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Abstract: Human cytomegalovirus (HCMV) is a ubiquitous double-stranded DNA virus belonging
to the β-subgroup of the herpesvirus family. After the initial infection, the virus establishes latency
in poorly differentiated myeloid precursors from where it can reactivate at later times to cause
recurrences. In immunocompetent subjects, primary HCMV infection is usually asymptomatic, while
in immunocompromised patients, HCMV infection can lead to severe, life-threatening diseases,
whose clinical severity parallels the degree of immunosuppression. The existence of a strict interplay
between HCMV and the immune system has led many to hypothesize that HCMV could also be
involved in autoimmune diseases (ADs). Indeed, signs of active viral infection were later found in
a variety of different ADs, such as rheumatological, neurological, enteric disorders, and metabolic
diseases. In addition, HCMV infection has been frequently linked to increased production of autoan-
tibodies, which play a driving role in AD progression, as observed in systemic lupus erythematosus
(SLE) patients. Documented mechanisms of HCMV-associated autoimmunity include molecular
mimicry, inflammation, and nonspecific B-cell activation. In this review, we summarize the available
literature on the various ADs arising from or exacerbating upon HCMV infection, focusing on the
potential role of HCMV-mediated immune activation at disease onset.

Keywords: human cytomegalovirus; autoimmunity; autoimmune diseases

1. Introduction

The adaptive immune response recognizes external pathogens as non-self antigens as
opposed to the antigens from one’s own body, known as self-antigens. Dysregulation of this
response can lead to the failure to distinguish self from non-self antigens, a phenomenon
known as immune tolerance, acquired during fetal development, responsible for a variety
of autoimmune diseases (ADs) [1].

ADs result from a complex interaction between genetic predisposition and environ-
mental factors [2–4], which trigger immune responses leading to tissue destruction.

ADs comprise a family of more than 80 chronic illnesses affecting approximately 3–5%
of the general population [5,6]. The concordance of ADs in identical twins, consistently less
than 100% (12–67%), highlights the importance of epigenetic and environmental factors
and, especially, infections in AD pathogenesis [5,7].

Human cytomegalovirus (HCMV) is a ubiquitous virus belonging to the Herpesviridae
family. HCMV displays a double strand (ds) DNA genome, characterized by an enormous
genome capacity, with estimates of more than 200 open reading frames (ORFs), even though
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ribosome profiling and transcript analysis detected additional previously unidentified
ORFs (~751 translated ORFs) [8]. HCMV infection is lifelong in the host, due to virus ability
to establish latency. Even though one well characterized viral reservoir is hematopoietic
cells, the exact latency site remains still elusive. Interestingly, and contrary to the classical
perspective, it is becoming evident that latency-associated gene expression mirrors lytic
viral patterns, albeit at much lower levels of expression [9].

Nowadays, also epigenetic modifications emerged as critical players in the regulation
of active/latent HCMV infection [10]. During latency, in infected CD34+ progenitor cells
and CD14+ monocytes, HCMV chromatin is associated with repressive markers, such as
H3K9Me3, H3K27Me3, and transcriptional repressors, like heterochromatin protein 1 (HP1)
and the KRAB-associated protein 1 (KAP1) [11]. During myeloid differentiation and ac-
tivation, transcriptional repressors are downregulated, and the viral chromatin carries
transcriptional active markers such as acetylated histones (AcH) and phosphorylated his-
tone H3 [11]. Several evidences suggest that HCMV chronic infection accelerates age-related
epigenetic changes, pointing out the interplay between HCMV and epigenetic machinery
regulation [12]. At the same time, epigenetic events play a pivotal role in the pathophysiol-
ogy of autoimmune/inflammatory conditions [13]. To date, the exact correlation of HCMV
epigenetic modifications and development of ADs is still missing, and studies addressing
the impact of HCMV on epigenetic modification on AD’s onset are required.

A large body of evidence has shown how HCMV can use several of its genes to
manipulate the innate and adaptive immune system of the infected subject [14–19]. This
feature alongside many others, such as its wide tropism [20–23], its ability to persist in the
host during phases of latency and reactivation, and, as already mentioned, its global distri-
bution [24], makes HCMV a candidate etiological agent of ADs. A causative link between
HCMV infection and ADs may appear difficult to determine epidemiologically given the
widespread prevalence of HCMV and the rare occurrence of ADs. Mounting evidence
has increasingly associated HCMV infection with rheumatologic diseases—e.g., systemic
lupus erythematosus (SLE), systemic sclerosis (SSc), and rheumatoid arthritis (RA)—and
neurological disorders—e.g., multiple sclerosis (MS), enteric disorders, and metabolic
disorders, such as type 1 diabetes (T1D).

Despite the great effort, researchers have not yet been able to discriminate whether
HCMV is an initiator of AD or an epiphenomenon that may simply exacerbate the course of
ADs. In this regard, multiple mechanisms have been proposed to explain HCMV-induced
autoimmunity. Through a mechanism defined as “molecular mimicry”, viral epitopes
that are highly similar to host determinants may induce the development of antibodies
that attack the self at the level of specific tissues, as it has been hypothesized for the
viral tegument protein pp65 in SLE patients [25]. Intriguingly, upon HCMV infection,
immunocompetent hosts tend to develop an autoimmune reaction through the generation
of autoantibodies, which occurs more frequently in those individuals with a systemic
involvement [26]. HCMV-infected bone marrow transplant recipients quite often develop
organ-specific autoantibodies against the human aminopeptidase CD13 [27,28] or common
phospholipid [29], whereas solid organ transplant recipients develop non-organ-specific
autoantibodies [30]. Accordingly, hypergammaglobulinemia, cryoglobulinemia, and au-
toantibody production are common features of HCMV-driven mononucleosis [31,32]. This
unspecific hyperactivation of humoral immunity is thought to represent a mechanism of
viral immune evasion, because it curbs host B-cell responses. Once the tissue is infected,
activated antigen-presenting cells (APCs) are attracted to the infection site and release high
levels of cytokines and chemokines that activate autoreactive T- or B-cells, leading to loss of
tolerance, a phenomenon called “bystander activation”. Several pieces of evidence suggest
a role of HCMV infection in vascular damage and stenosis [33,34], an event that is quite
frequent and fatal in patients with ADs [35].

There is also some evidence indicating that HCMV infection and ADs mutually affect
each other. In particular, while primary or secondary HCMV infection can induce chronic,
systemic type I inflammation, which may promote autoimmunity, eventually leading to
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ADs [36], autoimmune flares can also trigger HCMV reactivation [36]. HCMV-induced
immunosuppression, which has severe consequences in transplant recipients, may also
play a protective role in the course of ADs [37].

This review aims to provide an updated overview on the role of HCMV in the
etiopathogenesis of ADs, focusing on the underlying mechanism that has been proposed
for each specific disorder.

2. Modulation of the Immune System by HCMV

HCMV has established a complex relationship with the host immune system, for both
systemic dissemination and latency [38]. Indeed, primary and latent HCMV infection can be
kept in check by the host immune system in a hierarchical and redundant way through type
I and II interferons (IFNs), natural killer cells (NKs), and CD8+ and CD4+ T-cells [16,17,38].
Conversely, in different clinical settings, patients become immunocompromised, and high
systemic inflammatory response, particularly driven by cytokines such as TNF-α, as well as
diminished immune function has been detected. The inflammatory cascades can stimulate
the HCMV major immediate early promoter (MIEP), followed by HCMV reactivation
from latency [38]. HCMV reactivation is also frequently observed in immunocompetent
seropositive adults, where it may exacerbate chronic illnesses, such as ADs. Vice versa,
the inflammatory environment of ADs, described in detail in the paragraphs below, may
induce reactivation of HCMV, forcing replication.

