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Abstract
Introduction: Peripheral neurotization, recently as a promising approach, has taken 
effect in recovering motor function after damage to a peripheral nerve root. Neural 
anastomosis comprised of nerve conduit and neurorrhaphy participates in the nerve 
reconstruction. Current literature lacks evidence supporting an individualized coap-
tation for rescue of locomotor loss in rat subjects with paraplegia secondary to pe-
ripheral nerve injury (PNI).
Methods: This meta-analysis intends to qualify the specificity of gap-specific coap-
tation in treating a paralyzed limb following PNI. We used a highly sensitive search 
strategy to identify all published studies in multiple databases up to 1 May 2019. All 
identified trials were systematically evaluated using specific inclusion and exclusion 
criteria. Cochrane methodology was also applied to the results of this study.
Results: Twelve studies, including 349 rat subjects, met eligibility criteria. For a me-
dium nerve defect (0.5–3.0 cm), nerve conduit was more likely than neurorrhaphy 
to precipitate axon regeneration and improve motor outcome of the hemiplegic limb 
(OR = 3.61, 95% CI = 1.80, 7.26, p < .0003) at 3-month follow-up, whereas neuror-
rhaphy might take its place in promoting limb motor function in a small nerve gap 
(<0.5 cm) (OR = 0.48, 95% CI = 0.22, 1.07, p < .007). For a small nerve defect, nerve 
conduit still demonstrated visible effectiveness in recovery of limb motion albeit 
poorer than neurorrhaphy (OR = 1.50, 95% CI = 0.92, 2.47, p < .05).
Conclusion: Selective neurotization facilitates motor regeneration after nerve tran-
section, and advisable choice of neural coaptation can maximize functional outcome 
on an individual basis.
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1  | INTRODUC TION

Peripheral nerve injury (PNI), common in daily life, usually results in 
pronounced loss of limb movement function and places a heavy bur-
den on healthcare system worldwide (Bao et al., 2018; Kamei et al., 
2018). Historically, neurotization, a surgical approach to transfer of 
one nerve to another nerve, was adopted to restore a paralyzed limb 
after PNI, whereas discrepancy of functional outcome often resulted 
from an unreasonable bridge between nerve stumps (i.e., neural anas-
tomosis or coaptaion). Recently, various biodegradable scaffolds are 
fabricated depended on size of the targeted nerve root, namely nerve 
conduit or neurotube, and applied as an intervening graft to connect 
a proximal stump with a distal one. Generally, after nerve transec-
tion, either end-to-end suture (neurorrhaphy) for a large nerve defect 
(nerve gap) or nerve conduit for a small one is more likely to con-
tribute to mismatch or misdirection between regrowing axons, which 
thus yields limited motor outcome (Herweh et al., 2017; Texakalidis, 
Tora, Lamanna, Wetzel, & Boulis, 2019). Consequently, efficacious 
maneuvers for optimal motor regeneration are still desirable.

Of note, success for nerve reconstruction is built on the sufficient 
understanding of peripheral nerve regeneration pathophysiologi-
cally (Kolcun, Burks, & Wang, 2018; Yavari, Mahmoudvand, Nadri, & 
Rouientan, 2018). After a nerve root is severed, the proximal stump 
is predisposed to axonal disintergration and apoptosis while the distal 
stump is inclined to form disorganized mass known as neuromas. Earlier 
reinnervation of a denervated limb results in better motor recovery, 
nevertheless, nerve regeneration is known to occur at only approxi-
mately 1 mm per day (Ochiai, Matsumoto, Hara, Nishiura, & Murai, 
2019; Song et al., 2019). Less time to reinnervation, distance required 
for regenerating fibers to arrive at end organ, and higher proportion 
of aligned axons between stumps are three determinants in the im-
provement of motor outcomes (Simic et al., 2018; Ye, Shen, Feng, & Xu, 
2018). Explorations on how to elevate percentage of axonal alignment 
and accelerate reinnervation of the target organ are still under way.

