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SUMMARY

Inferring the latent disease-related miRNAs is helpful for providing a deep insight into observing the dis-
ease pathogenesis. We propose a method, CMMDA, to encode and integrate the context relationship
among multiple heterogeneous networks, the complementary information across these networks, and
the pairwise multimodal attributes. We first established multiple heterogeneous networks according to
the diverse disease similarities. The feature representation embedding the context relationship is formu-
lated for eachmiRNA (disease) node based on transformer.We designed a co-attention fusionmechanism
to encode the complementary information amongmultiple networks. In terms of a pair of miRNA and dis-
ease nodes, the pairwise attributes from multiple networks form a multimodal attribute embedding. A
module based on depthwise separable convolution is constructed to enhance the encoding of the specific
features from each modality. The experimental results and the ablation studies show that CMMDA’s su-
perior performance and the effectiveness of its major innovations.

INTRODUCTION

MicroRNAs (miRNAs) are single-stranded non-coding RNAs that include approximately 22 nucleotides that repress the expression of target

messenger RNAs (mRNAs).1–3 Accumulating studies showed that miRNAs are involved in many biological processes, including cell growth,

cell proliferation, cellular apoptosis and metabolism.4–6 Furthermore, miRNAs play a crucial role in the development of various human dis-

eases.7–9 Calin et al.10 reported the absent or abnormal expression of the miRNA cluster composed of miR-15 and miR-16 was one factor

that causes the chronic lymphocytic leukemia. The researchers demonstrated that the expression level of let-7 in the diabetic patients is obvi-

ously lower than that in the normal people.11 In addition, the concentration of miR-105 was found to be high in the breast tumor cells of the

patients with early breast cancer.12 Therefore, predicting disease-associated miRNA to explore the pathogenesis of diseases is imperative.

Computational predictions of miRNA-disease association can provide biologists with reliable candidate miRNAs for further experimental

research. Existing methods are distinguished into three categories. The first is based on the hypothesis that miRNAs with similarity functions

are commonly related to similar diseases.13 The functional similarity between two miRNAs can be calculated through two sets of related dis-

eases,14 which is then utilized to construct a similarity network of miRNAs. Jiang et al.15 presented an approach based on such a similarity

network and adopted a hypergeometric probability distribution to predict disease-associated miRNA candidates. However, this method

only focuses on first-order neighbor information from each node while neglecting multi-order details. Several prediction models are estab-

lished based on the Random Walk with Restart16–18 and weighted k-neighbor information19 but are difficult to apply to diseases without

known associated miRNAs.

The second category of approaches constructs a heterogeneous network comprised of miRNAs and diseases by introducing additional sim-

ilarities and associated information related to diseases. You et al.20 presented a path-basedmethod that exploits a depth-first search algorithm

to infer the association propensities between miRNAs and diseases. A matrix decomposition predictive approach was employed21 that adap-

tively learns neighbor information for each node to enhance the underlying representation of each node. Additional methods exploit the data of

miRNAs and diseases to predict disease-related miRNAs by non-negative matrix factorization,22,23 random walk,24–26 and support vector ma-

chines.27 However, these are shallow prediction methods that cannot learn deeper level features of miRNA and disease nodes.

The third category of methods has been proposed that learn deep features of miRNA and disease nodes based on deep learning tech-

nology. For example, the prediction model based on graph convolutional network and dual-autoencoder was constructed to learn the
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Figure 1. Framework of the proposed CMMDA model

(A) Construct two miRNA-disease heterogeneous networks according to two kinds of disease similarities.

(B) Learn the node feature representations embedding the context relationship and complementary features.

(C) Encode the pairwise multi-modal attributes.
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topological features of the miRNA and disease nodes.28 Other approaches leverage deep belief networks,29 graph attention networks,30–32

generative adversarial networks33 and autoencoders34–37 that only target a singlemiRNA-disease heterogeneous network. However, multiple

similarities can be calculated between disease nodes, so we can construct multiple miRNA-disease heterogeneous networks. Xie et al.38 es-

tablished a predictivemethodbased on graph convolutional networks to learn topological information aboutmiRNAs anddiseases frommul-

tiple heterogeneous networks but does not consider the complementarity of topological information ofmultiple networks.Moreover, specific

modal attribute embeddings exist for each pair ofmiRNAanddisease nodes in a heterogeneous network, and the attribute embeddings from

multiple networks formmultimodal attribute embeddings of each node pair. Previousmethods do not integrate suchmultimodal information

of node pairs.

Wepropose a predictionmethod calledCMMDA to learn the node features fromacrossmultiplemiRNA-disease heterogeneous networks

and encode a multimodal attribute from the pairwise node level (Figure 1). The contributions of our approach include the following.