HCMV, thanks to its continuous co-evolution with the host, has developed an ar-
senal of immune escape mechanisms to counteract the immune system, particularly the
“unwanted” inflammation [38–41]. These “viral gambits” are discussed below.

Adaptive immunity is critical for the control of primary HCMV infections, which
can later on be enhanced by clonal expansion of activated CD4+ and CD8+ T-cells [41].
To counteract this response, HCMV employs five viral glycoproteins (i.e., US2, US3, US6,
US10, and US11), all capable of interfering with the presentation of the major histocom-
patibility (MHC) class I antigen [42] and the recognition of antigenic peptides by CD8+

T-cells. Concurrently, an important role in regulating the production of antigenic pep-
tides and inhibiting the production of viral epitopes [43] is played by HCMV miR-US4-1,
which, by targeting the endoplasmic reticulum aminopeptidase 1 (ERAP1), inhibits the
CD8+ T-cell response. Likewise, HCMV miR-UL112-5p appears to downregulate ERAP1
expression, thereby inhibiting the processing and presentation of HCMV pp65 to cyto-
toxic T lymphocytes (CTLs) [43,44]. Finally, upon THP-1 cell infection, HCMV pUL8
reduces the levels of pro-inflammatory factors so as to inhibit inflammation [45], whereas
HCMV pUL10 mediates immunosuppression by reducing T-cell proliferation and cytokine
production [46].

On the other hand, innate immunity represents the host’s first line of defense against
external pathogens [47]. The initial intracellular response is triggered by pattern recognition
receptors (PRRs), which after detecting pathogen-associated molecular patterns (PAMPs)
can activate a downstream signaling pathway leading to the production of type I IFN
and the release of pro-inflammatory cytokines. Also in this case, HCMV has devised
different strategies to circumvent innate immunity [40,48,49]. For instance, our group has
recently shown that the HCMV tegument protein pp65—also known as pUL83—binds to
cyclic guanosine monophosphate–adenosine monophosphate synthase (cGAS), thereby
inhibiting its ability to stimulate IFN-β production [50]. Similarly, the tegument protein
UL31 has been shown to interact with cGAS, thereby decreasing cGAMP production and
type I IFN gene expression [51].

Consistent with an immune escape function of HCMV tegument proteins, two studies
by Fu et al. have shown that pp71—also known as pUL82—can inhibit trafficking of
the stimulator of IFN genes (STING) [52], and that UL42 is a negative regulator of the
cGAS/STING pathway [53]. Another HMCV glycoprotein, known as US9, can downregu-
late IFN type I by interfering with the mitochondrial antiviral-signaling protein (MAVS)
and STING pathways [54]. Furthermore, the HCMV immediate–early (IE) 86 kDa protein
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(IE86) downmodulates IFN-β mRNA expression by preventing nuclear factor-κB (NF-
κB)-mediated transactivation of IFN-β [55]. Interestingly, a new study by Kim et al. [56]
has revealed that IE86 may also inhibit IFN-β promoter activation by inducing STING
degradation through the proteasome.

The innate immune system also relies on the concerted anti-microbial action of NKs,
dendritic cells, and macrophages [47]. In particular, NKs play a primary role in coun-
teracting viral infection thanks to their ability to recognize virus-infected cells through
activating or inhibitory receptors—e.g., NKG2D and NKp30. As a consequence, HCMV
has evolved various immune evasion strategies that rely on the modulation of NK recep-
tors [57,58]. For example, HCMV UL142, UL148a, US9, US18, and US20 have all been
shown to downregulate—to different extents and sometimes in an allelic-specific manner—
MHC class I polypeptide-related sequence A (MICA), one of the eight different NKG2D
ligands [59,60]. In addition, miR-UL112 and UL16 can both inhibit the expression of MHC
class I polypeptide-related sequence B (MICB). Besides MICB, UL16 can also downmodu-
late the expression of UL16-binding protein 1 (ULBP1), ULBP2, and ULBP6 [61–64]. ULBP3
is instead targeted by UL142, which can also act as a MICA inhibitor [65,66]. The ability to
concurrently evade multiple cellular pathways has also been shown for US18 and US20,
both capable of inhibiting MICA and the NKp30 ligand B7-H6 [67,68] (Figure 1).

Moreover, HCMV encodes a set of Fcγ binding glycoproteins (viral FcγRs, vFcγRs)
that bind to the Fc region of host IgG and facilitate evasion from the host immune re-
sponse [69]. Particularly four vFcγRs encoded by HCMV have been identified: gp68
(UL119-118), gp34 (RL11), gp95 (RL12), and gpRL13 (RL13) [70–73]. They are crucial
for viral escape from both innate and adaptive immune responses, including antibody
dependent cellular cytotoxicity (ADCC) [71].
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Another strategy that HCMV has acquired is the ability to produce viral products
homologs to cytokines, chemokines, and their receptors, which can alter the immune
response and the clearance of the virus during the productive or the latent phase of the
infection [15]. Among these factors, HCMV encodes an interleukin 10 (IL-10) homolog,
known as cmvIL-10, which can modulate the immune response and induce replication and
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persistence of the virus. cmvIL-10 can stimulate the differentiation of autoreactive B cells
on one hand and on the other hand suppress pro-inflammatory factors, tilting the immune
response and inducing a chronic productive infection. In different autoimmune disorders,
IL-10 presents an altered expression due to polymorphisms in its promoter, and elevated
levels of IL-10 have been detected in SLE and Sjögren’s syndrome (SS) patients [74–76].
Although a direct relationship between HCMV, IL-10, and autoimmune disorders has not
yet been recognized, further investigations are needed to better clarify a possible role of
HCMV cytokine homologs in these diseases.

Interestingly, polymorphisms in cytokine signaling pathways might be involved in
autoimmune disorders in association with viral infection. For example, the association
between genetic polymorphisms related to cytokines, as single-nucleotide polymorphisms
(SNPs) in signal transducer and activator of transcription 4 (STAT4) or interleukin 10 (IL-10),
and different autoimmune disorders has been described [77–79], identifying IFN-α as an
environmental modifier of the STAT4 risk allele and indicating a major risk to develop
the disorder during a viral infection [80]. These results suggest that an altered function or
expression of different cytokines can predispose to the autoimmune disease or modulate
the disease manifestations.