Tension-free neural anastomosis between stumps aids regrowth of 
an axotomized nerve and subserves good outcome during neurotization, 
whereas an overlarge gap in the damaged nerve inevitably brings a bar-
rier to unstrained suture of nerve (Hagemann, Stucker, Breyer, & Kunkel, 
2019). As a result, an intervening graft (nerve conduit) made of chitosan, 
less deleterious to ambient tissues, is exploited to act as a bridge be-
tween nerve stumps. Nerve conduit, physically and functionally sup-
porting stump nerves well, plays a positive role if the nerve gap is too 
large to connect through direct suture in the context of an unstrained 
status (Frank et al., 2018). Unlike end-to- end neurorrhaphy, nerve con-
duit also creates a microenvironment in favor of growth of regenerating 
axons. However, due to the reduced distance between stump nerves at 
the site of anastomosis, neurorrhaphy may shorten the time course of a 
nerve regeneration to achieve favorable outcome (Emamhadi & Andalib, 
2017; Karamanos, Rakitin, Dream, & Siddiqui, 2018; Korus, Ross, 
Doherty, & Miller, 2016), whereas some studies indicated that misdirec-
tion and disorganizaion of axons were caused by neurorrhaphy owing to 
limited match between regrowing fibers (Li, Yin, Yan, Wang, & Li, 2016; 
Mayer, Hruby, Salminger, Bodner, & Aszmann, 2019; Socolovsky et al., 

2018). Hence, whether a unique nerve defect has its own anastomo-
sis. A brewing controversy has developed over which of this two neural 
coaptations is the optimal option, and no definitive guidelines exist re-
garding the best strategy for the treatment of motor deficit. As human 
applications are still in very early stage, animal models have a positive 
impact on the development of future conduit-assisted neurotization. 
Any reliable neural coaptation will require efficacy assessment in an an-
imal model before it can be tested in paraplegic patients. The purpose 
of the present study was to determine effectiveness of individualized 
coaptation in recovering PNI in a common laboratory rat strain, thus ex-
trapolate the personalized anastomosis to clinic practice.

However, prospective, randomized controlled trials are needed 
to compare the two strategies. The studies, fabricating various nerve 
defects in peripheral nerve roots in rats, were reserved for illumi-
nation of the defect-specific anastomosis. Thus, we reviewed the 
literature and presented a meta-analysis of all available studies to 
evaluate the efficacy of personalized coaptation in the recovery of 
motor function in rats with PNI and clinically identify a sensible op-
tion of neural coaptation.

2  | MATERIAL S AND METHODS

2.1 | Literature search strategy and data sources

Using PubMed, Embase, MEDLINE, cochrane library, and Web of 
Science database, we systematically searched the literature pub-
lished up to 1 May 2019 following the PRISMA guidelines. Our 
search aimed to identify all original articles related to various coap-
tation employed in neurotization for PNI. Abstract and title search 
terms included were exploited for the searches. PubMed used a sin-
gle term, “nerve conduit,” but Embase, and others adopted the terms 
“neurorrhaphy” or “direct suture” and included more specific terms 
for anastomosis. To be as inclusive as possible, the search also in-
volved “anastomosis” or “anastomosis*.” The identical tactics were 
also used for neurotization:“neurotization” is applied in PubMed, but 
Embase and others use “intervening graft,” with more specific terms 
such as “nerve stumps’ connection” and “peripheral nerve stumps' 
connection.” Duplicate articles were removed, and 2 veteran review-
ers screened the titles and abstracts using predetermined inclusion 
and exclusion criteria. If study content was unclear after review-
ing the abstract, the full text was reviewed. Our search may have 
eliminated other studies that are not included in these databases and 
may be subject to publication bias. The studies, convincingly fabri-
cating varying nerve defects on peripheral nerve roots in rats, were 
retained. In addition, the references of all retrieved articles were 
checked for additional potential studies.

2.2 | Inclusion and exclusion criteria

The inclusion criteria were the following: (a) studies comparing ef-
fectiveness of neurotube and direct suture alone as control in rat 



     |  3 of 12QIAN et al.

subjects with PNI; (b) assessing functional outcome as defined by 
Basso, Beattie, and Bresnahan (BBB) or sciatic functional index 
(SFI) score (if BBB score was unavailable) at 1-month, 2-month, and 
3-month follow-ups; and (c) neurotization for a peripheral nerve root 
injury. Exclusion criteria for our primary analysis were as follows: (a) 
unavailability of a neurorrhaphy comparison group; (b) unavailabil-
ity of the number of subjects with functional outcome at 1-month, 
2-month, and 3-month follow-ups; (c) review articles, meta-analysis, 
and guidelines; (d) outcomes for allograft; and (e) nerve reconstitu-
tion for spine cord injury.

