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Abstract
In vitro maturation (IVM) is emerging as a popular technology at the forefront of
fertility treatment and preservation. However, standard in vitro culture (IVC) con-
ditions usually increase reactive oxygen species (ROS), which have been implicat-
ed as one of the major causes for reduced embryonic development. It is well-known
that higher than physiological levels of ROS trigger granulosa cell apoptosis and
thereby reduce the transfer of nutrients and survival factors to oocytes, which leads
to apoptosis. ROS are neutralized by an elaborate defense system that consists of
enzymatic and non-enzymatic antioxidants. The balance between ROS levels and
antioxidants within IVM media are important for maintenance of oocytes that de-
velop to the blastocyst stage. The effects of antioxidant supplementation of IVM
media have been studied in various mammalian species. Therefore, this article re-
views and summarizes the effects of ROS on oocyte quality and the use of antioxi-
dant supplementations for IVM, in addition to its effects on maturation rates and
further embryo development.
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Introduction

In vitro embryo production (IVEP) allows the pro-
duction of a high and inexpensive number of em-
bryos to conduct basic research and apply emerging
biotechnologies such as cloning and transgenesis.
IVEP is a three-step methodology that comprises the
following procedures: i. /n vitro maturation (IVM)
of oocytes recovered directly from follicles, ii. /n
vitro fertilization (IVF) or co-incubation of capaci-
tated spermatozoa with in vitro matured oocytes,
and iii. /n vitro culture (IVC) of zygotes up to the
blastocyst stage. According to reports, IVM is the
key factor that determines the proportion of oocytes
which develop to the blastocyst stage.

IVM of oocytes is a complex process influenced
by the interplay of regulatory factors that include
gonadotrophins and a growing list of secreted mol-
ecules, the biochemical state of the oocyte, and in-
teractions between the oocyte and cumulus cells (1-

5). Therefore, the in vitro advancement of an oocyte
from the diplotene stage of prophase I [germinal
vesicle (GV)] to metaphase II (MII), along with cy-
toplasmic maturation that encloses a broad set of
still ill-defined cellular events are essential for ferti-
lization and early development of the embryo (6-8).

Although substantial progress has been made to
improve the efficiency of an IVM protocol, how-
ever, there is a lack of consistency in the success
rate of conventional in vitro matured oocytes com-
pared to in vivo matured oocytes. Multiple factors
likely contribute to the overall poor quality of in
vitro matured oocytes. One of the important fac-
tors may be oxidative stress (OS). The generation
of pro-oxidants such as reactive oxygen species
(ROS) is an invariable phenomenon in the culture
condition. It is possible that OS also influences oo-
cyte development in vitro. On the other hand, ROS
are considered signal molecules in oocyte physi-
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ology and their impact on maturation promoting
factor (MPF) destabilization has recently been re-
ported (9-11).

Oocyte protection against ROS may play impor-
tant roles in pre-implantation embryonic develop-
ment. On the other hand, antioxidants are ROS
scavengers, thereby helping to maintain the oo-
cyte’s oxidant/antioxidant balance. The effects of
antioxidant supplementation to IVM media have
been studied in various mammalian species (12-
14). Our purpose was to incorporate the role of
ROS in oocyte physiology, impact of OS in down-
fall of oocyte quality (15, 16), and the role of en-
zymatic as well as non-enzymatic antioxidants in
reducing ROS levels and deterioration of oocyte
quality under IVC conditions. This review article
summarized the effects of ROS, the use of anti-
oxidant supplementations for IVM, and its effects
on maturation rates. In this systematic review, we
used IVM, OS, ROS, and antioxidant as keywords
from scientific databases between 1990 and 2016.
After a review of all abstracts, we included strong,
reliable research in this report.