3. Documented Mechanisms of HCMV-Induced Autoimmunity

HCMV can induce or perpetuate autoimmunity through different processes that can
be divided into two categories: (1) antigen-specific (i.e., molecular mimicry) and (2) non-
antigen-specific (i.e., bystander activation). From an immunopathological perspective,
HCMV can trigger or sustain autoimmunity through the following three mechanisms: (i) au-
toantibodies production, (ii) enhanced inflammation, and (iii) vascular damage (Figure 2).
These will be further discussed below.
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Figure 2. The main mechanisms involved in HCMV-induced autoimmunity and associated ADs. (1) Autoantibodies
production: the occurrence of viral epitopes, structurally similar to self-ones, can induce the activation of both T- and
B-cells through their presentation by APCs; (2) increased inflammation: non-specific anti-HCMV immune response leads
to the release of self-antigens and cytokines from the affected tissue; those self-antigens presented by APCs can stimulate
autoreactive T-cells; (3) vascular damage: enduring HCMV infection triggers vascular damaging; the release of endothelial
antigens and cytokines induces the activation of autoreactive T-cells and B-cells, culminating in aggression of endothelial
cells via specific autoantibodies.
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3.1. Autoantibodies Production

This particularly harmful effect of HCMV is due to viral-induced molecular mimicry,
which is a mechanism through which HCMV infection activates T-cells that are cross-
reactive with self-antigens. Although among the Herpesviridae family, the Epstein–Barr
virus (EBV) has been more extensively studied in this regard [81], HCMV has also been
frequently involved in the generation of cross-reactive autoantibody in ADs. For example,
patients affected by SSc express different autoantibodies able to recognize both cellular
proteins and their homologous HCMV counterparts—e.g., anti-topoisomerase I/HCMV
pUL70 [82] and anti-cell surface integrin–neuroblastoma-amplified gene (NAG)-2/HCMV
pUL94 [83] antibodies. The association of HCMV infection with ADs does not appear
to be solely restricted to SSc given that SLE patients can also express high levels of two
anti-pp65 and anti-pp150 antibodies [25,84,85]. Consistent with a role of HCMV pp65 in
autoimmunity, immunization of BALB/c mice with peptides derived from the C-terminus
of this viral protein led to the generation of anti-dsDNA and antinuclear antibodies,
inducing severe signs of glomerulonephritis [86]. More recently, SLE patients were also
found to express high levels of IgG antibodies against the HCMV DNA-binding nuclear
protein UL44 [87]. Intriguingly, this antibody was able to co-immunoprecipitate UL44 and
nuclear SLE autoantigens during virus-induced apoptosis, suggesting a novel contribution
of HCMV to humoral immunity in ADs. Other possible associations of antibodies against
HCMV structures and self-antigens were speculated but not confirmed in other ADs [88,89].

Humoral autoimmunity can also be induced by non-specific B-cell activation, since
HCMV can be considered a bona fide polyclonal B-cell activator. In this regard, HCMV can
induce B-cell proliferation and favor autoantibody production by interacting with Toll-like
receptor (TLR)7/9 in plasmacytoid dendritic cells (pDCs) [90]. More recently, cross-talk
between B-cell-activating factor (BAFF) and TLR9 signaling has been shown to promote
IgG secretion and survival of B-cells following HCMV infection [91].

3.2. Enhanced Inflammation

The mechanism behind this nonspecific antiviral immune response is best known as
bystander activation, defined as the stimulation of autoreactive T-cells by self-antigens
presented by APCs. The presence of terminally differentiated CD4+CD28− T-cells is typical
of HCMV-infected individuals [92,93], including patients with ADs, such as RA [94].
Reactivation and replication of HCMV in inflamed tissue has been found to induce T-cell
differentiation of the pathogenic and dysregulated CD4+CD28- subset under autoimmune
conditions, albeit these cells do not seem to have a direct auto aggressive behavior, as
described in detail by Bano et al. [95]. In this review, the authors also speculate that
RA-infected synovial fibroblasts may directly or indirectly—through the release of non-
infectious exosomes—present HCMV antigens to T-cells, thereby inducing their terminal
differentiation. This hypothesis has been recently substantiated by a proof of concept study
showing that, in antineutrophil cytoplasmic antibody (ANCA)-associated vasculitis (AAV),
the expansion of CD28- T-cells was reduced by an antiviral therapy able to suppress HCMV
subclinical reactivation, indicating that expansion of this clone was HCMV-dependent [96].
By contrast, Wu et al. [97] have more recently shown that the expansion of CD4+ CD28−

cells in SLE patients is negatively associated with disease activity—lupus low disease
activity state is associated with lower anti-DNA levels—and that the polyfunctional CD8+

T-cell response to HCMV pp65 is not impaired. Moreover, HCMV seropositive MS patients
displayed not only an altered B-cell phenotype and function, but also a modulation of
the IFNβ response and a reduced pro-inflammatory cytokine B-cell profile, indicating a
putative protective role of HCMV [98].

In ADs characterized by high levels of inflammation and chronic immune stimulation,
such as RA, a causative role of HCMV has also been hypothesized. For instance, after
specific HCMVpp65 long-term stimulation, increased anti-HCMV IgG antibodies and
intracellular IFN-γ-producing HCMVpp65-specific CD28-CD8+ T-cells were observed in
RA and juvenile arthritis (JIA) patients vs. healthy controls (HCs), indicating a possible
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enhancement of the inflammatory response following endogenous HCMV reactivation [99].
Moreover, an increased proportion of terminally differentiated immunoglobulin-like recep-
tor 1 (LIR-1+) CD8+ T-cells was detected in HCMV seropositive RA patients. These cells
were characterized by cytolytic activity, pro-inflammatory properties, and anti-infectious ef-
fector features, all distinctive characteristics of the so-called “chronic infection phenotype”,
probably involved in the inflammatory pathogenesis of RA [100].

A cause–effect relationship between HCMV infection and other systemic ADs, such
as SLE and SSc, is supported by experiments testing the in vitro response to the HCMV
antigen in T-cells from SLE and SSc patients. The enhanced expression levels of IFN-γ, IL-4,
and IL-2 as well as the increased number of memory T-cells found in these patients led, in
fact, the authors to conclude that exposure to HCMV may promote fibrosis and vascular
damage [101].

In recent years, Arcangeletti and co-workers have taken a closer look at the interplay
between HCMV and the immune response in SSc and inflammation. Interestingly, in
HCMV-infected human dermal fibroblasts, this group was able to detect increased HCMV-
specific CD8+ T-cell responses associated with disease parameters, which were paralleled
by enhanced expression of several fibrosis- and apoptosis-associated factors involved in
SSc pathogenesis [102,103].

HCMV can amplify inflammation through other mechanisms. For instance, the
latency-associated gene US31 is expressed at higher levels in PBMCs from SLE patients
vs. HCs. This upregulation may be relevant to AD pathogenesis, because US31, by acting
through the non-canonical NF-κB pathway (NF-κB2), can alter the immunological proper-
ties of monocytes and macrophages and promote an M1 inflammatory phenotype [104].

With regard to the interplay between HCMV and MS, murine cytomegalovirus
(MCMV) can promote EAE in resistant BALB/c mice by activating inflammatory APCs and
CD8+ encephalitogenic-specific T-cells and promoting the M1 phenotype of microglia [105].

Biliary atresia (BA), classified as an autoimmune-mediated disease, is a disorder
characterized by inflammation, fibrosis, and obstruction of the bile duct. To simulate BA,
mice depleted of Treg cells were infected with low doses of MCMV, a condition that led to
increased expression of IFN-γ-activated genes and inflammation, attesting an involvement
of CMV in disease progression [106].