2.3 | Data extraction and analysis

Descriptive statistics and demographic data were extracted for sub-
jects in studies reserved. Collected data included year and country of 
publication, number of subjects, gender, weight, scale score of BBB 

and SFI, and follow-up period. Pooled estimates of individual sub-
ject information were reported for statistical background in rats. The 
reported overall mean value was used in cases in which individual 
subject information was not available. We also collected objective 
outcomes of neurotization, including anastomosis in the form of nerve 
conduit and neurorrhaphy, with reported measurements at the final 
follow-up. Data were abstracted from the eligible papers by the same 
2 professional reviewers.

In some studies, allograft was also used to treat PNI other than 
the autograft. However, results and outcome measurements were 
variable. Therefore, we only studied outcomes measures in autograft. 
We found that both the Basso, Beattie, and Bresnahan (BBB) and 
sciatic functional index (SFI) scale were reported most frequently. 
Thus, we applied the BBB and SFI scale as outcome measures for all 
extracted outcomes for limb motor function. Subject outcomes were 
collected for neurotization involving nerve conduit and/or neuror-
rhaphy; outcomes for allograft were excluded in this study.

F I G U R E  1  Flowchart of the literature 
search
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Functional outcomes in a paralyzed limb were reported for coap-
tation. For studies that described motor outcome as a score of SFI, we 
included these results as limb flexion function. The limb flexion sta-
tus was also used to categorize results from 3 studies that reported 
motor outcome as a score of SFI. Similarly, for studies that reported 
motor outcome as a score of BBB, we assigned these results as ex-
tension and flexion of a paralyzed limb. Sensory recovery was not 
evaluated in this paper in consideration of limitation of sensory func-
tion measure. We defined motor functional recovery as reaching a 
minimum score of 9 in BBB or 40 in SFI for good motor outcome, with 
BBB score of 21 and SFI score of 100 considered as native status.

2.4 | Quality assessment

Quality assessment for included studies was assessed by two in-
dependent reviewers. Briefly, Cochrane collaboration's tools were 
used for assessing quality according to the following domains: se-
lection bias (random sequence generation and allocation conceal-
ment), attrition bias (incomplete outcome data), performance and 
detection bias (blinding of participants, personnel and outcome as-
sessment), reporting bias (selective reporting), and other bias (other 

sources of bias). In addition, we used Newcastle–Ottawa scale 
(NOS) to assess the quality in the nonrandomized cohort studies.

2.5 | Ethical approval

This research did not implicate human participants or animals.

2.6 | Statistical analysis

The neural anastomosis was used to categorize the data: nerve con-
duit and neurorrhaphy. Descriptive statistics and demographic in-
formation for study participants were summarized separately. We 
analyzed interval data (percentage of male rats, scale score of BBB 
and SFI, and follow-up period) using the Student t test. Rates of 
different approaches were compared using one-way ANOVA, with 
Bonferroni correction for ad hoc comparisons. Absolute risk reduc-
tions (ARRs), odds ratios (ORs), and 95% confidence intervals (CIs) 
were calculated for the specified outcome. The significance of the 
pooled OR and ARR was determined by the Z test, and a p-value 
<.05 was considered significant. The heterogeneity between studies 

TA B L E  1  Summary of results included in the meta-analysis

Study, publication 
year Groups Gap size (cm) Male rats (%) BBB scores SFI scores

Mean follow-up 
(months)

Rodriguez, 2011 Nerve conduit (20) 0.5–3.0 (16.80%) 19 (95%) 14 (9–15) 27 (22–34) 2

Neurorrhaphy (20) –0.5 (17.85%) 20 (100%) 10 (7–13) 33 (17–56) 2

Greene, 2018 Nerve conduit (17) 0.5–3.0 (15.88%) 16 (95.4%) 13 (9–16) 40 (22–55) 3

Neurorrhaphy (17) ～0.5 (13.81%) 15 (89%) 9 (7–14) 19 (17–20) 3

Valero, 2001 Nerve conduit (6) 0.5–3.0 (6.100%) 5 (86%) 8 (6–12) 28 (22–39) 3

Neurorrhaphy (6) ～0.5 (6.100%) 6 (100%) 6 (2–9) 25 (17–40) 3

Wu, 2016 Nerve conduit (12) 0.5–3.0 (7.58%) 11 (92%) 12 (9–17) 32 (32–50) 3

Neurorrhaphy (12) ～0.5 (10.83%) 11 (92%) 9 (8–11) 35 (19–46) 3

Simões, 2010 Nerve conduit (14) 0.5–3.0 (12.86%) 12 (86%) 11 (9–15) 37 (28–44) 3

Neurorrhaphy (14) ～0.5 (9.64%) 12 (86%) 10 (7–12) 41 (23–60) 3

Hamdollah, 2012 Nerve conduit (30) 0.5–3.0 (25.83%) 28 (93%) 11 (9–12) 26 (22–38) 1

