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Abstract

Background: Vector-borne diseases are major public health concerns worldwide. For many of them, vector control is still
key to primary prevention, with control actions planned and evaluated using vector occurrence records. Yet vectors can be
difficult to detect, and vector occurrence indices will be biased whenever spurious detection/non-detection records arise
during surveys. Here, we investigate the process of Chagas disease vector detection, assessing the performance of the
surveillance method used in most control programs – active triatomine-bug searches by trained health agents.

Methodology/Principal Findings: Control agents conducted triplicate vector searches in 414 man-made ecotopes of two
rural localities. Ecotope-specific ‘detection histories’ (vectors or their traces detected or not in each individual search) were
analyzed using ordinary methods that disregard detection failures and multiple detection-state site-occupancy models that
accommodate false-negative and false-positive detections. Mean (6SE) vector-search sensitivity was ,0.28360.057. Vector-
detection odds increased as bug colonies grew denser, and were lower in houses than in most peridomestic structures,
particularly woodpiles. False-positive detections (non-vector fecal streaks misidentified as signs of vector presence) occurred
with probability ,0.01160.008. The model-averaged estimate of infestation (44.566.4%) was ,2.4–3.9 times higher than
naı̈ve indices computed assuming perfect detection after single vector searches (11.4–18.8%); about 106–137 infestation
foci went undetected during such standard searches.

Conclusions/Significance: We illustrate a relatively straightforward approach to addressing vector detection uncertainty
under realistic field survey conditions. Standard vector searches had low sensitivity except in certain singular circumstances.
Our findings suggest that many infestation foci may go undetected during routine surveys, especially when vector density is
low. Undetected foci can cause control failures and induce bias in entomological indices; this may confound disease risk
assessment and mislead program managers into flawed decision making. By helping correct bias in naı̈ve indices, the
approach we illustrate has potential to critically strengthen vector-borne disease control-surveillance systems.
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Introduction

The primary prevention of most vector-borne diseases

depends on averting contact between humans and pathogen

vectors [1]. In turn, vector control often relies on the detection

and elimination of infestation foci, particularly when the vectors

occur in or around human residences. This is the case, for

example, of the Aedes mosquito vectors of dengue and other

arboviruses [1,2] or of the triatomine bug vectors of Trypano-
soma cruzi, the agent of Chagas disease – the most important

human parasitic disease in the Americas (see refs. [1,3,4] and

http://www.who.int/mediacentre/factsheets/fs340/en/). Since

undetected vector foci usually cannot be eliminated, the

effectiveness of vector-detection methods can have a strong

influence on our ability to prevent new disease cases. In addition,

measures of vector occurrence in or around houses (‘infestation’

and related indices) are among the principal indicators used in

disease risk assessment and vector control program management

– including intervention design, planning, implementation,

operation, and evaluation [1–3]. Developing and running sound

vector-borne disease prevention programs therefore demands a

reliable understanding of the vector-detection process; however,

few quantitative studies have fully addressed this issue in realistic

field settings.
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Particularly critical is knowledge about the sensitivity and

specificity of the methods used to determine infestation in control-

surveillance systems [5–9]. In this context, sensitivity is defined as

the probability of detecting at least one vector in a site (e.g., a

house or any other discrete ‘ecotope’ such as a corral, henhouse,

catch basin, or palm-tree) that is actually infested; more generally,

sensitivity is the probability of detection, conditioned on occur-

rence [5–9]. If sensitivity is less than 1.0 (,100%), some sites will

be classified as non-infested despite being, in fact, infested – i.e.,

there will be some false-negative results in the record database and

infestation indices will be biased low [7,8]. Specificity is, in turn,

the probability of declaring non-infested a sampling unit where the

vectors indeed do not occur; that is, the probability of non-

detection, conditioned on non-occurrence. If this probability is less

than 1.0, some sites will be classified as infested when they are not

– i.e., there will be some false-positive results in the record

database, which will induce positive bias in infestation indices [9].

The probability of obtaining a false-positive result equals 12

specificity. Although false-positive results are unlikely to be

common in vector surveys, they may possibly arise because of

taxonomic errors (say, a non-triatomine reduviid nymph misiden-

tified as a triatomine bug, or a non-vector sandfly species as a

vector species) or, more easily, when indirect signs of infestation

are used as proxies of vector presence (e.g., triatomine bug fecal

streaks, which may be confused with those of other arthropods

[10–12]) or when householders’ reports of vector presence in

dwellings are not confirmed by actually examining the insects (e.g.,

ref. [13]).

In addition to estimating sensitivity and specificity, researchers

and program managers may be interested in knowing how these

key parameters vary in response to independent variables. For

example, we may wish to know whether and to what extent the

sensitivity of a vector-detection method is affected by the

characteristics of vector hiding/breeding sites (i.e., ecotope traits),

by the awareness of vector control agents, or by differences in

vector abundance among ecotopes or over time. This latter

possibility is particularly relevant in areas undergoing vector

control, because the expected effect of control activities is to

reduce infestation prevalence, with foci becoming rarer, and

vector population density, with foci becoming smaller. In turn,

these effects may be expected to reduce the sensitivity of any

vector-detection method: rarer and smaller foci will probably be

harder to detect [14–17].