Production of reactive oxygen species and
generation of oxidative stress

OS is caused by an imbalance between pro-oxi-
dants and antioxidants (17). This ratio could change
with increased levels of pro-oxidants, such as ROS,
or a decrease in antioxidant defense mechanisms
(18-20). ROS represents a wide class of molecules
that indicate the collection of free radicals (hy-
droxyl ion, superoxide, etc.), non-radicals (ozone,
single oxygen, lipid peroxides, hydrogen perox-
ide) and oxygen derivatives (21). They are highly
reactive and unstable. Hence, ROS can react with
nucleic acids, lipids, proteins, and carbohydrates to
acquire an electron and become stable. These reac-
tions induce a cascade of subsequent chain reac-
tions that eventually result in cell damage (22-24).
ROS can diffuse and pass through cell membranes
and alter most types of cellular molecules (nucleic
acids, proteins, and lipids), leading to mitochondrial
alterations (25), meiotic arrest in the oocytes (26),
embryonic block, and cell death (27). On the other
hand, OS occurs when increased ROS levels which
disrupt cellular redox circuits, result in disturbances
of redox-regulated cellular processes and/or oxida-
tively damage cellular macromolecules (28).
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Oxidative stress and in vitro maturation

Under physiological conditions, the oocytes are
major sources of ROS because they use oxygen
to produce energy through mitochondrial oxida-
tive phosphorylation. Their ROS production is
increased during IVM when compared to in vitro
maturation (13, 29). Increased levels of ROS be-
yond the physiological range that may lead to OS
can result in deterioration in oocyte quality and
thereby affect reproductive outcomes (30). A bet-
ter understanding of the OS status and its regula-
tion during IVM is needed. However, one must
also consider whether and how OS may influence
the process of IVM. This section focuses on re-
ports that refer to mechanistic roles for OS in oo-
cyte maturation, especially with respect to key
features of nuclear and cytoplasmic events within
the oocyte.

Reactive oxygen species and nuclear and
cytoplasmic maturation

Increased levels of ROS associated with induce
cell cycle arrest in human oocytes as well as in
mouse embryos (31). A multitude of key factors
regulate the generation of ROS in the media and in-
clude various cellular metabolic reactions, oxygen
concentration, light, oocyte handling, and general
physicochemical parameters that may have a nega-
tive impact on oocyte physiology by inducing apop-
tosis (Fig.1). One of the major constituent that may
alter developmental responses in the oocyte is rele-
vant to OS since light is known to result in an imbal-
ance of pro- and antioxidants in somatic cells and
embryos. Similarly, a relationship has been shown
in a mouse model between a type of light com-
monly used in the laboratory with increased ROS
concentrations and compromised embryonic and
fetal development (32). Oxygen tension is another
important difference between the in vivo and in vitro
environments for the oocyte culture. Toxic effects
of atmospheric oxygen concentration under stand-
ard culture conditions and the beneficial effects of
lower O, concentrations (5-7%) on developmental
competence of oocytes in vitro have been reported
in mice (33, 34), hamsters (35, 36), rats (37), sheep
and cattle (38-40), and humans (41-43).

The conditions of an IVC generate ROS, which
could exert some beneficial effects if the ROS lev-
els remain under physiological levels (44). The
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tonic generation of ROS triggers meiotic resump-
tion from diplotene as well as the MII arrest stage
in several mammalian species (44, 45). It has been
reported that levels of ROS beyond the physiologi-
cal range could induce destabilization of matura-
tion MPF, reduce survival factors, and trigger
mitochondria-mediated apoptosis of oocytes (15,
46). The biphasic role of ROS must be sufficiently
discussed in order to update OS and its impact on
oocyte quality (15). The beneficial role of ROS
comes from the observations that non-enzymatic
antioxidants, such as ascorbic acid and 3-tert-bu-
tyl-4-hydroxyanisole (BHA), inhibit spontaneous
meiotic resumption from diplotene arrest (47).
These results suggest a beneficial threshold level
for ROS.

Antioxidants

Antioxidants scavenge ROS, which helps main-
tain the cell oxidant/antioxidant balance. On the
other hand, antioxidants are the compounds which
either suppress the formation of ROS or oppose
their actions. There are two types of antioxidants:
enzymatic and non-enzymatic (Table 1).