Neurorrhaphy (30) ～0.5 (24.80%) 28 (93%) 9 (8–10) 33 (20–53) 1

Wang, 2018 Nerve conduit (15) 0.5–3.0 (11.73%) 15 (100%) 13 (8–15) 18 (10–34) 1

Neurorrhaphy (15) ～0.5 (12.80%) 15 (100%) 14 (9–17) 26 (17–34) 1

D'Arpa S., 2018 Nerve conduit (20) 0.5–3.0 (17.85%) 18 (90%) 10 (9–13) 22 (15–29) 1

Neurorrhaphy (19) ～0.5 (14.74%) 16 (84%) 12 (8–17) 30 (14–38) 1

Cemil B., 2009 Nerve conduit (10) 0.5–3.0 (10.100%) 10 (100%) 7 (3–15) n.r. 2

Neurorrhaphy (10) ～0.5 (10.100%) 9 (90%) 10 (5–16) n.r. 2

Youlai, 2015 Nerve conduit (16) 0.5–3.0 (15.95%) 13 (87%) 11 (8–15) 52 (46–63) 3

Neurorrhaphy (16) ～0.5 (16.100%) 15 (95%) 10 (9–16) 33 (22–47) 3

García, 2014 Nerve conduit (6) 0.5–3.0 (6.100%) 5 (83%) 8 (3–10) n.r. 3

Neurorrhaphy (6) ～0.5 (6.100%) 4 (67%) 10 (8–13) n.r. 3

Nadi M., 2015 Nerve conduit (9) 0.5–3.0 (6.67%) 8 (89%) 11 (8–14) 27 (22–34) 2

Neurorrhaphy (9) ～0.5 (8.89%) 9 (100%) 13 (9–16) 33 (19–41) 2
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was assessed by chi-square-based Q test and I2 test. Heterogeneity 
was considered significant when p < .10, and pooled estimates were 
calculated using the random-effects (DerSimonian–Laird) model, 
otherwise, a fixed-effects (Mantel–Haenszel) model was used. 
Publication bias was investigated using visual evaluation of funnel 
plots and Egger regression asymmetry test. All statistical analyses 
were performed using SAS statistical software (version 9.2), Review 
Manager (RevMan5.3; The Cochrane collaboration) or STATA soft-
ware (Peking university, Beijing, Haidian district), and probability 
values <.05 were considered statistically significant. The percentage 
of functional recovery (BBB ≥ 9 or SFI ≥ 40) for nerve conduit and 
neurorrhaphy was also reported.

3  | RESULTS

3.1 | Study and subject characteristics

The systematic methods were used to search the related databases, 
including the number of studies collected and excluded, and are 
shown in Figure 1. Overall, 12 studies met the inclusion and ex-
clusion criteria, of which 9 were prospective studies. Studies were 
assigned two groups: the nerve conduit group (n = 175) and the neu-
rorrhaphy group (n = 174). All studies assigned the scale score of BBB 
and SFI as functional outcomes postprocedure. The data for gaps 
faked individually were reserved.

In this analysis, 95% of subjects were male rats, the average 
weight was 300 g, the mean preoperative period (interval between 
injury and surgery) was 2 weeks, the mean follow-up period was 
2 months (Table 1). There were no significant differences in weight, 
sex, or follow-up period among rats. The key characteristics of the 

studies included are summarized in Table 2. Quality assessments for 
studies were summarized in Tables 3 and 4 and Figure 2. Briefly, for 
RCTs, randomization methods were described in 2 studies (Greene 
et al., 2018; Rodriguez et al., 2011) and allocation concealments were 
adequate in 1 studies. For blindness, 4 studies utilized blind observ-
ers to assess outcome, though blinded for carers were unlikely in all 
studies (Hundepool et al., 2018; Simoes et al., 2010; Valero-Cabre 
et al., 2001; Wu et al., 2016).

In addition, 2 studies reported rates of the follow-up as 100% 
(D'Arpa et al., 2018; Wang et al., 2018), which were not mentioned 
in other studies. Terminally, none of studies had selective outcome 
reporting. For cohort studies, the results for quality assessment 
showed that all four studies had a moderate risk of bias (Figure 2) 
and reached 6–7 out of 9 points (Tables 3 and 4).