Unfortunately, no gold-standard vector-detection method (with

100% sensitivity and 100% specificity) is currently available. In the

case of Chagas disease vectors, demolition of houses or other man-

made structures could perhaps reach near-perfect performance

[14], but this option has little practical relevance; as a rule, more

sensitive methods are more costly [5,16]. In this paper, we adopt a

different approach based on repeated-sampling of individual

ecotopes and the hierarchical site-occupancy models developed by

Miller et al. [9], which explicitly accommodate false-negative and

false-positive results. This allows us to investigate the sensitivity

and specificity of active triatomine-bug searches by trained staff

(the standard method used in routine surveillance) with unprec-

edented detail. We quantify how vector-search sensitivity varies

with observed vector density and across ecotope types while

adjusting for possible effects of our sampling scheme. We show

that triatomine-search specificity is more than acceptable, but

sensitivity is overall low and can vary widely, leading to negatively-

biased naı̈ve infestation indices that can seriously threaten vector

control program management and, ultimately, disease prevention.

Methods

Ethics statement
This study is part of a research program on Chagas disease eco-

epidemiology approved by Fiocruz’s Institutional Review Board

(CEP/Fiocruz protocol 139/01) and Committee for Animal

Research (CEUA/Fiocruz protocol P59-12-2) and by the Brazilian

Environmental Agency (IBAMA/Sisbio protocol 14323-6). All

householders provided informed consent prior to dwelling

inspections.

Study setting
We studied two neighboring areas in the lower Jaguaribe valley

(state of Ceará, Brazil), where dwelling infestation by triatomine

bugs is common and Chagas disease a significant public health

concern [18–21]. These areas belong, respectively, to the

municipalities of Russas and Jaguaruana; while geographically

close and ecologically similar, our study localities have some

contrasting characteristics. In Russas (,4u569S, 37u55.59W) we

studied a rural area consisting of several dwelling clusters plus

some isolated dwelling compounds; this area lies close to the main

(paved) road and is 4 km from the municipality’s main town. The

landscape is heavily anthropogenic, with small agricultural plots

and a few patches of Caatinga xeric shrubland. In Jaguaruana

(,4u529S, 37u529W), the study area is 8–10 km from the

municipality’s main town, the original Caatinga vegetation is

overall better preserved, and dwelling compounds are more

spatially scattered; a detailed description of this area can be found

in ref. [21].

Sampling strategy
Our sampling units were all individual ecotopes within each

dwelling compound. An ecotope was defined as any man-made

discrete structure where triatomine bugs might find shelter; a

typical dwelling compound had about 5–6 such ecotopes (mean

5.75, median 5.5, range 2–12) including the house and several

Author Summary

Vector-borne disease prevention often relies on health
agents inspecting dwellings and eliminating the vector
infestation foci they detect. The effectiveness of preven-
tion programs thus depends on vector-detection perfor-
mance. Unfortunately, detection failures can be common,
particularly when infestation is rare and vector foci small.
Although this can threaten vector control, the actual
performance of vector searches has seldom been investi-
gated in detail. Here, we assess Chagas disease vector
detection by trained control-surveillance agents. We used
models that explicitly account for detection errors to
analyze triplicate vector detection/non-detection records
from 414 man-made ‘ecotopes’ (houses, henhouses,
woodpiles, etc.) in two rural localities. On average, a single
round of vector searches correctly identified about 28% of
the infested ecotopes; detection was more challenging in
lightly-infested ecotopes and in some ecotope types,
particularly houses and brick piles. After correcting
detection errors, we estimated that ,45% of the ecotopes
were most likely infested, while observed rates were ,11–
19%; standard, single-round vector searches therefore
missed many infestation foci. Our findings underscore
the importance of taking detection failures into account
when assessing infestation by disease vectors, and
illustrate a straightforward approach to tackle the major
but still underappreciated problem of imperfect vector
detection.

Uncertainty in Disease-Vector Surveys
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further structures (see Table 1 and below). Overall, 414 ecotopes

were sampled in 72 dwelling compounds; a few uncommon

ecotopes (three kennels, a dovecot, and a bird-cage), none of which

appeared to be infested, were excluded from the analyses.