� Two heterogeneous networks composed of the miRNA and disease nodes were established according to multiple kinds of disease

similarities. There are context relationships between the attributes of each target miRNA (disease) node and the ones of each of

the other miRNA (disease) node within each network. A separate learning module was constructed for each network to embed these

context relationships and encode the specific attributes of each miRNA (disease) node in the network.
� Two miRNA-disease networks reflect the similarities and associations among the miRNA and disease nodes from different perspec-

tives. Therefore, complementing the attribute information from one heterogeneous network to the attribute learning process for

another network is necessary. We designed a co-attention fusion mechanism which propagates the attribute information from one

network to another one to integrate the complementary node attributes (Figure 2).
� Themultiplemodality attributes of a pair ofmiRNAanddisease nodes derived frommultiplemiRNA-disease networks.We constructed

a module based on depthwise separable convolution networks to learn the modality-sensitive information and then deeply fused the

information from multiple modalities.
� As the node attributes of a network and the complementary attributes from another heterogeneous network have discriminative con-

tributions for themiRNA-disease association prediction, we designed an attention at network level to obtain the informative attributes.

The improved prediction performance of our method was shown by comparison with several state-of-the-art approaches and the abil-

ity of retrieving the latent candidate miRNA-disease associations was confirmed by case studies over 3 diseases. The ablation study

results showed the effectiveness of node context feature learning, information interaction acrossmultiple networks, and pairwisemulti-

modal attribute learning for the improved association prediction performance.
2 iScience 27, 108639, February 16, 2024



Figure 2. Illustration of the co-attention fusion mechanism which encodes the node complementary information across multiple networks
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RESULTS AND DISCUSSION

Evaluation metrics

Five-fold cross-validation evaluated the prediction performance of CMMDA and comparative methods. Positive samples included 12,446

known miRNA-disease associations, with 491,677 unknown associations as negative samples. We randomly divided the positive samples

into five sets. For each round, four sets of positive samples and randomly selected negative samples of equal size were treated as training

set, and the remaining set of positive samples and all the remaining negative samples were employed to test. The functional similarity be-

tween diseases was recalculated by utilizing the knownmiRNA-disease associations for each fold in the cross-validation. Because a significant

imbalance exists between the negative and positive samples, we adopt the area under the receiver operating characteristic (ROC) curve

(AUC)39 and the area under the precision-recall curve (AUPR)40 for the performance measure of the prediction model. First, we calculated

the AUC and AUPR for each disease during each round, then calculated the average value of the 591 diseases during cross-validations, all

of which were averaged for a final value. Because biologists are often concerned with the top-ranked prediction results, we calculated the

recall rate of the top k ˛ ½30; 240� candidates.

Parameter settings

Our learning model is implemented using the PyTorch framework on an NVIDIA GeForce GTX 2080Ti graphic card with 16 GB memory. For

the node feature learningmodule based on the transformer, both encoders include 4 encoding layers, each containing 8 attention heads with

output feature dimensions set to 1,444. The multimodal attribute encoding module comprises two depthwise convolution-pointwise convo-

lution layers. The number of input channels of depthwise convolution in the first and second layers is 2 and 32, respectively, with convolution

filter sizes of 33 3 and 2 3 3, respectively, and zero padding and step size values of 1 for each. The pooling window size in the twomax pool-

ing layers is 13 2. The value of g is set to 0.4 in our experiment.

Ablation studies

We performed ablation studies to evaluate the contributions of the node context relationship encoding (NCRE), co-attention (CA), informa-

tion fusion across multiple networks (IFAMN), network-level attention (NA) and multimodal attribute encoding (MMAE) on the CMMDA per-

formance. As shown in Table 1, the model containing NCRE, CA, IFAMN, NA andMMAE achieves the best performance. Without NCRE, the

AUC and AUPR results were reduced by 0.6% and 2.1%, respectively, compared to the full predictionmodel. When CA was removed from the

training process, AUC and AUPR reduced by 0.9% and 3.2%, respectively. In terms of CA without IFAMN, its AUC and AUPR are reduced by

0.7% and 2.6%, respectively. For themodel without NA, its AUC and AUPR decreased by 0.5% and 1.7%when it was compared with CMMDA.

Compared to the model without MMAE, the entire model improved by 1.2% in AUC and 4.3% in AUPR. The MMAE provided the most sig-

nificant contribution to improving the predictive performance of CMMDA because the introduction of the multimodal information more

comprehensively reflects the features of the miRNA-disease node pairs, and this module could better learn the specific information for

each input channel. In addition, we designed another instance which replaced theMMAE with a traditional convolution (TC) to learn the pair-

wise attributes. The instance got 0.929 of AUC and 0.407 of AUPR. AUC and AUPR of the instance with MMAE are 1.1% and 2.8% higher than

the one with TC, respectively. It indicated that the pairwise attribute learning based on depthwise separable convolution plays important role

for the improved prediction performance.