NKs play a crucial role in homeostasis and immune responses. Besides exerting
a cytotoxic effect, NK activation can trigger the release of different pro-inflammatory
cytokines, promoting excessive inflammation, which eventually leads to ADs. In this
regard, distinct NK subsets are capable of reaching different tissues where they can exert a
protective effect on immune homeostasis. Such an example is the expansion of adaptive
NKG2C+ cells in acute HCMV infection or reactivation, inducing a protective effect [107].
Furthermore, higher percentages and absolute numbers of these cells are found in MS
patients positive for HCMV, again indicating that HCMV may play a protective role in
this autoimmune condition [108]. On the other hand, a study by Liu et al. revealed the
existence of an antibody able to recognize HCMV pp150 across various ADs. The fact that
this antibody was also able to recognize the single-pass membrane protein CIP2A and
promoted cell death of CD56bright NKs, a subset whose expansion is frequently observed in
autoimmunity, led to the conclusion that the generation of HCMV-induced autoantibodies
may be responsible for the onset of ADs [85].

Unconventional γδ T-cells are potent inducers of cytotoxicity and have been recently
identified as determinants of adaptive immunity against pathogens and tumors via APC
activation and stimulation of other leukocytes [109]. Once activated, they trigger tissue
repair, inflammation, and lysis of different cell types. In patients affected by the severe
combined immunodeficiencies (SCID), an increase in γδ T-cells associated with HCMV
infection and autoimmune cytopenia was observed, suggesting that HCMV may promote
expansions of these cells [110]. However, the direct involvement of HCMV in the activation
of γδ T-cells, as well as the direct role of these cells in ADs, has yet to be clarified.
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3.3. Vascular Damage

HCMV plays an important role in vascular damage through endothelial cell (EC)
apoptosis, infiltration of inflammatory cells, and smooth muscle cell proliferation. Lunardi
and co-workers were the first to uncover a correlation between HCMV infection and
endothelial damage in SSc [111]. The mechanism of HCMV-induced vascular damage
was later linked to molecular mimicry characterized by auto aggression of ECs through
release of specific autoantibodies against NAG-2/UL94 proteins, as described in Section 3.1.
Indeed, the immunization of BALB/c mice with UL94 and NAG-2 peptides coupled with
a carrier protein caused ischemic lesions on footpads and tails. Moreover, treatment
of ECs with the same antibodies resulted in increased reactive oxygen species (ROS)
production [33].

In atherosclerosis, an auto-inflammatory disorder with an autoimmune setting, HSP60
autoantibodies, which share homology with UL122 and US28 HCMV peptides, have
been reported. These peptides present sequence homology also with different EC sur-
face molecules [112]. DNA microarray-based experiments showed that these purified
anti-HCMV antibodies can modulate the expression of various molecules (e.g., adhesion
molecules, chemokines, molecules involved in inflammation, etc.) involved in EC activation
and damage [113].

Finally, HCMV infection has been positively associated with CD4+CD28- T-cell ex-
pansion and high cardiovascular disease (CVD) mortality risk among RA patients, further
confirming a direct causal link between HCMV and vascular damage in AD [114,115]. The
expansion of CD4+CD28- T-cells in HCMV-positive/ANCA-associated vasculitis (AAV)
patients, expressing a Th1 phenotype, with high levels of IFN-γ and TNF-α production
and co-expression of different endothelial homing markers [96], further corroborates the
role of HCMV in inducing AD-related vascular damage.

4. The Main Autoimmune Diseases Associated with HCMV Infection
4.1. Rheumatologic Diseases
4.1.1. Systemic Lupus Erythematosus

Systemic lupus erythematosus (SLE) is a chronic AD characterized by connective tissue
inflammation and heterogeneous clinical manifestations, ranging from mere cutaneous
and musculoskeletal features to kidney and/or central nervous system involvement, often
associated with significant morbidity and mortality. Although the causes of SLE are
not clearly understood, many have proposed that SLE may be due to a combination
of genetic predisposition and environmental factors (e.g., UV exposure, infection, and
stress) [116,117].

All SLE patients inevitably show abnormalities in monocytic lineage cells, which
can lead to T-cell deficiencies, polyclonal B-cell activation, immune complex formation,
and autoantibody production. In this regard, the peculiar ability of HCMV to establish
lifetime latency and to periodically shift between the lytic and latent stage has been linked
to the aberrant humoral response in SLE. Fittingly, augmented anti-HCMV IgM/IgG titer
tends to correlate with clinical and immunological manifestations of SLE [118]. Stud-
ies that found an association between HCMV and SLE disease were often performed in
European countries [119,120]. Additionally, differences in the prevalence of HCMV infec-
tion in SLE patients were reported by different research groups. For example, Takizawa
et al. [121] found that 149 of 151 patients with rheumatologic disease were infected by
HCMV, by pp65 antigenemia assay, and all 74 SLE patients were positive for HCMV in-
fection. Newkirk et al. [122] found that the prevalence of HCMV infection in SLE patients
was 60% by using ELISA kits to detect HCMV specific antibodies. After adjusting for the
rheumatoid factor, Su et al. [123] found that 84 of 87 SLE patients (96.55%) were HCMV
IgG-positive, and that nine (10.34%) were HCMV IgM-positive. On the other hand, several
other studies did not observe a direct association between HCMV seroprevalence and
SLE [124–126]. For examples, James et al. reported that HCMV infection was not related
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to SLE [126]. Altogether, these results suggest that to date we do not have a complete
understanding of the relationship between HCMV infection and SLE development.

A potential role of HCMV in SLE pathogenesis was initially proposed by several
groups after identifying specific autoantigens induced upon HCMV infection [89,122].
Molecular mimicry has been described also for another member of the Herpesviridae family,
i.e., EBV, that may be involved in the pathogenesis of SLE. Indeed, anti-Epstein–Barr
nuclear antigen 1 (EBNA1) antibodies can recognize human proteins such as SmB and
Ro60 [127].

As already mentioned, (see HCMV pp65, Section 3), HCMV can lead to the production
of autoantibodies against nuclear proteins, such as in the case of the LA protein. Specifi-
cally, HCMV can directly—or indirectly, through molecular mimicry—induce cell surface
expression of this small nuclear ribonucleoprotein, thereby leading to the production of
autoantibodies in genetically susceptible individuals [122,128]. Subsequently, two indepen-
dent groups [25,86] showed that immunization of previously non-autoimmune mice with
peptides encompassing the HCMV epitope pp65422–439 led to the appearance of autoan-
tibodies against nuclear components while inducing early signs of nephritis resembling
human SLE. Importantly, high levels of serum anti-pp65422–439 antibodies were found
in patients with SLE, suggesting that pp65 contained B-cell epitope(s) that could trigger
autoimmunity in genetically predisposed individuals [25]. The same authors uncovered
amino acid sequence homology between HCMV pp65422–439 and the TATA-box binding
protein associated factor 9 (TAF9134–144) and detected the presence of specific antibodies
against these epitopes in association with anti-nuclear and anti-dsDNA antibodies, typically
found in SLE, alongside increased anti-TAF9 antibodies in sera from SLE patients [86].

More recently, Neo et al. have described a potential alternative process involving
UL44, a DNA-binding phosphoprotein essential for HCMV DNA replication [87]. The
observation that after translocation to the nucleus, UL44 interacted with other viral and host
proteins to increase viral DNA replication efficiency led these authors to hypothesize that
delayed clearance of apoptotic cellular material in genetically predisposed individuals may
favor the presentation of intracellular self-antigens to humoral immunity. They succeeded
in isolating a human UL44 antibody from the sera of SLE/HCMV IgG seropositive patients,
showing that it could bind to UL44 complexed with cell-surface localized SLE autoantigens
during virus-induced apoptosis. Thus, based on these findings, it is conceivable that HCMV
may trigger and/or potentiate the host humoral immune response to nuclear self-antigens,
predisposing infected individuals to SLE.