Each ecotope was searched three times over a short period

(median 8 days, range 7–13 days) by local vector control-

surveillance staff, for a total effort of 1,242 individual vector

searches. Vector-search teams were rotated and kept blind to the

results of previous search rounds so that the outcomes of individual

vector searches could be treated as independent. Field teams were

instructed to stop searching in each ecotope as soon as the first

triatomine bug was detected. All ecotopes were sprayed with a

pyrethroid insecticide (following Ceará state’s Health Department

standard procedures) after the second vector search, regardless of

whether or not vectors had been detected previously; the third

vector search was conducted immediately after insecticide

application, which might reveal cryptic infestation foci because

of the irritant and ‘knock-down’ effects of pyrethroids [14,15]. All

triatomines found in each ecotope were collected after the third

search round. A more detailed description of our sampling

scheme, including caveats, can be found in ref. [21]; one

important difference between ref. [21] and our present analyses

is that here we consider two types of evidence of ecotope

infestation: (i) ‘certain’ evidence, represented by the finding and

identification of triatomine bugs of any stage or their exuviae

(molted ‘skins’), and (ii) ‘uncertain’ evidence, represented by the

finding of only fecal streaks identified by field staff as triatomine

bug feces – a proxy for triatomine bug presence used in vector

surveillance in our study setting and elsewhere (e.g., [10–12,14–

16]). Triatomine bug fecal streaks are relatively easy to distinguish

from, but can still be confused with, those of cockroaches, ticks,

flies, or bedbugs; hence, this proxy introduces the possibility of

false-positive detections [11,12].

Individual vector-search results in each ecotope were recorded

separately so that a three-entry ‘detection history’ including three

‘detection states’ was available for each ecotope: ‘certain’

detections (coded as 2), ‘uncertain’ detections (coded 1), or ‘non-

detections’ (coded 0) [9]. Table 2 presents the interpretation of the

‘detection histories’ observed in our survey.

Data analysis
The focus of this paper is the sampling process governing vector

detection/non-detection, not the biological processes governing

vector presence/absence in individual ecotopes. Therefore, and

for simplicity, we pool data across triatomine bug species

(Triatoma brasiliensis, T. pseudomaculata, and Rhodnius nasutus
were detected; details not shown) and do not investigate correlates

of ecotope infestation (for T. brasiliensis, such analyses are

provided in ref. [21]). Rather, we ask what are the sensitivity

and specificity of vector searches, what covariates may induce

vector-detection heterogeneity, and how sampling-process uncer-

tainty may affect infestation estimates. In short, this report is an

attempt at shedding light on the process of vector detection, and

consequently emphasizes practical issues critical to entomological

surveillance [16].

We analyzed our detection/non-detection records in two steps.

First, we used simple descriptive statistics, considering the results of

each vector-search round separately and those of all rounds

combined (Tables 1–3). Importantly, these analyses ignore any

possible detection errors; this mimics standard practice and yields

the naı̈ve ‘infestation indices’ recommended by the World Health

Organization [3] – which are used, as far as we are aware, in all

Chagas disease control programs. The naı̈ve infestation index is

simply IInaı̈ve = x/n, where x is the number of infested sampling
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units (here, ecotopes with $1 detection of vectors or their traces)

and n is the number of units sampled [3]; for example, with x = 50

and n = 100, IInaı̈ve = 50/100 = 0.50 (or 50%). Although this is

routinely interpreted as the proportion (or percent) of sampling

units that were infested, we emphasize that it is, in reality, the

proportion of sampling units where evidence of infestation was

detected, usually after a single search. Both quantities would only

be equal if evidence of infestation were ascertained without error;

they will differ, for example, whenever the sensitivity of the

method used to detect infestation is p,1.0. For p = 0.75, an

adjusted estimator of infestation would be IIadjusted = x/

(n6p) = 50/(10060.75) <0.67. Hence, IInaı̈ve will be biased low

whenever p,1.0, which is probably always [7,8].

In the second phase of our analyses, we adopt the ‘multiple

detection-state’ modeling framework of Miller et al. [9] to

explicitly account for possible false-negative (detection failures)

and false-positive results (misidentified fecal streaks). We focus on

estimating (i) the sensitivity of active vector searches by trained

staff (denoted p11); (ii) the effects of a suite of selected covariates on

p11; and (iii) the probability that an ecotope is incorrectly classified

as infested when it is not (p10, possibly induced by misidentification

of fecal streaks) and its complement, 1 – p10, which estimates

vector-search specificity (denoted s). Our covariates on p11 reflect a

series of hypotheses about what might affect vector-search

sensitivity; after preliminary analyses and prior results from a

Jaguaruana data subset (see ref. [21]), we considered three major

possibilities:

(i) Heterogeneity induced by features of our sampling scheme,

with the sensitivity of vector searches in each ecotope

Table 2. Chagas disease vector ‘detection histories’ in 414 man-made ecotopes of the lower Jaguaribe valley in northeastern Brazil
across three vector-search rounds: code, interpretation, and individual history frequencies.