Table 1: List of studies that show the effects of antioxidant
supplements that improve in vitro maturation

Antioxidant Experimental model

Enzymatic antioxidants

Superoxide dismutase (SOD) Mouse

Thioredoxin Porcine
Catalase (CAT) Bovine
Sericin Bovine

Non-enzymatic antioxidants

Glutathione (GSH) Hamster, pig, ovine,
Bovine and equine
Cysteamine Canine, mice, goats, porcine

Vitamin C (Ascorbic acid) Mouse

Vitamin E and trolox -

Enzymatic antioxidants neutralize excess ROS
and prevent it from damaging the cellular struc-
ture. Enzymatic antioxidants are composed of
superoxide dismutase (SOD), catalase (CAT),
various peroxidases and peroxiredoxins (PRDXs),
including glutathione peroxidases (GPXs), which
can convert peroxides to water and alcohol (48).
SOD enzymes catalyze the dismutation of super-
oxide anion (O,") into O, and H,O, while CAT
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converts H,0, to O, and H,O. The enzyme SOD
exists as three isoenzymes (49): SOD1, SOD2, and
SOD3. SOD1 contains Cu and zinc (Zn) as metal
co-factors in the cytosol. SOD2 is a mitochondrial
isoform that contains manganese (Mn), whereas
SOD3 encodes the extracellular form. Nutrients
such as Se, Cu, and Zn are required for the activi-
ties of some antioxidant enzymes, although they
have no antioxidant actions. Non-enzymatic anti-
oxidants are composed of glutathione (GSH), vita-
min C, taurine, hypotaurine, vitamin E, Zn, seleni-
um (Se), beta carotene, and carotene (47). GSH is
a tripeptide thiol compound with many important
functions in intracellular physiology and metabo-
lism. One of the most important roles of GSH is
to maintain the redox state in cells which protects
them against harmful effects effects caused by
oxidative injuries. The protective action of GSH
against ROS is facilitated by the interactions with
its associated enzymes, such as GPx and GSH re-
ductase (Fig.2).

Vitamin C (ascorbic acid) is a known redox
catalyst that can reduce and neutralize ROS (50).
Based on its chemical structure, ascorbic acid is
an electron donor and therefore a reducing agent.
It has two different biochemical roles-antioxidant
and enzymatic cofactor. Ascorbic acid is main-
tained through reactions with GSH and can be
catalyzed by protein disulfide isomerase and glu-
taredoxins. Cysteamine is a low-molecular weight
amino acid that contains thiol (51). The addition
of cysteamine not only enhances the GSH content
in MII oocytes but also protects the membrane li-
pids and proteins due to indirect radical scaveng-
ing properties (52). The concentrations of many
amino acids, including taurine and hypotaurine are
non-enzymatic antioxidants that help maintain the
redox status in oocytes (53).

Vitamin E (o-tocopherol) is a lipid soluble
vitamin with antioxidant activity. It consists of
eight tocopherols and tocotrienols. Vitamin E
may directly destroy free radicals such as perox-
yl and alkoxyl (ROOQO¢) generated during ferrous
ascorbate-induced lipid peroxidation (LPO),
thus it is suggested as a major chain breaking
antioxidant (54). Hyaluronan, melatonin, tea
and sericin are known to act as indispensable
antioxidants in IVEP. They can block the release
of pro-oxidant factors released as a result of OS
(12, 55, 56).



Hyaluronan, an essential component of the ex-
tracellular matrix and non-sulfated glycosami-
noglycan may play an important role in meiotic
resumption of oocytes (57). The hormone mela-
tonin (N-acetyl-5-metoxy tryptamine) is an anti-
oxidant that, unlike GSH and vitamins C and E, is
produced by mammals. In contrast to other anti-
oxidants, however, melatonin cannot undergo re-
dox cycling. Once oxidized, it is unable to return
to its reduced state because of the formation of
stable end-products after the reaction (14). As an
antioxidant, green tea has been shown to improve
IVM and embryo development of sheep COCs to
the blastocyst stage in [IVM medium (58). Sericin
a water-soluble globular protein (protein hydro-
lysate) is derived from the silkworm Bombyx
mori. This protein represents a family of proteins
whose molecular mass ranges from 10 to 310 kDa
(59). Dash et al. (60) have reported that sericin
might provide a protective effect on fibroblasts
by promoting endogenous antioxidant enzymes
in vitro.

Antioxidant supplements and improving in
vitro maturation

The addition of enzymatic antioxidants such
as SOD, CAT, and thioredoxin are effective for
pre-embryo development as scavengers of ROS
and serving embryos a low OS condition in mice
(61, 62), porcine (63), and bovines (64). Sericin,
an antioxidant protein, improves embryo devel-
opment (60, 65) and is a critical supplement for
oocyte maturation (12, 56).