3.2 | Neurotube-assisted anastomosis

To recover functions of the paralyzed limbs, 175 subjects under-
went neurotube-dependent anastomosis during nerve reconsti-
tution. Scale score of BBB or SFI was categorized as limb motor 
outcomes. The proportion of subjects with favorable motor out-
come (recognized as BBB ≥ 9 or SFI ≥ 40) was reported for 1-month 
follow-up in 4 studies, 2-month follow-up in 4 studies, and 3-month 
follow-up in 4 studies. The acquired results suggested that neuro-
tube-assisted nerve significantly escalated number of subjects with 
a good outcome for 1-month follow-up (OR = 3.11, 95% CI = 1.72, 
5.62, p = .002), 2-month follow-up (OR = 3.80, 95% CI = 2.11, 6.85, 
p < .0001), and 3-month follow-up (OR = 7.17, 95% CI = 3.44, 14.96, 
p < .001) (Figure 3 and Table 2). In the subgroup analysis stratified by 
size of a nerve defect, the number of subjects with poor functional 

TA B L E  2  ARR and OR calculating with the corresponding 95% CI for good functional outcome following neurotization

Variables Follow-up
Functional 
outcome

Number of 
subjects ARR (95%) p OR (95%) p ph

Nerve conduit 
Subjects in all types 
of defect

1-month follow-up BBB > 9 79 15% (12%, 20%) .0006 0.10 (0.05,0.40) .003 .62

SFI = 0 98 23% (19%, 28%) <.001 0.14 (0.04, 0.47) <.0001 .48

2-month follow-up BBB > 9 115 7% (−2%, 11%) .001 0.17 (0.08, 0.30) .004 .81

SFI = 0 52 18% (13%, 21%) <.002 0.21 (0.10, 0.31) .0001 .72

3-month follow-up BBB > 9 126 3% (−5%, 6%) .027 1.67 (1.34, 2.30) <.0001 .51

SFI = 0 34 12% (9%, 17%) <.001 0.38 (0.20, 0.73) .17 .64

Small nerve defect 
(<0.5 cm)

2-month follow-up BBB > 9 47 16% (11%, 22%) <.001 0.09 (0.03, 0.38) .003 .27

SFI = 0 38 19% (15%, 23%) .0015 1.91 (1.20, 3.87) <.0001 .76

Medium 
nerve defect 
(0.5–3.0 cm)

2-month follow-up BBB > 9 56 18% (13%, 27%) .057 0.68 (0.21, 2.27) .002 .34

SFI = 0 31 10% (9%, 16%) <.001 0.14 (0.06, 0.35) .0034 .36

Neurorrhaphy

Small nerve defect 
(<0.5 cm)

2-month follow-up BBB > 9 50 17% (14%, 19%) .0048 1.28 (0.91, 1.73) <.0001 .2

SFI = 0 28 11% (7%, 18%) <.001 0.20 (0.12, 0.35) .27 .08

Medium 
nerve defect 
(0.5–3.0 cm)

2-month follow-up BBB > 9 63 35% (30%, 43%) .00012 0.16 (0.02, 1.10) .06 .07

SFI = 0 46 24% (21%, 38%) <.001 0.33 (0.21, 0.47) .64 .21
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outcome was significantly reduced in conduit-assisted nerve transfer 
for 3-month follow-up (OR = 0.20, 95%CI = 0.08, 0.51, p = .0008 in 
the small defects and OR = 5.84, 95% CI = 2.37, 14.42, p = .0001 in 
the medium defect) (Figure 4a and Table 2). Moreover, no significant 
between-study heterogeneity was detected in either subgroup or 
overall analysis (ph = 0.42 for all comparisons).

3.3 | End-to-end neurorrhaphy

A total of 6 studies involving 87 subjects were eligible for calcula-
tion of the efficacy of direct suture in activities of paralyzed limb 
in subjects with small nerve gap, while analogous analysis in 87 
subjects with medium nerve gap was carried out. We defined scale 
score of BBB or SFI as a motor regeneration for hemiplegic limb. 
Similar results were observed in nerve gap <5 mm (OR = 0.44, 95% 
CI = 0.19, 1.03, p =  .06) and in nerve gap between 5 and 30 mm 
(OR = 4.96, 95% CI = 2.01, 12.19, p =  .0005; Figure 4b). The re-
sults from neurorrhaphy group were suggestive that dexterous 
limb motion was early regained due to an aggressive axon arrange-
ment. (OR = 0.20, 95% CI = 0.08, 0.58, p = .0008). Heterogeneity 
was not observed in all comparisons except for in one comparison 
(ph = 1.15), in which a random-effects model was used (Figure 4). 
The results of pooled analysis demonstrated that conduit-depend-
ent nerve transfer strongly promoted reinnervation of denervated 
limb and sharply elevated activities of hemiplegic limbs (Figure 5; 
OR = 3.35, 95% CI = 1.99, 6.63, p < .00001).