Vector-search round Interpretation Frequency

Search 1 Search 2 Search 3

0 0 0 No detection after three search rounds 317

0 0 2 Vectors/exuviae detected only in search 3 7

0 1 0 Only fecal streaks detected only in search 2 3

0 2 0 Vectors/exuviae detected only in search 2 7

0 2 2 Vectors/exuviae detected in searches 2 and 3 2

1 0 0 Only fecal streaks detected only in search 1 5

1 0 2 Only fecal streaks detected in search 1; vectors/exuviae detected in search 3 1

1 1 0 Only fecal streaks detected in searches 1 and 2 2

1 2 0 Only fecal streaks detected in search 1; vectors/exuviae detected in search 2 2

1 2 2 Only fecal streaks detected in search 1; vectors/exuviae detected in searches 2 and 3 1

2 0 0 Vectors/exuviae detected only in search 1 16

2 0 2 Vectors/exuviae detected in searches 1 and 3 7

2 1 0 Only fecal streaks detected in search 2; vectors/exuviae detected in search 1 6

2 1 1 Only fecal streaks detected in searches 2 and 3; vectors/exuviae detected in search 1 1

2 1 2 Only fecal streaks detected in search 2; vectors/exuviae detected in searches 1 and 3 4

2 2 0 Vectors/exuviae detected in searches 1 and 2 9

2 2 1 Only fecal streaks detected in search 3; vectors/exuviae detected in searches 1 and 2 2

2 2 2 Vectors/exuviae detected in searches 1 to 3 22

Results in the first three columns are coded as follows: 0 = non-detection, 1 = detection of only fecal streaks suggestive of triatomine bug presence, and 2 = detection
of at least one triatomine bug (any stage) or exuvia (molted ‘skin’) that could be identified without doubt.
doi:10.1371/journal.pntd.0003187.t002

Table 3. Observed infestation by Chagas disease vectors in 414 man-made ecotopes of the lower Jaguaribe valley in northeastern
Brazil: naı̈ve infestation indices and number of vectors collected.

Locality Observed infestation IInaı̈ve (%) Vectors Density Crowding

Yes No

Russas 10 199 4.79 14 0.07 1.40

Jaguaruana 87 118 42.44 634 3.09 7.29

Total 97 317 23.43 648 1.57 6.68

IInaı̈ve, observed infestation index; Vectors, number of triatomine bugs collected in each locality; Density, mean number of vectors across all ecotopes sampled;
Crowding, mean number of vectors across ecotopes in which at least one vector was detected; differences between localities were highly significant: observed
infestation, Fisher’s exact test, P,0.0001; observed vector abundance, Wilcoxon rank-sum test, x2 = 27.25, d.f. = 1, P,0.0001.
doi:10.1371/journal.pntd.0003187.t003

Uncertainty in Disease-Vector Surveys
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hypothesized to vary (a) among vector-search rounds, with

higher sensitivity in the first round (covariate ‘‘Search 1’’,

coded 1 for the result of the first round and 0 otherwise) (see

ref. [21]), and/or (b) depending on whether or not, during a

given search round, detections had occurred in other

ecotopes within the same dwelling compound, which could

possibly affect the awareness of field staff as regards vector

presence (covariate ‘‘SDEc’’; for each ecotope and search

round, ‘‘SDEc’’ = 1 if one or more detections had occurred

in other, same-dwelling ecotopes and 0 otherwise);

(ii) Heterogeneity induced by differences in vector density, with

sensitivity hypothesized to be higher in more heavily-infested

ecotopes. We used the number of bugs collected in each

individual ecotope after the third search round as our

measure of vector density (covariate ‘‘Number of bugs’’); the

data were standardized to mean 0 and standard deviation

(SD) 1 for analysis; and

(iii) Heterogeneity induced by ecotope characteristics, with

infestation easier/harder to detect in particular ecotope

types; we defined the following classes (each coded 1/0):

‘‘House’’, ‘‘Storeroom’’, ‘‘Henhouse’’, ‘‘Goat/sheep corral’’,

‘‘Cattle corral’’, ‘‘Pigsty’’, ‘‘Brick pile’’, ‘‘Tile pile’’, and

‘‘Woodpile’’ (Table 1). We also tested whether broader

classes (‘‘Building’’, ‘‘Animal enclosure’’, and ‘‘Pile’’) could

explain the data more parsimoniously.

We evaluated these covariates on p11 as additive terms using the

logit link function [9], and used the second-order version of

Akaike’s information criterion (AICc, with n = 414 ecotopes) to

rank the models and assess the relative support for each model,

given the data [6–9,22]. We fitted 44 models, including a ‘null’

model estimating only intercepts; after preliminary analyses, all

models except the ‘null’ included the ‘‘Number of bugs’’ covariate,

which clearly improved AICc scores. Models with non-zero Akaike

weights (wi) are presented in Table 4, and the full model set in

Table S1.