Comparison with other methods

Eleven state-of-the-art methods were compared with CMMDA, including GMDA,33 PBMDA,21 DMPred,22 GSTRW,26 Liu’s method,25

CFSAEMDA,35 GCNA-MDA,28 DAEMKL,36 DFELMDA,37 DBNMDA,29 and AEMDA.34 As presented in Figure 3, CMMDA acquired the best
iScience 27, 108639, February 16, 2024 3



Table 1. Results of the ablation studies

NCRE CA IFAMN NA MMAE TC Average AUC Average AUPR

✕ U U U U ✕ 0.934 0.414

U ✕ ✕ U U ✕ 0.931 0.403

U U ✕ U U ✕ 0.933 0.409

U U U ✕ U ✕ 0.935 0.418

U U U U ✕ ✕ 0.928 0.392

U U U U ✕ U 0.929 0.407

U U U U U ✕ 0.940 0.435
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average AUC of 0.940, which is 0.9% better than DFELMDA, 1.1% better than GMDA, 7.9% better than PBMDA, 4.8% better than DMPred,

2.1% better than CFSAEMDA, 2.4% better than GCNA-MDA, 4.4% better than DAEMKL, 12.7% better than GSTRW, 4.6% better than Liu’s

method, 3.1% better than DBNMDA, and 2.2% better than AEMDA. Considering the average AUPR, CMMDA obtained the best AUPR of

0.435, which is 5.9%, 17.5%, 34.4%, 34.8%, 18.8%, 25.5%, 27.1%, 39.1%, 33.4%, 24.5%, and 21.1% higher than DFELMDA, GMDA, PBMDA,

DMPred, CFSAEMDA, GCNA-MDA, DAEMKL, GSTRW, Liu’s method, DBNMDA, and AEMDA, respectively.

Our CMMDA model provides state-of-the-art performance in terms of AUC and AUPR. DFELMDA designed an ensemble learning

model based on deep forest and GMDA constructed a model based on generative adversarial network. They achieved the second-best

and the third-best performances, respectively. Both CFSAEMDA and AEMDA designed their models based on autoencoders, and they

obtained similar AUC values. Moreover, the former got 2.3% higher AUPR than the latter. DAEMKL fused multiple kinds of miRNA sim-

ilarity information and disease similarity information based on multiple kernel learning. Its prediction performance is not as good as that

of GCNA-MDA. The possible reason is GCNA-MDA captured the topological information of the miRNA and disease nodes by graph

neural network. DBNMDA outperformed DMPred and PBMDA as it applied pre-train restricted Boltzmann machine to extract the in-

formation of the miRNA-disease node pairs. Liu’s method and GSTRW leverage a model with a random walk and are both shallow pre-

dictive models that cannot deeply explore the association between miRNAs and diseases. CMMDA achieves the best performance

because it fully interacts with the information from the two networks and deeply learns the multimodal information of the miRNA-dis-

ease node pairs.

The recall rates of the top kmiRNA candidates are given in Figure 4, where a higher recall indicates that more disease-associatedmiRNAs

are correctly identified. When k increases from 30 to 240 through increments of 30, CMMDA is superior to all other methods at various k

thresholds. When k is 30, 60, and 90, the recall of CMMDA is 58.3%, 81.4%, and 95.8%, respectively. The second-best method of

DFELMDA has recall rates of 54.3%, 78.3%, and 93.8% at the top 30, 60, and 90 thresholds. GMDA ranked third with recall rates of 51.4%,

75.8%, and 91.2%, respectively. The recall of CFSAEMDA and AEMDA are similar through these thresholds with rates of 48.3%, 73.5%,

and 89.4% and 46.2%, 72.8%, and 88.9%, respectively. GCNA-MDA consistently outperformed DBNMDA with recall rates of 46.7%, 72.0%,

and 88.4%, compared to 45.4%, 69.7%, and 82.5% for DBNMDA, respectively. DAEMKLwas slightly higher thanDMPred, and the correspond-

ing recall rates of DAEMKL were 45.9%, 70.4%, and 82.1%, whereas the recall rates of DMPred are 45.1%, 69.2%, and 81.9%, respectively. The
Figure 3. ROC and PR curves of our method and the compared methods

(A) ROC curves; (B) PR curves.
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Figure 4. Average recall rates over all the diseases at different k values
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recall rates of the Liu’smethod at 40.5%, 59.8%, and 71.3% are inferior to those of PBMDAat 39.3%, 58.6%, and 68.7%. The lowest recall values

are seen with GSTRW as 23.6%, 38.4%, and 48.7%.