Genome-wide association studies (GWAS) have identified over 50 susceptibility loci
for SLE in the population (mostly genes regulatory regions). Therefore, it is crucial to
investigate the link between genetic susceptibility and viral infections in the development
of SLE. For example, Harley and colleagues demonstrated that EBV gene products that
serve as transcription factors have preferential interaction with loci containing risk alle-
les [127]. However, if any of the HCMV proteins preferentially bind SLE risk loci is still to
be addressed.

Under a clinical point of view, dysfunction of the immune system has been long
known to increase the risk of infection among SLE patients, accounting for approximately
50% of hospitalizations during the course of the disease [129], suggesting that a lifelong
immunosuppression of an individual, as it is often the case for SLE patients, may favor
HCMV reactivation [130]. This hypothesis was later on corroborated by findings from a
26-year retrospective study showing that infections, including those caused by HCMV, were
amongst the top three causes of death in SLE patients [131], raising the important question
of which risk factors are associated with HCMV disease in the SLE population. This
question has been recently answered by a systematic review [132] identifying the following
risk factors: (i) high viral load, which together with enhanced levels of HCMV antigenemia
correlated with the development of life-threatening end-organ damage; (ii) lymphopenia,
resulting in failure to mount a host cellular immune response against HCMV; and (iii) type
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of treatment—HCMV disease progression correlated with higher corticosteroid doses
and/or immunosuppressants [133].

HCMV infection is also known to trigger SLE flares through direct cytopathic effects
and/or activation of inflammatory processes, thus causing both systemic and organ-specific
disease. Lastly, the clinical features of HCMV infection themselves happen to mimic SLE
flares, further complicating the clinical picture of SLE patients [134].

4.1.2. Systemic Sclerosis

Systemic sclerosis (SSc) is a chronic systemic inflammatory disease characterized
by vasculopathy and extensive fibrosis. It has the highest mortality among ADs due to
pulmonary hypertension and lung fibrosis. The etiology still remains unknown, although
genetic predisposition, environmental factors, and infectious agents have all been consid-
ered as potential triggering factors [135–137]. The activation of the immune system plays a
key role in SSc pathogenesis and is probably the link between initial vascular involvement
and the end-stage of the disease (i.e., tissue fibrosis), raising the hypothesis that certain
autoantibodies may not simply be epiphenomena but rather play a central role in disease
pathogenesis. In particular, intracellular antigens autoantibodies have been associated with
specific SSc subsets [138], whereas cell surface antigens autoantibodies production has been
shown to cause EC damage and apoptosis and activation of fibroblasts, T lymphocytes,
and macrophages. In turn, these activated cells tend to secrete higher levels of cytokines,
leading to changes in the extracellular matrix, one of the hallmarks of SSc.

Among infective agents, herpesviruses have been suggested to be causative agents in
the immunopathogenesis of SSc [139,140]. Indeed, antibodies against HCMV and EBV are
more frequently detected in SSc than in healthy controls [141–143].

The statistically significant association with HCMV infection in Swiss SSc patients (59%
seropositivity in SSc patients compared with 12–21% controls) [144] has not been observed
in other studies so far [143,145], even though higher HCMV antibody concentrations
have been found in SSc patients [146,147]. In this regard, future studies should clarify
why a ubiquitous virus such as HCMV only triggers an autoimmune response in certain
individuals, whereas in others it has no effect.

HCMV can maintain an active, persistent replication for the life span of the im-
munocompetent host, particularly thanks to its macrophage and endothelial tropism [148].
Starting from the observation that HCMV antibodies are prevalent in SSc patients [144]
and that UL70 viral protein can be recognized by anti-topoisomerase I antibody, Lunardi
et al. were the first to propose a novel pathogenesis mechanism of SSc based on HCMV
molecular mimicry of the cellular protein NAG-2 expressed on ECs and fibroblasts, with
the latter being involved in the so-called “scleroderma like phenotype” linked to SSc
pathogenesis [33,83,111] (see Sections 3.1 and 3.3).

The most frequently found autoantibodies among SSc patients are those directed
against centromere proteins (anti-CENPs), DNA topoisomerase I (anti-topo I), and RNA
polymerase III (anti-RNA polIII). Of note, in SSc, there is a significant correlation between
the expression of autoantibodies against RNA polIII and the presence of specific clinical
features, such as high risk of diffuse cutaneous disease, short survival time, and renal
involvement. Moreover, SSc patients expressing autoantibodies against anti-topo I are
at high risk of developing pulmonary interstitial fibrosis, whereas patients with CENP
autoantibodies have the best prognosis [138]. Lastly, a recent study [149] evaluating the
relationship between the immune response of SSc patients to six major antigens of HCMV
(i.e., UL57, UL83, UL55, UL44, p38, and UL99) and specific clinical and immunological
characteristics of the disease found that the presence of anti-UL44 antibodies correlates with
arthritis, a clinical feature of SSc. This finding supports the idea that anti HCMV antibodies
may play an important role in breaking tolerance and triggering SSc pathogenesis.
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4.1.3. Rheumatoid Arthritis

In spite of an increasing body of evidence, a functional role of HCMV in the pathogen-
esis of rheumatoid arthritis (RA) has not yet been conclusively proven due to controversial
findings, whereas a correlation between EBV and RA has already been found. There are
several examples of molecular mimicry between EBV and self-antigens relevant to RA,
such as HLA-DRB1 polymorphisms, human interleukin (h IL)-10, and a CXC chemochine
receptors [150]. While some early studies found high HCMV seroprevalence among RA
patients [120,151,152], other investigations could not establish a clear association between
HCMV infection and RA [144,153–155]. In support of a role of HCMV in RA, some authors
have more recently reported the presence of HCMV replication in synovial specimens from
RA patients, which correlated with increased disease severity, revealing a higher incidence
of HCMV infection in RA patients than previously thought [152,156]. However, the fact
that immunosuppressive therapy can lead to HCMV reactivation does not allow drawing
any definitive conclusions as to whether HCMV may be involved in RA initiation rather
than its exacerbation.

The term “rheumatoid arthritis” was defined in 1859 by Alfred Baring Garrod to
distinguish this chronic systemic autoimmune disease from other forms of arthritis (e.g., os-
teoarthritis, spondyloarthritis, etc.) [157]. RA affects 0.5–1% of the worldwide population,
with higher prevalence in the elderly [158], with a female to male ratio of 3:1 [159]. RA is a
T-cell-driven autoimmune disease, accompanied by autoantibody production that affects
primarily the lining of the synovial joints, leading to destructive synovitis, progressive
disability, and even to premature death due to extra-articular manifestations, such as
vasculitis [160,161]. The chronic inflammation and subsequent tissue damage of the joints
is caused by the deposition of immune complexes (ICs) composed of autoantibodies bound
to their cognate autoantigens, which attract innate immune cells to the site of deposition,
with subsequent release of proteolytic enzymes, slowly degrading the synovial tissue in an
endless vicious cycle [160]. Autoantibodies isolated from patients with RA were shown
to recognize citrullinated proteins (anti-citrullinated peptide antibodies, ACPAs) and IgG
(rheumatoid factor, RF) [162]. Interestingly, these autoantibodies were found to be already
present in a subset of RA patients years before the disease onset and could predict a more
aggressive and severe progression [163,164].