Apart from sensitivity (p11) and covariate effects, our models also

estimate (i) a site-occupancy parameter (denoted Y) that expresses

the mean probability that an ecotope is infested (or, equivalently,

overall infestation prevalence); (ii) the probability of false-positive

detections, p10; and (iii) the probability that a detection is classified

as ‘certain’, given the ecotope is infested and a detection occurred

(denoted b) [9]. For simplicity, Y was held constant in our current

models, which as mentioned above focus on the vector-detection

process and especially on the sensitivity of active vector searches

(p11). Covariate effects were allowed to modify p11, p10 and b, so

that detection parameters had different intercepts but common

slopes; we tested alternative parameterizations, either with p10

fixed at zero (i.e., assuming no false-positive results) or with p10

and b varying only with observed bug density and sampling-

scheme covariates (‘‘Search 1’’ and ‘‘SDEc’’), but the models had

larger AICc scores (details not shown). We calculated model-

averaged estimates of Y and covariate effects on p11, with

unconditional standard errors (SEs), using equations 4.1 and 4.9 in

ref. [22]. For detection parameters p11, p10, and b (and their SEs),

we calculated model-weighted averages of individual results (i.e.,

model-predicted values and SEs for each individual ecotope and

search round, weighted by each model’s wi) and provide summary

Table 4. The subset of multiple detection-state models with non-zero Akaike weights; models are ranked by their AICc scores.

Detection covariates* AICc DAICc wi Likelihood k 22log

NB+S1+SDEc+BP+WP+Ho+SR+GC 912.41 0.00 0.2836 1.0000 12 887.63

NB+S1+SDEc+BP+WP+Ho+SR+GC+HH 912.76 0.35 0.2381 0.8395 13 885.85

NB+S1+SDEc+BP+WP+Ho+GC+HH 913.47 1.06 0.1669 0.5886 12 888.69

NB+S1+SDEc+BP+WP+Ho+HH 914.35 1.94 0.1075 0.3791 11 891.69

NB+S1+SDEc+BP+WP+Ho+GC 914.57 2.16 0.0963 0.3396 11 891.91

NB+S1+SDEc+BP+WP+Ho+SR+HH 915.30 2.89 0.0669 0.2357 12 890.52

NB+S1+SDEc+BP+WP+Ho+SR 918.42 6.01 0.0140 0.0495 11 895.76

NB+S1+SDEc+BP+WP+Ho 918.51 6.10 0.0134 0.0474 10 897.96

NB+S1+SDEc+BP+WP+Ho+OS 920.61 8.20 0.0047 0.0166 11 897.95

NB+S1+SDEc+BP+WP+Ho+AE 920.62 8.21 0.0047 0.0165 11 897.96

NB+S1+SDEc+BP+WP 922.59 10.18 0.0017 0.0062 9 904.14

NB+S1+SDEc+BP+TP+WP 924.49 12.08 0.0007 0.0024 10 903.94

NB+S1+SDEc+BP+WP+PS 924.61 12.20 0.0006 0.0022 10 904.06

NB+S1+BP+WP+Ho 925.10 12.69 0.0005 0.0018 9 906.65

NB+SDEc+BP+WP+Ho 927.09 14.68 0.0002 0.0006 9 908.64

NB+S1+SDEc+WP 929.56 17.15 0.0001 0.0002 8 913.20

NB+S1+SDEc+TP+WP 931.61 19.20 0.0001 0.0001 9 913.16

*The probability of site-occupancy (or overall infestation prevalence, Y) was held constant in all models. Detection parameters include p11 (probability of detecting
infestation in an infested ecotope, or vector-search sensitivity); p10 (probability of misclassifying a non-infested ecotope as infested); and b (probability that a detection
is classified as ‘certain’ in an infested ecotope where at least one detection occurred). Each detection parameter was allowed to have a distinct intercept, whereas all
parameters had a common slope, as estimated for p11, for each covariate (see text and Table 5). Detection covariates include: NB, ‘‘Number of bugs’’; S1, ‘‘Search 1’’;
‘‘SDEc’’, detection in same-dwelling ecotopes; BP, ‘‘Brick pile’’; WP, ‘‘Woodpile’’; TP, ‘‘Tile pile’’; Ho, ‘‘House’’; PS, ‘‘Pigsty’’; AE, ‘‘Animal enclosure’’; SR, ‘‘Storeroom’’; GC,
‘‘Goat/sheep corral’’; HH, ‘‘Henhouse’’. See text for the definitions and values of covariates.
AICc, sample size-corrected Akaike’s information criterion (or second-order AIC); DAICc, difference in AICc between each model and the lowest-AICc (top-ranking)
model; wi, Akaike model weight; Likelihood, likelihood of each model, given the data (or relative strength of evidence for each model); k, number of estimable
parameters; 22log , twice the negative log-likelihood of each model. See ref. [22] for formulae and details on AICc and related metrics.
doi:10.1371/journal.pntd.0003187.t004
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statistics (see Table S2). For consistency with our AIC-based

approach, we present parameter and covariate-effect estimates

with approximate 85% confidence intervals (CIs) (see ref. [23]),

although we also comment on the more conventional 95%CIs in

some instances. Models were fit via maximum likelihood as

implemented in Presence 6.4 [24].