3.4 | Functional outcomes summary

The outcome summary for the different anastomosis strategies as 
categorized by BBB and SFI (defined as a flexion or extension of 
limb) is shown in Table 4 (Figure S1). All results were used for com-
parison. Two joint movement in the limb was normalized to a BBB 
scale score of 9 or SFI of 40 as a good outcome, full power score to 
a score of 21 in BBB or 100 in SFI, and no movement to a score of 0.

3.5 | Assessment of publication bias

Publication bias was estimated by funnel plots and Egger's test (Cemil, 
Ture, Cevirgen, Kaymaz, & Kaymaz, 2009). Morphology of funnel plot 
did not reflect obvious asymmetry (Figure 6). Then, Egger's test was 
used to provide statistical evidence of funnel plot symmetry, which 
did not show any evidence of publication bias (p > .18 for all compari-
sons), indicating that our results are statistically robust.

4  | DISCUSSION

Peripheral nerve injury (PNI) usually occurs in 13–20 of every 
100,000 persons, often alongside other damage (Garcia-Medrano 

TA B L E  3  Modified Newcastle–Ottawa Quality Assessment 
Scale (cohort studies)

Assessment of quality of a cohort study—Newcastle–
Ottawa scale  

Selection (tick one box in each section)  

1. Representativeness of the intervention cohort  

(a) Truly representative of the HCH-caused hemiplegia 
population

＊

(b) Somewhat representative of the HCH-caused 
hemiplegia population

＊

(c) Selected group of participants  

(d) No description of the derivation of the cohort  

2. Selection of the nonintervention cohort  

(a) Drawn from the same community as the intervention 
cohort

＊

(b) Drawn from a different source  

(c) No description of the derivation of the 
nonintervention cohort

 

3. Ascertainment of intervention  

(a) Secure record (e.g., healthcare record) ＊

(b) Structured interview ＊

(c) Written self report  

(d) Other/no description  

4. Demonstration that outcome of interest was not 
present at start of study

 

(a) Yes ＊

(b) No  

Comparability (tick one or all boxes, as appropriate)  

1. Comparability of cohorts on the basis of the design or 
analysis

 

(a) Study controls for nerve defects ＊

(b) Study controls for BBB: Basso, Beattie, and 
Bresnahan for locomotor functional recovery

＊

Outcome (tick one box in each section)  

1. Assessment of outcome  

(a) Independent blind assessment ＊

(b) Record linkage ＊

(c) Self report  

(d) Other/no description  

2. Was follow-up long enough for outcomes to occur  

(a) Yes, if median duration of follow-up ≥2 months ＊

(b) No, if median duration of follow-up <2 months  

3. Adequacy of follow-up of cohorts  

(a) Complete follow-up: all subjects accounted for ＊

(b) Subjects lost to follow-up unlikely to introduce 
bias: number lost <= 20%, or description of those lost 
suggesting no different from those followed

＊

(c) Follow-up rate <80% (select an adequate %) and no 
description of those lost

 

(d) No statement  

Note: A study can be awarded a maximum of one star for each 
numbered item within the selection and outcome categories. A 
maximum of two stars can be given for comparability.
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et al., 2017; Yu et al., 2015). It also frequently concerns young active 
persons, for whom even a partial loss of nerve function can entail 
serious social and economic consequences. Neurotization is con-
sidered to be one of the primary treatment options to restore limb 
function in patients with PNI, with active pathway reconstructed by 
bridging a distal stump nerve. However, owing to an oversize nerve 
defect, poor functional outcome frequently occurs postoperatively. 
As is well known, tension-free coaptation can offer an opportunity 
for autonomous axonal arrangement and lead to maximal alignment 
of regenerating axons (Nadi et al., 2018).

Furthermore, more attention to flaccid neural coaptation has 
been paid by surgeons. It is reported that since an accurate ax-
onal arrangement comes true under no strained status, a variety 
of nerve conduits made from advanced biodegradable materials, 
including laminin and fibronectin (well-known as extracellular ma-
trix, ECM), are applied to neural connectivity when the nerve gap 
is too large to carry out nerve reconstitution. On the whole, rapid 
regrowth and exact arrangement among axons are efficiently pre-
cipitated by ECM-containing conduit characterized by porosity in 
lumen. Direct suture may be restricted to small nerve gaps in PNI 
and is liable to mislead axons regeneration. Consequently, neu-
rotube-assisted neurotization offers a vital source to recover the 
paralyzed limb in comparison with neurorrhaphy.