Case studies: Esophageal neoplasm, thyroid neoplasm, and kidney neoplasm

To evaluate the capability of CMMDA to identify real-world potential candidates, we conducted case studies with the esophageal neoplasm,

thyroid neoplasm, and kidney neoplasm diseases. Table 2 details the top 50 candidate miRNAs for esophageal neoplasm, and Tables S1

and S2 list the top 50 candidates for thyroid neoplasmand kidney neoplasm, respectively. Validationwas performedbased on three important

miRNA-disease association databases, including dbDEMC41 and miRCancer.42

The dbDEMC database has differentially expressed miRNAs in human cancers, including 2,224 miRNAs and 36 cancer types. As seen in

Table 2, among the miRNA candidates associated with esophageal neoplasm, 47 candidates appeared in dbDEMC, suggesting that these

miRNAs are up-regulated or down-regulated in esophageal neoplasm. Xie et al.42 applied text mining techniques to extract the empirically

verifiedmiRNA-cancer associations from published papers, which were recorded in themiRCancer database. From our results, 23 candidates

were contained in the miRCancer sources, suggesting that these predicted candidate miRNAs are associated with esophageal neoplasm.

Two miRNA candidates are not supported by corresponding data and are labeled ‘‘unconfirmed’’.

Of the miRNA candidates predicted to be associated with thyroid neoplasm listed in Table S1, 46 are contained in dbDEMC and 12 in

miRCancer, again suggesting a strong capability of CMMDA in identifying candidate miRNAs for thyroid neoplasms. The miRNA candidates

predicted for kidney neoplasms, as listed in Table S2, had 49 listed in dbDEMC and 9 in miRCancer. There are 4 candidates in the Table S1

and 1 candidate in Table S2 with label "unconfirmed". The label means there are no evidences to be found to confirm the associations among

these candidate miRNAs and the corresponding diseases.

Prediction of miRNA-disease associations

Following the evaluation of CMMDA by cross-validation and case studies, as described above, the model was applied to predict miRNA-dis-

ease associations. All known miRNA-disease associations and same amount of randomly selected unknown associations were used to train

CMMDA model. The top 50 miRNA candidates for each disease predicted by CMMDA with this study are presented in Table S3.

Limitations of the study

Recently, the various information about themiRNAs and diseases appeared, such as the interactions amongmiRNAs and lncRNAs. Therefore,

deep integration of these multi-source data and information and the multimodal data is our future work.

Conclusions

A disease-related miRNA prediction method was proposed to deeply integrate the context relationships among the node attributes within

each heterogeneous network and the complementary node features across multiple networks. The constructed two miRNA-disease hetero-

geneous networks were helpful for the subsequent node context relationship encoding. The designed co-attention fusion strategy was able

to exchange the complementary node features across multiple heterogeneous networks. The network-level attention was constructed to

assign greater weight to the more important node complementary features from multiple networks. The module based on depthwise sepa-

rable convolution networks was developed to deeply fuse the multi-modal attributes for each pair of miRNA and disease nodes. The 5-fold

cross validation results showed that CMMDA’s AUC, AUPR, and its recall rates for the top-ranked candidates were consistently superior to the
iScience 27, 108639, February 16, 2024 5