We finally compared the results of naı̈ve and model-based

analyses in the epidemiologically- and operationally-relevant terms

of (i) estimates of infestation prevalence (IInaı̈ve vs. model-averaged

Y) and (ii) estimates of the number of infestation foci that likely

went undetected during standard, active vector searches.

Results

Descriptive results
Naı̈ve infestation indices for each vector-search round and all

rounds combined are presented in Table 1 (see raw data in

Dataset S1). Overall, more detections occurred during the first

than during the second and third vector-search rounds (see also

[21]); a similar trend was apparent when considering ‘certain’

detections only. Importantly, naı̈ve infestation indices were higher

in almost all ecotope types when the results of the three vector-

search rounds were combined than when considering each single

round in isolation (Table 1). Over all ecotope types, combined-

search naı̈ve infestation indices were from 1.24 to 2.06 times

higher than single-search indices for all detection data, and from

1.30 to 1.98 times higher than single-search indices for ‘certain’

detection data.

Table 2 summarizes ‘detection histories’ for the 414 ecotopes

surveyed. Evidence of infestation was detected at least once in 19

ecotopes where the first vector search had yielded no detections. In

21 ecotopes only the first vector search yielded evidence of

infestation, with ‘certain’ detections (history ‘‘200’’) in 16 ecotopes.

Evidence of vector presence was consistently found across all

search rounds in only 30 of the 97 ecotopes where such evidence

was found at least once; ‘certain’ detections consistently occurred

in 22 of those ecotopes. Thus, many observed infestation foci went

undetected during single vector-search rounds: at least 19 foci in

Figure 1. Effects of covariates on the sensitivity of active
Chagas disease vector searches in the lower Jaguaribe valley,
Ceará, Brazil: model-averaged odds ratios (ORs) with approx-
imate 85% confidence intervals (CIs) based on unconditional
standard errors. The effect of a covariate is considered indistinguish-
able from zero when the CI crosses the dashed line at OR = 1.0 (black
circles), positive if all values are .1.0 (red circles), and negative if all
values are ,1.0 (blue circles). Asterisks highlight covariates whose
95%CI overlaps 1.0. ‘‘SDEc’’ indexes, for each ecotope and vector-search
round, whether detections occurred in other, same-dwelling ecotopes;
see main text for further details. For each covariate effect (bi), the OR is
estimated as OR = exp(bi).
doi:10.1371/journal.pntd.0003187.g001

Table 5. Model-averaged, adjusted slope coefficient estimates for detection covariates appearing in the subset of models with
non-zero Akaike weights (see Table 4).

Group Covariate Slope coefficient SE 85%CI

Lower Upper

Sampling scheme Search 1 0.65 0.21 0.35 0.95

‘‘SDEc’’ 1.08 0.26 0.71 1.45

Observed vector density Number of bugs 1.02 0.22 0.70 1.34

Buildings House 20.75* 0.39 21.32 20.18

Storeroom 0.90* 0.55 0.11 1.69

Animal enclosures Animal enclosure 20.01 0.31 20.46 0.44

Henhouse 20.58* 0.35 21.09 20.07

Goat/sheep corral 0.77 0.35 0.27 1.26

Pigsty 20.02 0.39 20.58 0.55

Piles Brick pile 22.09 0.81 23.26 20.92

Woodpile 1.10 0.39 0.54 1.65

Tile pile 20.14 0.32 20.60 0.32

Slope coefficient, model-averaged slope coefficient point estimate; SE, unconditional standard error; Lower and Upper, lower and upper limits of the approximate 85%
confidence interval (CI). ‘‘SDEc’’, detection in same-dwelling ecotopes. Coefficients highlighted in bold typeface have 85%CIs not overlapping zero; asterisks (*) indicate
estimates whose 95%CI overlaps zero.
doi:10.1371/journal.pntd.0003187.t005
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the first, 36 in the second, and 50 in the third round. Considering

only the 87 ‘certain’ observed foci, 20 were missed in the first, 42

in the second, and 43 in the third search round. We finally note

that observed infestation was markedly different in our two study

localities, with triatomine bug foci apparently more common and

denser in Jaguaruana than in Russas (Table 3).