Citrullination is a post-translational modification catalyzed by a family of peptidy-
larginine deiminases (PADs) that convert peptidylarginine into peptidylcitrulline, whose
aberrant dysregulation has been linked to several inflammatory conditions, such as ADs,
cancer, and neurodegenerative diseases [165–169]. The theory that citrullination is involved
in the etiopathogenesis of RA has been supported by several lines of evidence [170–173],
but the mechanisms that trigger citrullination and, therefore, initiate RA development are
still unknown. Interestingly, many genetic and environmental factors have been associated
with RA pathogenesis, especially among ACPA-positive patients. According to the so-
called “two hit” model, in genetically predisposed individuals, the first hit is represented
by environmental triggers, such as smoking or infection, which induce citrullination of
peptides that are successively presented to autoreactive T-cells, leading to the generation of
high-affinity anti-citrullinated peptide antibodies. These events are thought to occur years
before the onset of the disease. During the second hit, synovitis and further citrullination
together with pre-existing ACPA lead to the development of chronic inflammation due to
persistent formation of ICs [174]. Intriguingly, three independent studies [175–177] have
shown that citrullination of EBV proteins may create epitopes that are recognized by ACPA
isolated from RA patients, indicating that ACPAs can indeed react with a viral deiminated
protein and suggesting that herpes viruses, such as EBV, are environmental factors con-
tributing to the onset and/or development of RA. Due to the lack of direct evidence, we
cannot however make a similar claim about HCMV species. In this regard, it would be
interesting to investigate whether viral infections are directly involved in PAD activation
and whether subsequent citrullination of cellular and/or viral proteins is dysregulated in
AD. Very recently, Casanova et al. [178] have reported citrullination of human cathelicidin
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LL37, a host defense peptide, in human rhinovirus (HRV)-infected bronchial epithelial cells,
which negatively affects the antimicrobial and antiviral activity of this peptide, suggesting
that citrullination may constitute a viral immune evasion mechanism.

On the other hand, an immune response to latent HCMV has been shown play a
critical role in the progression of inflammation and structural damage of joints in RA
patients [179]. In this regard, it is important to point out that RA patients tend to display
expansion of a particular subset of T-cells CD4+ lacking the costimulatory molecule CD28,
required for T-cell activation and survival [180,181] (see Sections 3.2 and 3.3). Intriguingly,
the frequency rate of this clonal expansion, which rarely exceeds 1% in the elderly, quite
often reaches values between 5% and 10% in RA patients, where it is associated with
extra-articular manifestations, such as early atherosclerotic vessel damage [94], probably
due to the ability of CD4+CD28− T-cells to exert a cytotoxic activity and directly attack the
vascular tissue [182]. As it correlates with disease severity and the extent of extra-articular
involvement, the frequency rate of CD4+CD28− T-cells in RA has been proposed to be a
predictor of future acute coronary events. Intriguingly, HCMV infection is a major trigger
of CD4+CD28− T-cells expansion [92]. The fact that these T-cells are only found in HCMV-
positive RA patients and respond to HCMV antigen stimulation in vitro suggests that
HCMV infection contributes to increased inflammation and RA aggravation by accelerating
extra manifestations, such as coronary damage. The detection of CD4+CD28- T-cells in
other inflammatory conditions, such as psoriatic arthritis, MS, inflammatory bowel diseases
(IBDs), cardiovascular diseases, chronic rejection, ankylosing spondylitis, and Wegener’s
granulomatosis, has led to the hypothesis that HCMV-mediate induction of CD4+CD28−

T-cells may be a shared mechanism of ADs [92,93,183,184]. Eventually, CD4+CD28−

T-cells may respond to autoantigens in the synovium and produce cytotoxic molecules
or activate macrophages to release pro-inflammatory cytokines that leads to cartilage
erosion [95]. As already mentioned, HCMV DNA, specific antigens, and infectious virus
particles have all been detected in synovial tissue and fluid from the joints of 10% to 50%
RA patients [156,185–188]. Interestingly, HCMV has been associated with a significantly
increased risk of cardiovascular disease also in non-RA patients [189–191], which is not so
surprising in light of mounting evidence supporting the ability of HCMV to manipulate
the host cell metabolism to favor viral growth [192].

Increased RA disease activities in HCMV-seropositive individuals may also be linked
to the expansion of another specific of CD8+ T-cell subset, which preferentially expresses
the inhibitory NK cell receptor LIR-1 and exerts a cytolytic effect [100]. Indeed, expression
of LIR-1 on CD8+ T-cells is upregulated following HCMV infection [193] and results in
reduced T-cell proliferation [194]. LIR-1 is also considered a marker of premature immune
senescence, since its upregulation may limit tissue damage otherwise caused by persistent
anti-HCMV immune response [195].

In conclusion, emerging evidence indicates that HCMV may contribute to the devel-
opment of RA by exacerbating and/or accelerating disease severity, especially in patients
with vascular manifestations. However, there is disagreement on whether HCMV infection
is an initiating event or just an epiphenomenon.

4.2. Neurological Diseases
Multiple Sclerosis

Multiple sclerosis (MS) is a chronic autoimmune inflammatory disease affecting the
central nervous system (CNS) characterized by the destruction of neuronal axonal myelin.
It mainly affects young adults, with a higher prevalence in females, often leading to non-
traumatic neurological disabilities. The progressive deterioration of motor, sensory, and
cognitive functions is characterized by specific histopathological markers, such as demyeli-
nation, leukocyte infiltration, neurodegeneration, and reactive gliosis of the CNS [196].
Although the precise etiology of MS is not yet clear, it is thought to occur in genetically
susceptible individuals following interaction with one or more environmental factors. The
most common environmental risk factors are sunlight exposure, vitamin D levels, cigarette
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smoke, and infectious agents [197]. In particular, several epidemiological studies have
reported a significant association of herpesvirus infections with MS pathogenesis. Among
herpesviruses, EBV, which infects about 95% of the global adult population, has often been
proposed as the major culprit candidate [198,199]. Although no other pathogens have been
as strongly associated with MS as EBV, many studies have looked at a possible correlation
between MS susceptibility and infection with other herpesviruses, in particular HCMV. One
of the peculiarities of HCMV is that of being able to establish a permanent latent infection
whose prevalence appears to be inversely related to the socioeconomic development of
the population in question—in good agreement with the broader “hygiene hypothesis”,
according to which the correlation between HCMV and MS may be indirectly linked to
exposure to other environmental factors [200]. Contrary to this assumption, others have
proposed that the immunopathology of MS can in fact be influenced by HCMV, as the
impact of this latter on the immune system ultimately interferes with the host immune
response to other pathogens (i.e., heterologous immunity) [201].

With regard to molecular evidence supporting a relationship between MS and HCMV
infection, two different studies found higher HCMV DNA loads in a cohort of MS patients
compared to HCs [202,203]. Moreover, the same authors detected positivity for anti-HCMV
IgG antibodies in almost 80% of the MS patients examined. However, the fact that there
were no significant differences in anti-HCMV antibody concentration between MS patients
and HCs led the authors to conclude that the presence of these antibodies alone was not a
significant marker for MS development. Finally, the hypothesis that the risk of developing
MS increases due to systemic HCMV infection is also supported by some MS cases where
opportunistic reactivation of HCMV infection has been linked to worsening of pre-existing
MS [204,205].