A series of non-enzymatic antioxidants protect
oocytes against ROS damage during oocyte mat-
uration. GSH is one of the naturally synthesized
antioxidants that protect cells from ROS toxic-
ity and regulate the intracellular redox balance
(66). The intracellular level of GSH increases
during oocyte maturation in hamsters (67), pigs
(68), ovine (69), bovines (70), and equines (71).
Recent reports have shown that addition of low
molecular weight thiol compounds, such as cy-
steamine and b-mercaptoethanol to IVM media
improved the cytoplasmic maturation of oocytes
and embryo development by increasing GSH
synthesis (66, 72, 73).

Cysteamine supplementation during IVM re-
portedly improved nuclear maturation rates in
canines (74), mice (75), goats (76), and porcine
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(77). Although, other studies in goats (78), pigs
(79), horses (13), buffalos (80), and cattle (81)
did not show any increase in nuclear maturation
rates. Addition of cysteamine to the [IVM medium
improved embryo development to the blastocyst
stage in mammalian oocytes (82).

Ascorbate is concentrated in granulosa cells,
theca cells, luteal cells, and oocytes (28). Choi
et al. (83) reported a beneficial role for vitamin
C in protecting spindle structures of MII mouse
oocytes and chromosomal alignment against an
oxidant (hydrogen peroxide)-induced damage. It
is suggested that the effect of vitamin C is as-
sociated mainly with its capability to promote
ooplasmic maturation during IVM. The benefi-
cial role of ROS comes from the observations
that non-enzymatic antioxidants, such as ascor-
bic acid, inhibit spontaneous meiotic resumption
from diplotene arrest. We have presented a num-
ber of these observations. Tatemoto et al. (84),
Kere et al. (85), and Cordova el al. (86) found
that the addition of vitamin C to the oocyte matu-
ration medium exerted no effect on the matura-
tion rates of oocytes. Similarly, antioxidants such
as vitamin E and trolox had no effect on oocyte
maturation, but other antioxidants such as propyl
gallate and 2,4,5-trihydroxybutrophenone inhib-
ited the spontaneous resumption of meiosis (87).
Together, these studies emphasized the beneficial
roles of ROS during IVM at certain concentra-
tions (low level).

Fig.1: The possible factors that induce generation of reactive oxygen
species (ROS) in the oocyte. The imbalance between ROS and anti-
oxidants, the impact of high levels of ROS, and the resulting oxidative
stress (OS) on meiotic arrest and apoptosis in oocytes.
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Non-enzyme
Hypotaurine

Enzyme

GSH sop
Cysteamine GPX
Taurine CAT

Vitamin C GPx

Vitamin E

Fig.2: The presence of antioxidant enzymes such as superoxide dismutase (SOD), glutathione peroxidases (GPx), and catalase (CAT) as well as non-
enzymatic antioxidants, such as vitamin E and C (ascorbic acid), glutathione (GSH), uric acid, and albumin in the oocytes. Excess amounts of reactive
oxygen species (ROS) may be involved in oxidative stress (OS) of oocytes and granulosa cells.

Conclusion

It is well-known that high levels of ROS be-
yond the physiological range could induce MPF
destabilization, reduce survival factors, and trig-
ger apoptosis in oocytes of several mammalian
species. Antioxidants are the main defense fac-
tors against OS induced by ROS. Many reports
suggest that antioxidant supplementation of IVM
media improves cytoplasmic maturation by al-
leviating OS during oocyte maturation via in-
creasing GSH storage, and contributes to further
protect the embryo against oxidative aggressions
during its early developmental stages. On the oth-
er hand, supplementation by antioxidants during
IVC improves oocyte quality by reducing ROS
levels and apoptotic factors. However, some of
the non-antioxidants such as ascorbic acid and 2,
4, 5-trihydroxybutrophenone do not improve oo-
cyte maturation; rather, they inhibit spontaneous
resumption of meiosis. Improvements to culture
conditions are complex challenges that depend
not only on the choice of an antioxidant but also
on its concentration, the medium and its compo-
nents, the species, and the dynamic changes of
the specific requirements of the oocyte accord-
ing to its developmental stage. Future efforts
should be placed on understanding the involve-
ment of ROS in oocyte apoptosis and for guiding
antioxidant-based strategies to selectively control
ROS-induced damage without compromising the
physiological functions of these species.
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