Table 2. Top 50 miRNA candidates related to esophageal neoplasm

Rank miRNA name Evidence Rank miRNA name Evidence

1 hsa-mir-34a dbDEMC, miRCancer 26 hsa-mir-141 dbDEMC, miRCancer

2 hsa-mir-135b dbDEMC 27 hsa-mir-100 dbDEMC, miRCancer

3 hsa-mir-21 dbDEMC, miRCancer 28 hsa-mir-193b dbDEMC

4 hsa-mir-200c dbDEMC 29 hsa-mir-26a-1 dbDEMC

5 hsa-let-7a-2 dbDEMC 30 hsa-mir-183 dbDEMC, miRCancer

6 hsa-mir-200a dbDEMC, miRCancer 31 hsa-mir-148a dbDEMC

7 hsa-let-7a-3 unconfirmed 32 hsa-mir-302a dbDEMC

8 hsa-mir-31 dbDEMC, miRCancer 33 hsa-mir-373 dbDEMC

9 hsa-mir-196a-2 unconfirmed 34 hsa-mir-451a dbDEMC

10 hsa-let-7g dbDEMC 35 hsa-mir-26a-2 dbDEMC

11 hsa-let-7b dbDEMC 36 hsa-mir-197 dbDEMC, miRCancer

12 hsa-mir-22 dbDEMC, miRCancer 37 hsa-mir-150 dbDEMC, miRCancer

13 hsa-mir-195 dbDEMC, miRCancer 38 hsa-mir-122 dbDEMC

14 hsa-mir-145 dbDEMC, miRCancer 39 hsa-mir-301a dbDEMC

15 hsa-let-7a-1 miRCancer 40 hsa-mir-204 dbDEMC, miRCancer

16 hsa-mir-99a dbDEMC 41 hsa-mir-342 dbDEMC

17 hsa-mir-126 dbDEMC, miRCancer 42 hsa-mir-429 dbDEMC

18 hsa-mir-27b dbDEMC 43 hsa-mir-92a-2 dbDEMC

19 hsa-mir-143 dbDEMC, miRCancer 44 hsa-mir-34b dbDEMC

20 hsa-mir-34c dbDEMC 45 hsa-mir-15a dbDEMC, miRCancer

21 hsa-let-7i dbDEMC 46 hsa-mir-19a dbDEMC

22 hsa-mir-223 dbDEMC, miRCancer 47 hsa-mir-625 dbDEMC

23 hsa-mir-99b dbDEMC, miRCancer 48 hsa-mir-210 dbDEMC, miRCancer

24 hsa-mir-425 dbDEMC 49 hsa-mir-146b dbDEMC, miRCancer

25 hsa-mir-205 dbDEMC, miRCancer 50 hsa-mir-96 dbDEMC, miRCancer
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compared advanced methods. In addition, case studies on three diseases further demonstrated CMMDA’s ability in discovering the latent

disease-related candidate miRNAs.
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REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited data

The version of miRNA-disease data Database: HMDD v3.2 https://www.cuilab.cn/hmdd

Disease terms The National Library of Medicine https://www.nlm.nih.gov

Other

Materials This paper N/A

Data and code This paper N/A
RESOURCE AVAILABILITY

Lead contact

Further requests for information should be directed and will be handled by the lead contact, Tiangang Zhang, email: zhang@hlju.edu.cn.
Materials availability

All materials reported in this paper will be shared by the lead contact upon request.
Data and code availability

� Data reported in this paper will be shared by the lead contact upon request.
� This paper does not report original code.
� Any additional information for reanalyzing this work is available from the lead contact upon request.
METHOD DETAILS

Given multiple types of miRNAs and diseases related through similarity data, our proposed CMMDA model for predicting miRNA-disease

associations. Two miRNA-disease heterogenous networks are constructed according to one miRNA similarity, two disease similarities, and

a miRNA-disease association. We encode feature vectors with the context relationships of the miRNA and disease nodes by transformer43

for each heterogeneous network. Complementary information from each heterogeneous network is integrated through a proposed co-atten-

tion fusion mechanism to obtain complementary feature representations. The multi-modal attribute representations of the miRNA-disease

node pairs are learned through a depthwise separable convolution-based module. These feature and attribute representations of miRNA-

disease node pair are incorporated through a fully-connected layer, further evaluating association probability of node pairs.
Dataset

We collected known miRNA-disease associations from the HMDD database,44 which includes 12,446 experimentally confirmed miRNA-dis-

ease associations from 853 miRNAs and 591 diseases. The disease terms are available at the U.S. National Library of Medicine.45 Semantic

similarities between two diseases are calculated based on representative directed acyclic graphs (DAGs)14 composed of disease terms,

and the functional similarities are calculated based on the associated miRNAs.
Multi-source data representations for miRNAs and diseases

Representations of miRNA-disease associations, miRNA similarities, and disease similarities

We define a matrix Amd ˛RNm3Nd to denote the association between Nm miRNAs and Nd diseases. Two miRNAs with similar functions are

more likely to be associated with similar diseases. So, if miRNAmi is associated with disease dj, then Amd
ij = 1. Otherwise, Amd

ij = 0. Sepa-

rately, we derive the disease setsF1 = fd1;d5g andF2 = fd3;d5;d8g related tomiRNAsmi andmj , such that the similarity betweenF1 andF2

is considered the similarity betweenmi andmj. Therefore, the similarity amongmiRNAs is calculated utilizing themethod proposed byWang

et al.14 that forms a similarity matrix Smir . A disease can be represented by a DAG structure that connects all semantic terms associated with

the disease. If diseases di and dj contain more common semantic terms, then they tend to be more similar. The method of Wang et al.14 is

applied again tomeasure semantic similarity of two diseases to obtain amatrix Sdis sem. Similar diseases aremore likely to interact with similar

miRNAs. We specify the feature vector of disease di and dj related to a miRNA to be hi and hj, respectively. The functional similarity of di and

dj is calculated as the cosine similarity46 between hi and hj, and the functional similarity between all diseases forms thematrix Sdis fun. AmiRNA

similarity matrix and two disease similarity matrices are expressed as,
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S =

8<: Smir ˛RNm 3Nm

Sdis sem ˛RNd 3Nd

Sdis fun ˛RNd 3Nd

(Equation 1)

where the values of each element in Smir , Sdis sem, and Sdis fun range from 0 to 1, and a higher value indicates greater similarity between the

corresponding nodes.