Modeling
Site-occupancy models with non-zero Akaike weights

(Swi = 1.0) are presented in Table 4. Model-averaged, adjusted

estimates of covariate effects on vector-search sensitivity (p11),

along with their unconditional SEs and 85%CIs, are presented in

Table 5; the associated odds ratios are shown in Figure 1. The

sensitivity of active vector searches was higher in ecotopes

harboring denser bug colonies; the odds of vector detection were

2.77 (85%CI 2.02–3.80) times higher for each unit increase in the

standardized number of bugs caught in a given ecotope (1 SD

increase <9 bugs) (Fig. 1 and inset in Fig. 2A). Vectors were also

easier to detect in peridomestic woodpiles (odds ratio 3.00, 85%CI

1.72–5.23), in goat/sheep corrals (2.15, 85%CI 1.31–3.54), and

during the first search round (1.91, 85%CI 1.42–2.57); the positive

effect of storerooms (odds ratio 2.46) was associated with larger

uncertainty (85%CI 1.12–5.42, with the 95%CI encompassing 1)

(Fig. 1). Vector-search sensitivity was somewhat lower in houses

(odds ratio 0.47, 85%CI 0.27–0.83; upper limit of the

95%CI = 1.02) and henhouses (0.56, 85%CI 0.34–0.93; upper

limit of the 95%CI = 1.12), and substantially lower in brick piles,

albeit uncertainty about this latter estimate was large (odds ratio

0.12, 85%CI 0.04–0.40) (Fig. 1). Other covariates, including those

grouping buildings, animal enclosures and piles, had no discern-

ible effects on p11 (Tables 5 and S1, Fig. 1).

With our parameterization, models including detection covar-

iates estimate ecotope-specific values for p11, p10, and b [9]; we

therefore provide summary statistics of model-averaged estimates

for each parameter and its variation. Figure 2 shows model-

averaged p11 estimates for different ecotopes; sensitivity was overall

low (mean across ecotopes and vector-search rounds,

p11<0.28360.057; median = 0.231, inter-quartile range 0.123–

0.384), and particularly so in brick piles (mean p11<0.04260.032)

and houses (mean p11<0.14360.043). Overall, sensitivity was lower

in the lightly-infested (mean p11-Russas<0.20060.054; Fig. 2B) than

in the heavily-infested locality (mean p11-Jaguaruana<0.36760.060;

Fig. 2C). Sensitivity was estimated at p11<1.00 for a single tile pile

where 122 triatomine bugs were collected after the third search

round. See Table S2 for further details about p11 values.

An ecotope can be incorrectly classified as infested, with

probability p10, when infestation status is determined based on the

detection of fecal streaks. Our models suggest that this event was,

on average, very unlikely: the mean of model-averaged values

across ecotopes and vector-search rounds was p10<0.01160.008

(median = 0.0015, inter-quartile range 0.0007–0.0030), reaching

high values (.0.90) in the few ecotopes where p11 was also very

high. This reflects the fact that the detection of only fecal streaks in

ecotopes where sensitivity is close to 100% almost surely represents

a false-positive result. Hence, with a few exceptions, vector-search

specificity (s = 1 – p10) was reassuringly high, with a mean value of

,0.989. The probability that a detection was classified as ‘certain’,

given the ecotope was infested and at least one detection occurred,

was moderately high (mean across ecotopes and vector-search

rounds, b<0.63760.073) and varied from 0.116 in 19 brick piles

to ,1.0 in the tile pile where p11 was also ,1.0.

Model-averaged infestation prevalence (or mean ecotope-

occupancy rate) was estimated as Yaverage<0.445 (unconditional

SE = 0.064; 85%CI 0.353–0.537); this estimate is nearly twice as

high as the naı̈ve infestation index calculated with the combined

results of three vector-search rounds: IInaı̈ve = 97/414 = 0.234

(Fig. 3). Our model-based site-occupancy estimate suggests that

the number of infested ecotopes was x9 =Yaverage 6

Figure 2. Model-weighted average estimates of Chagas disease vector-search sensitivity (p11) for different ecotope types. The means
of model-averaged ecotope- and vector-search round-specific values are shown, with approximate 85% confidence intervals; in each panel, the mean
vector-search sensitivity over all ecotope types (labeled ‘‘All’’) is represented by an empty circle, and 50% sensitivity is highlighted by dashed lines. A,
estimates from the complete dataset, with ecotopes ranked by mean vector-search sensitivity; the inset shows the relationship between model-
predicted sensitivity and observed vector density; B, estimates for the lightly-infested locality of Russas; C, estimates for the heavily-infested locality
of Jaguaruana. Ecotopes: BP, brick pile; Ho, house; HH, henhouse; PS, pigsty; SR, storeroom; GC, goat/sheep corral; CC, cattle corral; TP, tile pile; WP,
woodpile. See Table S2 for further details.
doi:10.1371/journal.pntd.0003187.g002
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n = 0.4456414<184; therefore, and despite triplicate search

effort, as many as ,87 infestation foci most likely went undetected

during active vector searches. Considering the results of single

vector-search rounds separately (which is standard practice in

vector surveillance and research), we estimate that about 106, 123,

and 137 infestation foci went undetected during the first, second,

and third search rounds, respectively (Fig. 3). Importantly, our

analyses suggest that vector-search sensitivity was especially poor

in the more lightly-infested locality of Russas (Fig. 2), where

observed infestation prevalence (IInaı̈ve-Russas = 0.048; Table 3) was

therefore likely to be particularly biased low.

