feature full dataset
model yielded the best combination of AUC, precision, recall, and accuracy, as shown
in Table 6. Notably, the near-identical performance from the four-feature limited dataset
model (sleep quality, BMI, self-report of fitness satisfaction, and injury resulting in physical
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activity restriction) suggests that strong APFT prediction can be obtained with minimal
data collection. This has the potential to enable wider implementation of this modeling
approach as the full battery of tests requires a significant resource dedication. Future
research investigating predictive modeling in sports science and injury prevention should
consider limited-capacity neural network models.

If Air Force unit commanders and installation Health Promotion Offices implement
unit-based surveys and body composition assessments of Airmen to assist in identification
of individuals at greater risk of APFT failure, they could prioritize workplace interven-
tions and installation health promotion assets to those individuals and units with the
highest degree of need. These assets include the Health Promotions Office, Fitness Facility,
Aerospace Physiology, and Integrated Operational Support Teams [4,5]. Changing from
a reactive-based post-APFT failure model towards a proactive preventative model could
improve retention and morale of military members.

Additionally, there is the potential for significant savings by preventing APFT fail-
ure. Successfully passing physical fitness testing and adhering to standardized exercise
programming have been recognized as major contributors in noncombat injury risk re-
duction (33–45%) among active-duty members [33,34]. This is significant, as noncombat
musculoskeletal injuries account for more than 80% of all injuries, 60% of limited duty days,
and 65% of medically nondeployable active-duty members across the U.S. military [1].
Furthermore, the cost burden is immense for training and replacing warfighters discharged
APFT failure, $137 million annually [3]. The USAF could save tens of thousands of dollars
per Airman not lost to attrition through early identification of a servicemember likely to fail
their APFT and early implementation of targeted wellness initiatives through established
installation human performance services. Further research should be conducted evaluating
similar biomechanical and psychosocial variables on more varied work centers in the USAF
as well as other military branches.

A known limitation of this work is that participants were recruited from within a
single USAF support squadron. This limits generalizability, and future research could
include larger sample sizes and a greater variety of military occupations to validate the
modeling approach. The difference in sample size (223) compared to the population size
(280) is likely attributed to the optional nature of the study and the timing of data collection
relative to shift work or approved leave.

6. Conclusions

The results of this study indicated that combining biomechanical and psychosocial
variables yielded better prediction of failure on the USAF Fitness Test than previous
work. In this work, biomechanical, psychological, and APFT performance data related
to 223 active-duty Airmen was graphical analyzed to show pass/fail trends related to
body composition and obesity. Multiple machine learning algorithms were then applied
to predict fitness test performance using these variables. The logistic regression model
achieved a high level of significance with an accuracy of 0.84 and AUC of 0.89 on the
holdout dataset. This model showed that Airmen with poor sleep quality, recent history of
an injury, higher BMI, and low fitness satisfaction tend to be at greater risk for fitness test
failure. A limited-capacity neural network approach to predictive modeling yielded better
performance than classical logistic regression—0.93 accuracy and 0.97 AUC on the holdout
dataset. Given this greater understanding of the biopsychosocial variables that appear to
predict failure in the USAF Fitness Test, the U.S. Department of Defense could achieve lower
numbers of fitness test failures by mobilizing health promotion and workplace wellness
campaigns targeting these identified variables.

Author Contributions: Conceptualization, J.T. and T.W.; methodology, J.T., T.W. and B.L.; software,
J.T. and T.W.; validation, J.T. and T.W.; formal analysis, J.T. and T.W.; investigation, J.T.; resources,
T.W.; data curation, J.T.; writing—original draft preparation, J.T. and T.W.; writing—review and
editing, T.W. and B.L.; visualization, J.T. and T.W.; supervision, T.W. and B.L.; project administration,
T.W. and B.L. All authors have read and agreed to the published version of the manuscript.



Sports 2022, 10, 54 13 of 14

Funding: This research received no external funding.

Institutional Review Board Statement: This research received an IRB exemption #REN20220007R
as it used an existing de-identified dataset.

Informed Consent Statement: Not applicable.

Data Availability Statement: The dataset is publicly available [14].

Acknowledgments: The authors appreciate the contribution of C. Del Vecchio and L. Turner for their
python visualization code and analysis used in Figures 2 and 3.

Conflicts of Interest: The authors declare no conflict of interest.

Authors’ Note: The views and opinions of authors expressed herein do not necessarily state or reflect
those of the U.S. Government or any agency thereof. Reference to specific commercial products does
not constitute or imply its endorsement, recommendation, or favoring by the U.S. Government. The
authors declare this is a work of the U.S. Government and is not subject to copyright protections in the
United States. This article was cleared with case numbers 88ABW-2021-0947 and MSC/PA-2021-0418.

References
1. Molloy, J.; Pendergrass, T.; Lee, I.; Hauret, K.; Chervak, M.; Rhon, D. Musculoskeletal Injuries and United States Army Readiness.