Multiple miRNA-disease heterogeneous networks

According to the similarity calculated for the two diseases, two bilayer miRNA-disease heterogeneous networks, defined asGsem = ðV ;EsemÞ
andGfun = ðV ;EfunÞ, are constructed. The node set V = fVmir WVdisg is composed of themiRNA nodes Vmir and disease nodes Vdis. An edge

eij ˛E exists if there is a connection between nodes vi ˛V and vj ˛V . The attribute matrix for all miRNA and disease nodes is represented as,

XJ =

�
Smir Amd

AmdT
Sdis J

�
;XJ ˛RðNm+Nd Þ3 ðNm+Nd Þ (Equation 2)

where AmdT
is the transpose matrix of Amd and ðJ = sem; funÞ represents that the disease similarity is computed according to semantic and

functional perspectives of the disease.
Capturing context relationships and learning node complementary feature representations

Encoding node features with context relationships based on transformer

The miRNA and disease node attributes are important auxiliary information for identifying miRNA-disease association. Given the attribute

matrices Xsem and Xfun of the miRNA and disease nodes, the i-th rows of each matrix record similarity between the i-th miRNA, mi, and all

other miRNAs, as well as the associations between mi and all other diseases. The similarity of the Nm + j disease, dj, and all other diseases

and associations with all miRNAs are represented in the Nm + j row of Xsem and Xfun. For any heterogeneous network, the node attributes

of a miRNA and its neighbors exist as context relationships.

We utilize the attribute information of the target and neighbor nodes to screen disease-related miRNAs. For Xsem and Xfun, we build two

independent transformer encoders ðTEsem and TEfunÞ, each consisting ofNlayer encoding layers. The goal is to learn the node feature with the

context relationship between the miRNA and disease nodes. Because the encoding of Xsem and Xfun are similar, we present Xsem only in the

following as an example to introduce the complete process.

Let the i-th miRNA node mi ˛V be the target node and vj ˛V be the neighbor miRNA and disease nodes. The context relationship be-

tween a target node and a neighbor node is aggregated based on the transformer. The feature vectors with d dimensions ofmi and vj at the

l-th coding layer are denoted as pl
mi

and pl
vj
, respectively. Then, Xsem is passed into the first layer of the TEsem as its input. The weight of the

context relationship mi to vj is

a
h;l

ðmi ;djÞ =
Wh;l

Q pl
mi
$Wh;l

K pl
vjffiffiffiffi

d
p

T

(Equation 3)

where h represents the h-th head attention and Wh;l
Q and Wh;l

K are the weight matrices of the head. The normalized attention weight is rep-

resented as,

b
h;l

ðmi ;vjÞ =

exp

�
a
h;l

ðmi ;vjÞ
�

P
v0
j
˛Uvj

exp

0@a
h;l�
mi ;v0j

�1A (Equation 4)

where Uvj is the set of neighboring nodes tomi, and exp is the exponential function. The feature information of the neighbor nodes to mi is

aggregated to form pl
mi
,

pl
mi

=

�
b
1;l

ðmi ;vjÞ $W
1;l
V pl

vj
k b

2;l

ðmi ;vjÞ $W
2;l
V pl

vj
k ::: k b

Nhead ;l

ðmi ;vjÞ $W
Nhead ;l
V pl

vj

�
(Equation 5)

whereNhead is the number of attention heads,WV is the weight matrix, and k denotes the vector concatenation operation. The output of the

last layer of TEsem is Psem, and psem
mi

is regarded as a feature vector formi that integrates the neighbor node context relationship. Similarly, the

TEfun are passed to theNlayer encoding layers to obtain a feature matrix for all target miRNA and disease nodes. The obtained feature vector

of mi based on the disease functional similarity is represented as pfun
mi

.