By contrast, other studies have shown a negative correlation between the development
of MS and HCMV seropositivity [200,201], although skeptics argue that this may not
be the result of a direct protective effect but simply an epiphenomenon related to the
adoption of a Western lifestyle or to early viral infections. In this regard, Alari-Pahissa and
colleagues [200] conducted a study aimed to determine whether the serological status of
HCMV in early MS patients was different from that observed in non-early MS patients, in
particular by looking at the putative association of this virus with the clinical course of the
disease and the humoral immune response against other herpesviruses. In a nutshell, the
authors found that HCMV increased not only the production of pro-inflammatory cytokines
(e.g., TNF-α and IFN-γ) but also the antibody-dependent cellular cytotoxicity mediated by
adaptive NKs, an activity that is known to influence the host immune response to other
pathogens [206,207]. Since anti-EBNA-1 antibody levels had been previously shown to
directly correlate with increased MS disease activity [208], the authors asked whether they
could establish an association between a specific humoral response in MS patients and
HCMV positivity. Interestingly, they observed a decrease in the EBNA-1 index related
to disease duration in HCMV-positive MS patients aged 40 years or younger [200,209].
Moreover, the same patients displayed an increased proportion of end-differentiating
T-cells. Thus, altogether these findings indicate that HCMV seropositive individuals close to
MS onset tend to develop an inflammatory process involving a pool of more differentiated
T-cells with respect to HCMV seronegative individuals. In this setting, persistent HCMV
infection might divert immunological resources, reducing the risk of autoimmunity, in line
with the hypothesis that it may be protective for MS development. A more recent study
has recorded lower anti-HCMV IgG seroprevalence rates in MS patients—either younger
or older than 40 years—compared to HCs [209]. Of note, these patients had relapsing
MS and were not subjected to any steroid or disease-modifying treatments at the time of
sampling. Overall, these findings indicate that, in MS patients, HCMV infection not only
modulates the immune response by reducing the severity of the disease, but may also affect
the response against EBV infection.

A very recent study has instead examined the possibility that HCMV may also induce
changes in the peripheral B-cell compartment in MS patients. Both B-cell phenotype
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and function were found to be influenced by HCMV infection, promoting early stages
of differentiation in relapsing–remitting MS (RRMS) and reducing the pro-inflammatory
cytokine profile in advanced MS. Overall, the results of this study argue in favor of the
hypothesis that HCMV infection modulates B-cell subset distribution and IFN-β response
in MS patients. Furthermore, they indicate that HCMV infection is associated with a
reduced pro-inflammatory cytokine profile in progressive MS (PMS), thereby providing
mechanistic insights into the alleged protective action of HCMV in MS [98].

In conclusion, the relationships and associations of HCMV infection with the develop-
ment and progression of MS appear physiologically relevant and, thus, worthy of further
investigation. Even though it is currently difficult to say with any certainty whether HCMV
exerts a beneficial or harmful effect on MS, the latest findings seem to concur that there is a
correlation between HCMV infection and a lower susceptibility to MS.

4.3. Enteropathies

In recent years, the role of HCMV in the pathogenesis of gastrointestinal diseases
has gained increasing attention. A large body of literature has in fact documented that
epithelial cells of the intestinal mucosa are the primary sites of HCMV replication both
in vivo [210] and in vitro [211,212]. Moreover, HCMV has also been pinpointed as the main
cause of graft failure after intestinal/multivisceral transplantation [213,214].

Among autoimmune diseases of the gastrointestinal tract, IBDs, in particular Crohn’s
disease (CD) and ulcerative colitis (UC), are those where a strict interplay with HCMV
infection has been demonstrated [215]. CD and UC differ in the type of lesions affecting
the digestive tract. Indeed, while UC is characterized by constant damage to the rectum
and variable and continuous lesions to the colon, CD displays discontinuous lesions of
the digestive tract [216]. Activation of IFN-γ-releasing T helper cells (Th1/Th17) and CTL
is a common marker of CD, thought to counteract HCMV activity. Conversely, UC is
characterized by a Th2/Th9 profile that does not inhibit HCMV replication [217,218]. These
key immunological differences may offer some clues as to why HCMV reactivation is an
infrequent event during CD flares, whereas it is recurrent in patients affected by UC.

A correlation between HCMV and IBDs was first proposed over 50 years ago [219] on
the basis of the observation that treatment of inflamed colonic mucosa with immunosup-
pressive drugs, such as corticosteroids, favored HCMV reactivation. A role of HCMV in
IBD has been very recently corroborated by findings showing that HCMV infection may
also complicate UC or CD hospitalizations in terms of increased inpatient mortality, length
of stay, and hospital charges [220].

HCMV-induced bowel inflammation follows a general pattern consisting of three
phases. The first phase (initiation) involves the release of soluble mediators of inflam-
mation from the mucosa, which serves as a way to recruit latently infected monocytes.
In the second phase (reactivation), monocyte activation, and differentiation trigger viral
reactivation. In the final phase (consolidation), HCMV starts replicating predominantly in
ECs, exacerbating the inflammatory response [221–225]. Although the reported prevalence
of HCMV infection in active IBD is highly variable, HCMV infection is regarded by many
as an important risk factor for the occurrence and exacerbation of IBD [226]. However,
the contribution of HCMV in IBD flare-ups has been recently questioned. While some
authors have argued in favor of a significant contribution of the virus in promoting in-
flammatory flares, others have endorsed a role of HCMV as passive bystander [227–229].
For instance, two cohorts of HCMV-positive and HCMV-negative patients showed similar
rates of colectomy, and the specific markers of infection spontaneously disappeared in
HCMV-positive patients [230]. In contrast, another group found an association between
HCMV infection and enhanced risk of steroid resistance, but no undeniable consensus was
actually reached [231,232]. These discrepancies can be to a certain extent reconciled by
the fact that the patients enrolled in those studies were affected by different inflammatory
diseases (UC or CD), displayed heterogeneous clinical scores, and underwent different
treatments. Additionally, inappropriate HCMV detection methods were employed. In-
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terestingly, episodes of HCMV-related enterocolitis tend to decrease among IBD patients,
suggesting that shifting from a corticosteroid-based maintenance therapy to more effective
agents that do not trigger viral reactivation may lessen the risk of HCMV colitis [233].

Additionally, the findings related to HCMV prevalence appear to be highly hetero-
geneous. For example, a meta-analysis demonstrated that HCMV infection occurred in
a percentage of IBD patients ranging from 0.5–100% [234]. Furthermore, an inconsis-
tent percentage of HCMV antigen positivity (10–90%) was reported by three IBD biopsy
studies [235–237]. In particular, HCMV tissue infection was observed in 11% of steroid-
refractory CD patients vs. 38% of UC patients [238,239]. Moreover, markers of HCMV
infection are rarely found in patients with inactive or mild-to-moderate UC [226,240–242],
whereas active HCMV infection occurs in 20% to 40% of steroid-refractory UC [243–250],
suggesting that HCMV exacerbates inflammation.

The molecular mechanisms underlying the interplay between HCMV and IBD seem
to be related to TNF-α, an inflammatory cytokine important for the pathophysiology of
IBD. Fittingly, different studies have shown how effective anti-TNFα agents can be in
treating IBDs refractory to medical therapy [251,252]. Interestingly, upon binding to the
TNF receptor (TNFR), TNF-α promotes NF-κB-mediate transactivation of the IE gene,
thereby triggering the differentiation of HCMV latently infected cells and boosting the
overall virus growth [253].