Part II: Management Challenges and Risk Mitigation Initiatives. Mil. Med. 2020, 185, 1472–1480. [CrossRef] [PubMed]
2. Orr, R.; Sakurai, T.; Scott, J.; Movshovich, J.; Dawes, J.J.; Lockie, R.; Schram, B. The Use of Fitness Testing to Predict Occupational

Performance in Tactical Personnel: A Critical Review. Int. J. Environ. Res. Public Health 2021, 18, 7480. [CrossRef] [PubMed]
3. U.S. Army. Health of the Force; Army Public Health Center: Aberdeen Proving Ground, MD, USA, 2015.
4. Baicker, K.; Cutler, D.; Song, Z. Workplace wellness programs can generate savings. Health Aff. 2010, 29, 304–311. [CrossRef]

[PubMed]
5. Gill, D.L.; Hammond, C.C.; Reifsteck, E.J.; Jehu, C.M.; Williams, R.A.; Adams, M.M.; Lange, E.H.; Becofsky, K.; Rodriguez, E.;

Shang, Y.-T. Physical Activity and Quality of Life. J. Prev. Med. Public Health 2013, 46, S28–S34. [CrossRef]
6. Knapik, J.; Darakjy, S.; Jones, B.; Hauret, K.; Piskator, G. A Review of the Literature on Attrition from the Military Services: Risk Factors

and Strategies to Reduce Attrition; U.S. Army Center for Health Promotion and Preventive Medicine: Fort Knox, KY, USA, 2004.
7. Orr, R.; Cohen, B.; Allison, S.; Bulathsinhala, L.; Zambraski, E.; Jaffrey, M. Models to predict injury, physical fitness failure and

attrition in recruit training: A retrospective cohort study. Mil. Med. Res. 2020, 7, 26. [CrossRef]
8. Sih, B.; Negus, C. Physical Training Outcome Predictions with Biomechanics, Part I: Army Physical Fitness Test Modeling. Mil.

Med. 2016, 181, 77–84. [CrossRef]
9. Allison, S.; Knapik, J.; Sharp, M. Preliminary Derivation of Test Item Clusters for Predicting Injuries, Poor Physical Performance, and

Overall Attrition in Basic Combat Training; U.S. Army Medical Research and Materiel Command: Fort Detrick, MD, USA, 2006.
10. Ahn, H.; Kim, Y.; Jeong, J.; So, Y. Physical Fitness Level and Mood State Changes in Basic Military Training. Int. J. Environ. Res.

Public Health 2020, 17, 9115. [CrossRef]
11. Cardenas, D.; Madinabeitia, I.; Alarcon, F.; Perales, J.C. Does Emotion Regulation Predict Gains in Exercise-Induced Fitness? A

Prospective Mixed-Effects Study with Elite Helicopter Pilots. Int. J. Environ. Res. Public Health 2020, 17, 4174. [CrossRef]
12. Vaara, J.P.; Eranen, L.; Ojanen, T.; Pihlainen, K.; Nykanen, T.; Kallinen, K.; Heikkinen, R.; Kryolainen, H. Can Physiological and

Psychological Factors Predict Dropout from Intense 10-Day Winter Military Survival Training? Int. J. Environ. Res. Public Health
2020, 17, 9064. [CrossRef]

13. Swets, J. Measuring the accuracy of diagnostic systems. Science 1988, 240, 1285–1293. [CrossRef]
14. Wagner, T.; Langhals, B.; Turner, J. Dataset: Biomechanical & Psychological Predictors of Failure in the Air Force Physical Fitness

Test. Mendeley Data 2022.
15. Caffrey, Y.; U.S. Air Force, Washington, DC, USA. Interviewee. Personal communication, 2021.
16. Miller, S.; Duncan, B.; Brown, J.; Sparks, J.; Claud, D. The Outcome Rating Scale: A Preliminary Study of the Reliability, Validity,

and Feaibility of a Brief Visual Analog Measure. J. Brief Ther. 2003, 2, 91–100.
17. Wortmann, J.; Jordan, A.; Weathers, F.; Resick, P.; Dondanville, K.; Hall-Clark, B.; Foa, E.; Young-McCaughan, S.; Yarvis, J.;

Hembree, E.; et al. Pyschometric analysis of the PTSD Checklist-5 (PCL-5) among treatment-seeking military service members.
Pyschol. Assess. 2016, 28, 1392–1403. [CrossRef]

18. Johns, M. A new method for measuring daytime sleepiness: The Epworth sleepiness scale. Sleep 1991, 14, 540–545. [CrossRef]
19. Hansen, V.; Pit, S. The Single Item Burnout Measure is a Psychometrically Sound Screening Tool for Occupational Burnout. Health