Co-attention fusion for complementing cross-network information

The constructed heterogeneous networksGsem andGfun defined above reflect the complex relationships among the miRNA and disease no-

des and their complementarity. Therefore, the node feature vector psem
mi

derived from Gsem and pfun
mi

from Gfun to enable the appropriate
10 iScience 27, 108639, February 16, 2024
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interactions with the related information.We propose a co-attention fusionmechanism to obtain this complementary information. The impor-

tance score of pfun
mi

to psem
mi

is defined as,

ε
sem;fun
mi

= Hpsem
mi

$FpfunT

mi
(Equation 6)

whereH and F are weight matrices shared by theGsem andGfun, pfunT

mi
is the transposematrix of pfun

mi
, and dsem;fun

mi
is the importance weight after

normalization,

dsem;fun
mi

=
exp

�
ε
sem;fun
mi

�
P

4˛ fsem;fung exp
�
Hpsem

mi
$Fp4T

mi

� (Equation 7)

Similarly, we calculate the normalized importance weights dsem;sem
mi

, dfun;semmi
, and dfun;funmi

of psem
mi

to psem
mi

, psem
mi

to pfun
mi

, and pfun
mi

to pfun
mi

, respec-

tively. The psem
mi

is input for a multi-layer perceptron ðMLPÞ, and the output feature vector after the interaction between psem
mi

and pfun
mi

is

~psem
mi

= MLP
�
dsem;semp

sem
mi

+ dsem;funp
fun
mi

�
(Equation 8)

where theMLP contains two fully connected layers and a ReLU activation function.47We also derive the feature vector ~pfun
mi

with the interaction

of pfun
mi

and psem
mi

, the latter of which stores the complementary information of nodemi in theGsem network. So, we add psem
mi

and ~psem
mi

to form

the complementary feature vector bpsem
mi

of mi , such that

bpsem
mi

= psem
mi

+ ~psem
mi

(Equation 9)

Following the same process outlined above, we obtain the complimentary feature vector bpfun
mi

of the node mi corresponding to the Gfun

network.

Integrating complementary features of multiple networks based on network-level attention

The complementary feature vectors bpsem
mi

and bpfun
mi

of mi contribute differently toward predicting miRNA-disease associations, which is

captured by constructing a score through a network-level attention mechanism,

sJmi
= hnetReLU

�
Wnet bpJ

mi
+ bnet

�
(Equation 10)

whereJ˛ fsem;fung, hnet andWnet are the weight vector andmatrix, respectively, and bnet is a bias vector. The normalization of this attention

weight is

mJ
mi

=
exp

�
sJmi

�
exp

�
ssemmi

�
+exp

�
sfunmi

� (Equation 11)

with a range in values of ½0; 1�. Then, an attention-enhanced complementary feature representation for mi is defined as,

zmi
=

X
J˛ fsem;fung

�
mJ
mi
bpJ

mi
+ bpJ

mi

�
(Equation 12)

Similarly, we find the attention-enhanced complementary feature representation, zdj
, for disease dj.
Multi-modal attribute embedding of miRNA-disease node pairs

We leverage the hypothesis that a pair mi�dj with an unknown association are more likely to be associated if they are related or similar to

more common miRNAs and diseases. Considering the two types of drug similarities, an embedding method was proposed to obtain two

modal attributes Osem and Ofun of miRNA and disease node pairs. We use a miRNA mi and disease dj pair as an example to describe the

process of building a representative embedding in the following. Given Smir , Sdis sem, and Amd , the i-th rows of Amd and Smir are ðAmdÞi;�
and ðSmirÞi;�, respectively, which are then spliced to form osem

1 ,

osem
1 =

�	
Smir



i;� k

�
Amd

�
i;�

�
;osem

1 ˛RðNm+NdÞ (Equation 13)

where k represents the concatenation operation, osem
1 records the similarity between mi and the other miRNA nodes as well as the associa-

tions between mi and all the other disease nodes. The j-th rows ðAmdÞTj;� of AmdT
and ðSsemÞj;� of Sdis sem are spliced to form osem

2 ,

osem
2 =

��
Amd

�T

j;�
k
�
Sdis sem

�
j;�

�
;osem

2 ˛RðNm+NdÞ (Equation 14)
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which is composed of the associations between dj and all miRNA nodes and the similarities between dj and all other disease nodes. Next, we

stack osem
1 and osem

2 to acquire the first mi�dj modal attribute embedding as,

Osem =

"
osem
1

osem
2

#
;Osem ˛R23 ðNm+Nd Þ (Equation 15)

Similarly, the second mi�dj modal attribute embedding is obtained as,

Ofun =

2664
	
Smir



i;� k

�
Amd

�
i;��

Amd
�T

j;�
k

�
Sdis fun

�
j;�

37775;Ofun ˛R23 ðNm+NdÞ (Equation 16)

These two modal attribute embeddings of mi�dj are stacked to form the final multi-modal attribute embedding of

Ofinal =
h
Osem;Ofun

i
;Ofinal ˛R23 23 ðNm+Nd Þ (Equation 17)

where ; is an up-down stack operation.
Multi-modal attribute encoding by depthwise separable convolution

As defined above, themulti-modal attribute embeddings of themi�dj node pair is denoted asOfinal, which are comprised of two channels of

Ofinal
1 and Ofinal

2 that are extracted from Gsem and Gfun, respectively, so each has specific information. To better capture this distinction, we

design a multi-modal attribute encoding module (MMAE) based on two depthwise separable convolution layers to learnOfinal. This module

consists of a depthwise convolution (DC) and pointwise convolution (PC), where DC applies a single filter on each input channel to capture its

specific attribute information. The PC creates a linear combination of the DC layer outputs to capture the correlation betweenOfinal
1 andOfinal

2 .