In this review, disparate nerve gaps mimicked individually in 
rats were used to compare the effect between neurotube and di-
rect suture on repair by tubulization or neurorrhaphy of the pe-
ripheral nerve injury and were categorized as small nerve defect 
and medium nerve defect. Individualized neural anastomosis was 
conducted to achieve a maximal motor regeneration for the par-
alyzed limb. Nerve conduit-dependent neurotization significantly 
increased both flexion and extension of the paralyzed limbs in 
subjects with medium nerve defect, compared with neurorrhaphy 
(p < .05). Instead, improvement in limb activities in subjects with 
small nerve defect was directly obtained from neurorrhaphy. The 
results were suggestive that conduit-dependent reconstruction 
was likely superior to end-to-end suture in recovering flexion and 
extension for the paralyzed limbs. In our study, we assigned good 
outcome as BBB ≥ 9 or SFI ≥ 40 in limb motion, interchangeably. 
After interpretation to data for 3-month follow-up, we conclude 

First author, year Selection Comparability Outcome Total score

Rodriguez, 2011 ** *** ** 7/9

Greene, 2018 ** ** ** 6/9

Valero, 2001 ** ** *** 7/9

Wu, 2016 ** *** ** 7/9

Simões, 2010 *** * ** 6/9

Hamdollah, 2012 ** ** *** 7/9

Wang, 2018 *** ** ** 7/9

Nadi M., 2015 * *** *** 7/9

D'Arpa S., 2018 ** *** ** 7/9

TA B L E  4   Risk of bias assessment for 
nonrandomized cohort studies (modified 
Newcastle–Ottawa scale)

F I G U R E  2  Risk of bias assessment for randomized controlled 
trials. “+”, low risk of bias; “−”, high risk of bias; and “?”, indicates 
unclear risk of bias
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that good outcomes are more likely to occur in neural anastomo-
sis with nerve conduit than with neurorrhaphy (OR = 5.84, 95% 
CI = 2.37, 14.42, p = .0008). Interestingly, the time course to motor 
regeneration in neurorrhaphy is often shorter than those in nerve 
conduit (p < .05).

The challenge of restoring limb motor function in subjects with 
PNI could explain the similar outcomes among groups. The optimal 
timing for neurotization has been accepted as 3–6 months after 
loss of limb activities in subjects who have not shown clinical re-
innervation, although early reconstitution of neural conduction 
route in victims has been advocated. A prolonged denervation 
after limb paralysis can cause irreversible atrophy of target mus-
cle fibers, besides axonal regeneration is known to occur at only 
approximately 1 mm per day. When considering the difference in 
timing for the regenerating fibers to reach the end organ, note 
that rapid neural regeneration is a prerequisite for motor func-
tional recovery. Shortening time period of axon regrowth and im-
proving the percentage of axonal outgrowth seem to be crucial for 
the flexion and extension. There was no statistical significance in 
time to axonal regeneration for nerve conduit versus neurorrha-
phy (p = .53), although our meta-analysis demonstrated that good 

outcomes were more common for subjects in neurotube-depen-
dent anastomosis than in direct suture (OR = 4.8, 95% CI = 1.37, 
14.40, p  =  .006 and OR  =  2.43, 95% CI  =  2.09, 5.94, p  <  .001). 
There are some reasons why differences in functional recoveries 
may exist between this two coaptation techniques. Nerve conduit 
offers a suitable microenvironment that is conducive to axonal re-
generation and accurate arrangement. Stump nerves sutured into 
conduit can be vascularized by infiltration of vessels in surround-
ing tissues. Furthermore, no barricade from ambient environment 
is preserved for efficient regeneration with nerve conduit, by 
which more regenerating axons successfully reach the end organ, 
and more inputs from motor cortex are delivered to the target 
muscles to produce the flexion and extension on a paralyzed limb. 
In comparison, due to lack of autonomous opportunity, either mis-
directed or mismatched axonal regrowth is observed in end-to-
end suture, although neurorrhaphy take less time to innervate the 
axons.