Scope 2016, 5, e32164. [CrossRef]
20. McLester, B.; Nickerson, K.; McLester, J. Reliability and Agreement of Various InBody Body Composition Analyzers as Compared

to Dual-Energy X-Ray Absorptiometry in Healthy Men and Women. J. Clin. Densitom. 2020, 23, 443–450. [CrossRef]
21. Bock, K.; Orr, R. Use of the Functional Movement Screen in a Tactical Population: A Review. J. Mil. Veteran Health 2015, 23, 33–42.
22. Kollock, R.; Lyons, M.; Sanders, G.; Hale, D. The effectiveness of the functional movement screen in determining injury risk in

tactical occupations. Ind. Health 2019, 57, 406–418. [CrossRef]

http://doi.org/10.1093/milmed/usaa028
http://www.ncbi.nlm.nih.gov/pubmed/32107561
http://doi.org/10.3390/ijerph18147480
http://www.ncbi.nlm.nih.gov/pubmed/34299926
http://doi.org/10.1377/hlthaff.2009.0626
http://www.ncbi.nlm.nih.gov/pubmed/20075081
http://doi.org/10.3961/jpmph.2013.46.S.S28
http://doi.org/10.1186/s40779-020-00260-w
http://doi.org/10.7205/MILMED-D-15-00168
http://doi.org/10.3390/ijerph17239115
http://doi.org/10.3390/ijerph17114174
http://doi.org/10.3390/ijerph17239064
http://doi.org/10.1126/science.3287615
http://doi.org/10.1037/pas0000260
http://doi.org/10.1093/sleep/14.6.540
http://doi.org/10.17795/jhealthscope-32164
http://doi.org/10.1016/j.jocd.2018.10.008
http://doi.org/10.2486/indhealth.2018-0086


Sports 2022, 10, 54 14 of 14

23. IBM Corporation. IBM SPSS Modeler CRISP-DM Guide; IBM Corporation: Armonk, NY, USA, 2011.
24. Bonazza, N.; Smuin, D.; Onks, C.; Silvis, M.; Dhawan, A. Reliability, Validity, and Injury Predictive Value of the Functional

Movement Screen: A Systematic Review and Meta-analysis. Am. J. Sports Med. 2017, 45, 725–732. [CrossRef]
25. Teyhen, D.; Shaffer, S.; Lorenson, C.; Halfpap, J.; Donofry, D.; Walker, M.; Dugan, J.; Childs, J. The Functional Movement Screen:

A reliability study. J. Orthop. Sports Phys. Ther. 2012, 42, 530–540. [CrossRef]
26. Cuchna, J.; Hoch, M.; Hoch, J. The interrater and intrarater reliability of the functional movement screen: A systematic review

with meta-analysis. Phys. Ther. Sport 2016, 19, 57–65. [CrossRef]
27. U.S. Air Force. Air Force Manual 36-2905 Air Force Physical Fitness Program; Secretary of the Air Force: Washington, DC, USA, 2020.
28. Ruder, S. An overview of gradient descent optimization algorithms. arXiv 2016, arXiv:1609.04747.
29. Li, K.; Malik, J. Learning to Optimize Neural Nets. arXiv 2017, arXiv:1703.00441.
30. Goodfellow, I.; Bengio, Y.; Courville, A. Deep Learning; The MIT Press: Cambridge, UK, 2017.
31. Widrow, B. ADALINE and MADALINE. In Proceedings of the 1st International Conference on Neural Networks, San Diego, CA,

USA, 21–24 June 1987.
32. American Council on Exercise. Percent Body Fat Calculator: Skinfold Method. 2021. Available online: https://www.acefitness.

org/education-and-resources/lifestyle/tools-calculators/percent-body-fat-calculator/ (accessed on 14 October 2021).
33. Knapik, J.; Rieger, W.; Palkoska, F.; van Camp, S.; Darakjy, S. United States Army physical readiness training: Rationale and

evaluation of the physical training doctrine. J. Strength Cond. Res. 2009, 23, 1353–1362. [CrossRef]
34. Molloy, J. Factors influencing running-related musculoskeletal injury risk among U.S. military recruits. Mil. Med. 2016, 181,

512–523. [CrossRef]

http://doi.org/10.1177/0363546516641937
http://doi.org/10.2519/jospt.2012.3838
http://doi.org/10.1016/j.ptsp.2015.12.002
https://www.acefitness.org/education-and-resources/lifestyle/tools-calculators/percent-body-fat-calculator/
https://www.acefitness.org/education-and-resources/lifestyle/tools-calculators/percent-body-fat-calculator/
http://doi.org/10.1519/JSC.0b013e318194df72
http://doi.org/10.7205/MILMED-D-15-00143

	Introduction 
	Methods 
	Statistical Analysis 
	Metrics 
	Classical Modeling 
	Neural Network Modeling 

	Results 
	Model Results 
	Classical Modeling 
	Neural Network Modeling 

	Discussion 
	Conclusions 
	References