To define theMMAEmodule, we first setWdcon ˛Rna313kl3kw as theDCfilter, where na is the number of DC input channels, kl and kw are the

length and width of the filter, respectively, and 1 is the depth of the filter. We apply a zero-padding operation to capture and learn the bound-

ary information. A receptive field for the a-th single filter Wdcon slides along row m and column n of channel a is defined as,

Ya;m;n = Ofinal
a ðm : m + kw ;n : n + klÞ (Equation 18)

wherem˛ ½1; 4 � kw + 1�;n˛ ½2 +Nm +Nd � kl + 1�;a˛ ½1;na�. We obtain the element valueDaðm; nÞ of the a-th feature map by applying the

a-th single filter to Ya;m;n as,

Daðm; nÞ = sðWdconða; :; :Þ � Ya;m;nÞ (Equation 19)

where � indicates a convolution operation, s andWdcon are the ReLU6 activation function48 and parametermatrix, respectively. The elemental

values obtained from the na channels separately passing through the DC are stacked up and down to formD = ½D1;D2; :::;Dna �. To integrate

the information in the na channels, we sendD into the PC layer, also called the 131 convolution layer. The c-th 131 filter is defined asWpcon;c ˛
Rnc3na3131, where nc is the number of output channels of PC and 1 is the length and width of the filter. The element value Uc is obtained by

performing the c-th 131 convolution operation on D, such that

Uc = Wpcon;c �D (Equation 20)

where c˛ ½1; nc � and Wpcon is a trainable weight. Uc via max pooling layer forms the more representative attribute U0
c . Then, we derive the

multi-modal attribute representation Umoda of the mi�dj node pairs through two depthwise separable convolution layers and max pooling

layers.
Final integration and optimization

The complementary feature representation of miRNA, mi, and disease, dj, are concatenated to achieve final complementary feature repre-

sentation zij of mi�dj node pairs as,

zij =
h
zmir
vi

k zdisvj

i
(Equation 21)

where k denotes a connection operation. The zij result is sent to a full-connection and softmax layers49 to acquire association probability as,

2comp = softmax
	
Wcompzij + bcomp



(Equation 22)

whereWcomp is a weight matrix and bcomp is a bias vector. The 2comp = ½21comp; 2
2
comp� represents an association probability distribution of two

classes where 21comp and 22comp indicate the probability there is an association or not association between mi and dj, respectively. The cross-

entropy loss function is calculated between the true label yj and the predicted possibility score 2comp as,
12 iScience 27, 108639, February 16, 2024
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losscomp = �
XNtrain

i = 1

XC
j = 1

yj log
�
2jcomp

�
(Equation 23)

whereNtrain is the number of training sample sets. The true label yj indicates the actual association of a miRNA-disease node pairs, such that

yj = 1 when there is a real association between mi and dj, and yj = 0 when no known relationship exists.

The multi-modal attribute representation Umoda is flattened as the vector u when input to the fully connected and softmax layers. The pre-

dicted association probability and cross-entropy loss are as follows,

2moda = softmaxðWmodau + bmodaÞ (Equation 24)
lossmoda = �
XNtrain

i = 1

XC
j = 1

yj log
�
2
j
moda

�
(Equation 25)

whereWmoda and bmoda denote trainable weight and bias vector, respectively. Then, 2moda = ½21moda; 2
2
moda� where 21moda and 22moda contain the

related or unrelated probabilities of the nodes in the relationship mi�dj, respectively.

We optimize losscomp and lossmoda with the Adamalgorithm50 and perform aweighted summation operationwith 2comp and 2moda to obtain

the final prediction score as,

v = g3 2comp + ð1 � gÞ3 2moda (Equation 26)

where g˛ ½0; 1� is a weighted coefficient that balances the contributions of the complementary feature and multi-modal attribute

representations.
QUANTIFICATION AND STATISTICAL ANALYSIS

For each of prediction methods, we evaluated the average five-fold AUC (AUPR) result for the 591 diseases. When comparing two methods,

we calculated the pairedWilcoxon test using 591 average five-fold AUC pairs (AUPR pairs). The statistical results in Table S4 indicate that our

model consistently outperforms all other methods (p-value < 0.05).
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