The relationship between IBD and HCMV has been studied in more detail using
TCR-αKO mice latently infected with MCMV [254,255], a condition thought to replicate
HCMV latency. TCR-αKO mice are prone to develop colitis, during which an increase in
MCMV replication rates is typically observed. Interestingly, infected cells were identified
mostly in the perivascular stroma region (i.e., pericytes) and inflamed colonic mucosa, in
good agreement with reports showing that HCMV infection is more pronounced when an
inflammatory status coexists [226]. In these sites, neutrophil migration and M1 macrophage
presence were detected, further corroborating the notion that HCMV can induce these
events in vitro as well [256].

The diagnostic protocol employed to differentiate HCMV-induced colitis from colitis
associated with the inflammatory disease itself requires the analysis of viral markers, as
clinical or endoscopic symptoms are not sufficient for the differential diagnosis [257–259].

Different methods are now available for the diagnosis of HCMV infection, either
indirect (e.g., IgM and IgG detection) or direct ones (e.g., detection of the virus or its com-
ponents), even though sometimes it is difficult to demonstrate HCMV reactivation from
its intestinal reservoir (reviewed in [228,260]). Probably, the most useful method to distin-
guish refractory from non-refractory IBD is to quantify the HCMV load, since refractory
patients display HCMV DNA values higher than 103 copies/105 cells—either enterocytes
or immune cells—in the damaged mucosa [261,262], thus enabling the differentiation of
HCMV colitis from mucosal infection.

HCMV infection is a critical issue to be taken into account also when it comes to
therapeutic options for IBD patients. Corticosteroids are the first-line therapy for moderate-
to-severe IBD flare-ups, but they enhance HCMV reactivation. Another treatment option
for UC patients is represented by antivirals. Antiviral therapy is considered the most ap-
propriate approach for moderate-to-severe, steroid-refractory relapse with high viral load
values [263]. The main difficulty with applying the appropriate antiviral therapy is the dis-
tinction of HCMV reactivation from HCMV colitis as inflammation of the colonic mucosa
of UC patients may contribute to reactivating HCMV replication [227,264]. Antiviral treat-
ment allows some patients with steroid-resistant UC and active HCMV infection to avoid
colectomy, even though they are poor responder to conventional IBD therapies [265], some-
times restoring the response to immunosuppressive therapies [266]. The response rate with
antiviral therapy in patients with steroid-refractory disease showing HCMV reactivation is
72% (range 50–83%) [231,242,244,248]. These data should not be considered as univocal,
because most of these patients were simultaneously treated with cyclosporine or granulocy-
tapheresis and antivirals. In addition, those HCMV positive patients who were not treated
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with antivirals also showed clinical improvements [230,236,244,267]. Many authors argue
that antiviral treatment should be given concomitantly with immunosuppressive therapy
to achieve a synergistic effect on both inflammation and viral replication [268,269], espe-
cially in the case of anti-TNF-α therapy [228,254]. Finally, an alternative option to treat UC
patients with HCMV colitis is represented by the administration of granulocyte/monocyte
adsorptive apheresis [244,270] or tacrolimus [230,244,271].

4.4. Metabolic Diseases
Type 1 Diabetes

Type 1 diabetes (T1D) is a chronic disease, characterized by the destruction of pan-
creatic β-cells, resulting in insulin deficiency. Autoimmune processes triggered by virus
infections, combined with genetic susceptibility and environmental factors, have been
implicated in the complex pathogenesis of T1D [272,273].

Attempts carried out by different groups to understand if HCMV is involved in the
etiology of T1D gave controversial results.

For example, two independent Finnish studies did not establish an association between
HCMV and T1D in young children [274,275]. These results confirm a Swedish prospective
study about T1D prevalence in congenitally infected infants [276]. Conversely, a strong
correlation between positivity for the HCMV genome and autoantibodies against islet
cells has been found in PBMCs of Canadian T1D patients [88] as well as in a congenitally
HCMV infected child, who developed T1D already at the age of 13 months [277]. Among
herpesviruses, also EBV has been suggested to be related to the development of T1D [278].
A more recent paper investigating the relationship between HCMV and EBV with T1D
revealed a higher percentage of IgM against HCMV and EBV in T1D patients compared to
the control group [279]. These studies collectively suggested that HCMV, and also EBV,
could represent a co-factor, rather than a major player, in the development of T1D.

Finally, HCMV is also generally considered an independent risk factor for early
developing new-onset posttransplantation diabetes mellitus (PTDM), supported by the
observation of its ability to induce the immunological damage of β-cells [280].

5. Conclusions

In recent years, HCMV has gained increasing attention from researchers due to its
harmful effects on immunocompromised patients. The tremendous research effort under-
taken to understand the mechanisms of HCMV pathogenesis and develop new diagnostic
techniques and antiviral drugs has however led to the discovery of novel functions of this
virus in other pathophysiological processes such as autoimmunity. In this review, we have
summarized past and current literature on the emerging role of HCMV in several ADs,
elucidating mechanisms (Figure 2) and related clinical manifestations (Table 1).

Overall, the evidence herein described clearly highlights the widespread ability of
HCMV to manipulate the immune system, which may lead to self-tolerance breakdown
in genetically predisposed individuals. Many hypotheses support that HCMV infection
have a role in ADs. HCMV display a high seroprevalence in adults; in the USA, Europe
and Australia, HCMV seroprevalence is variable, ranging between 36% and 77%, while in
developing countries and in particular sub-Saharan Africa, HCMV is highly endemic with
a seropositivity rate up to 100% [281]. A strengthening explanation for the high incidence
of HCMV in AD patients in developing countries could be related to the high prevalence
of ADs in the general population and the endemic state of HCMV with a rate approaching
100% in some areas [281].

Primary and secondary HCMV infections seem to be highly effective in shifting
the balance toward immune dysregulation, which eventually triggers the initiation or
perpetuation of ADs. There are also a few studies claiming a protective role of HCMV in
ADs, such as in the case of MS [98], which may be easily explained by the fact that HCMV
during the course of evolution has devised a number of strategies that limit inflammation
and tissue damage of the host to preserve virus–host coexistence [282].



Viruses 2021, 13, 260 17 of 29

Overall, the development of new diagnostic markers to detect the presence of HCMV
in AD patients may help clinicians better predict the type of clinical manifestations and the
extent of disease progression. Furthermore, it is envisaged that the adoption of antivirals
against HCMV in combination with immunosuppressive therapy may represent a viable
therapeutic solution for certain ADs.

As large epidemiological studies are clearly needed to draw any definitive conclusions
on the role of HCMV in AD pathogenesis, the availability of effective HCMV vaccines,
currently in clinical development, could not only unravel the impact of HCMV on Ads, but
also improve the quality of life of AD patients.

Table 1. Autoimmune diseases which have been triggered by or associated with HCMV.

Autoimmune Diseases References *

Rheumatologic diseases
Systemic Lupus Erythematosus [86,87,89,118–124,126,128–134]

Systemic sclerosis [33,83,111,138–141,143–147,149]
Rheumatoid arthritis [92,95,100,144,151–156,179,183,185]

Neurological diseases
Multiple sclerosis [98,200–205,209]

Enteropathies
Crohn disease & ulcerative colitis [217–256,263–271]

Metabolic diseases
Type 1 diabetes [88,274–280]

* References cite case reports, studies or aspects of pathogenesis in each case.
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