The mechanisms underlying which nerve transfer is used to 
reanimate paralyzed limbs after PNI are currently explored by re-
searchers. Based on renewability of peripheral nerve roots, paraple-
gic limbs can be recontrolled by motor cortex ipsilateral to lesion if 

F I G U R E  3  Forest plot with OR estimating with the corresponding 95% CI for favorable outcome (defined as BBB ≥ 9) associated with 
nerve conduit versus neurorrhaphy for individual trials and the pooled population at 1-month, 2-month, and 3-month follow-ups (subjects in 
all gaps). CI, confidence interval; BBB, Basso, Beattie, and Bresnahan for locomotor functional recovery; OR, odds ratio
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F I G U R E  4  Forest plot with OR estimating with the corresponding 95% CI for (a) favorable outcome (defined as BBB ≥ 9 and SFI ≥ 40) 
associated with nerve conduit versus neurorrhaphy individual trials and the subgroup population stratified by size of defect for 2-month 
follow-up (b). CI, confidence interval; BBB, Basso, Beattie, and Bresnahan for locomotor functional recovery; OR, odds ratio
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F I G U R E  5  Forest plot with OR estimating with the corresponding 95% CI for the proportion of rats with poor outcome in motor function 
(defined as BBB < 9 or SFI < 40) associated with nerve conduit versus neurorrhaphy for individual trials and the pooled population at 
1-month, 2-month, and 3-month follow-ups (rats in all defects). CI, confidence interval; BBB, Basso, Beattie, and Bresnahan for locomotor 
functional recovery; OR, odds ratio; SFI, sciatic functional index

F I G U R E  6  Funnel plot to detect 
publication bias. No significant funnel 
asymmetry was observed which could 
indicate publication bias (p-value for Egger 
test was .27). logOR, Natural logarithm 
of the OR; SE of logOR, standard error of 
the logOR



     |  11 of 12QIAN et al.

commands from motor regions are smoothly transported to the end 
organ by the reconstructed pathway. In attempt to restore continu-
ity of injured nerve in its native status, experienced surgeons often 
use neurotube to conduct personalized anastomosis depended on 
size of a nerve gap in repair of PNI. However, further studies are 
needed to investigate the effect of selected anastomosis on recov-
ering the paralyzed limb after PNI.

The limitations to our study include the neglect of some stud-
ies via exclusion criteria that may have provided sufficient sub-
ject numbers to demonstrate statistically significant superiority of 
one technique over another. Notably, the outcome of our anal-
ysis and the conclusions of our review account only for subjects 
who were subjected to neural reconstruction relatively late. The 
analysis should be interpreted with regard to the interval between 
paralysis and neurotization (12  ±  1.6  days). The conclusion may 
be affected by the inconsistency of the articles included in the 
study. For example, the use of studies recruiting different subjects 
to support neurotization for motor deficit was rarely reported, and 
false negatives or positives may have contributed to the surgical 
decision-making and thereby the outcomes; another inconsistency 
was the use of postoperative rehabilitation, which could likewise 
affect the surgical decision-making and outcomes. Likewise, the 
pooling of disparate neural connectivity strategies entailed by the 
small subject numbers may affect the analysis if any of the individ-
ualized anastomosis proves remarkably superior or inferior in the 
future. The well-recognized phenomenon that reports focusing on 
the best outcomes can also affect a systematic review, especially 
if there is a difference in the number of reports for the various 
nerve coaptation strategies during a stated time period. However, 
a randomized, prospective trial will be needed in future analyses 
when/if systematic reviews are inadequate; significant bias was 
introduced in this review because it was based on uncontrolled 
studies. As a conventional therapy, efficacy of allograft in repair-
ing median nerve defect should be evaluated. Finally, the exam-
ination of outcomes was performed by different investigators in 
each study, and the outcomes can be confounded by subjective 
judgment. Appropriate assessment of subject functional outcomes 
should be considered to be more than just motor function. Further 
study into neurotube-based anastomosis is carried out pathophys-
iologically and neurobiologically for an overall functional state.

5  | CONCLUSIONS

Our purpose was to investigate whether a difference in reported 
outcomes for gap-specific anastomosis to treat motor deficit ex-
isted between neurotube-dependent coaptation and direct suture. 
Based on current data, there is an evidence that conduit-assisted 
coaptation can dramatically accelerate the motor functional recov-
ery in medium nerve defects (0.5–3.0 cm), while direct suture con-
tributes to motor regeneration in small defects (<0.5 cm). Optimal 
outcomes will be derived from defect-guided coaptation. However, 
large, multicenter RCTs calculating efficacy of individual coaptation 

in reanimation of the paralyzed limb after PNI are still necessary, 
especially for a variety of nerve gaps.
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