Discussion

In spite of obvious implications for vector-borne disease

research and control-surveillance, little is known about the

uncertainties associated with sampling disease vectors under

realistic field survey conditions [5,6,14–17,25]. Somewhat surpris-

ingly, the conventional approach to sampling-process uncertainty

has been to formally ignore it. Thus, the most authoritative global

public health agencies recommend the use of infestation indices

that rely on the implicit assumption that vectors are detected

without error (e.g., [2,3]). As a result, observed detection/non-

detection data are usually treated as if they were true presence/

absence data, yet they are not: in virtually any real-life scenario,

true vector presence/absence is only partially observed (Fig. 4).

Detection errors can plague not only overall infestation measures,

but also other commonly-used naı̈ve ‘entomological indicators’,

including ‘intradomiciliary’ and ‘peridomestic’ infestation, ‘colo-

nization’, ‘density’, ‘dispersion’, or ‘natural infection’ indices (see

Box 2 of ref. [3]). The definitions of these indicators should stress

that what we can really measure is whether vectors or pathogens

were present and detected – and that, even then, some detections

may be spurious [5–9,26].

Put another way, we must acknowledge that, in most of our

datasets, heterogeneity induced by the biological processes

governing vector (or pathogen) occurrence is confounded with

heterogeneity induced by the sampling process governing vector

(or pathogen) detection (Fig. 4). Here we have shown that this

need not be so; relatively straightforward approaches to disentan-

gling biological- and sampling-process variation are readily

available, allowing for detailed investigation of the determinants

of vector/pathogen occurrence and the determinants of vector/

pathogen detection. This can foster our understanding of

infectious disease ecology and may transform our view of how

control-surveillance systems actually perform [16,25,26].

In this report we focused on quantitatively investigating the

process of Chagas disease vector detection in man-made

environments while realistically considering false-positive and

false-negative detection errors; given this focus, we largely ignored

biological issues [21]. Hierarchical models, however, address

occurrence and detection simultaneously; here, we set Y to be

constant for clarity and simplicity, and because of our specific

research question. We also note that adding covariate structure to

the occupancy part of our top-performing model (Table 4)

increased AICc scores: the most parsimonious such model, which

included just one covariate on Y (‘‘Goat/sheep corral’’; b = 0.688,

SE = 0.551), performed no better than our second-ranking model

(Table 4) and estimated detection-covariate effects consistent in

sign and size with those presented in Table 5 (details not shown).

That constant-Y models tend to fit well is most likely related to our

pooling of species-specific data for analysis: what favors occupancy

by one species may have a negative effect on another. Given our

focal aim and these considerations, we present and discuss the

results of our simpler models with constant occupancy.

Our analyses show that, after adjusting for variation induced by

operational details (see below), the sensitivity of the standard

Chagas disease vector-surveillance method (active searches by

trained staff) is overall low and can vary widely depending on

vector density and ecotope traits (Figs. 1 and 2). Using this

information, we evaluated how sampling errors might affect

infestation estimates, and showed that naı̈ve indices can be badly

Figure 3. Infestation by synanthropic Triatominae in 414 man-
made ecotopes of the Jaguaribe valley, Ceará, Brazil. II, naı̈ve
infestation index from results of single vector-search rounds
(II1st to II3rd) and all rounds combined (IIall); Y, model-averaged
site-occupancy estimate (error bar, 85% confidence interval).
The estimated numbers of infestation foci that went undetected during
single vector-search rounds and all rounds combined are shown inside
the corresponding bars.
doi:10.1371/journal.pntd.0003187.g003

Figure 4. Full reality is only partially observed. Imagine a survey
in which 10 discrete ecotopes, five of which are infested (‘‘Reality’’), are
searched for vectors or their traces. During the survey (‘‘Observations’’),
the vectors went undetected in two infested ecotopes; non-vector fecal
streaks were misidentified as vector feces in one ecotope; vectors were
detected in two infested ecotopes; vector fecal streaks were correctly
identified in a third infested ecotope where no vectors were detected;
and no detections occurred in four non-infested ecotopes. The resulting
dataset (‘‘Data’’) is therefore a biased representation of reality – it
contains one false-positive detection and two false-negative results,
along with three true-positive and four true-negative results.
doi:10.1371/journal.pntd.0003187.g004
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biased low, with many infestation foci going undetected (Fig. 3).

Finally, we provided estimates of other important sampling-

process parameters [9] including the probability of false-positive

detections, which was reassuringly low, and the probability of

detections being classified as ‘certain’ in ecotopes where vectors

were present and a detection had occurred, which was fairly high

but variable.

One potential caveat of our study is that we treated detection/

non-detection events as independent; it seems likely, however, that

the detection/non-detection of vectors or their traces in one

ecotope may affect the probability of detection/non-detection in

nearby ecotopes. For example, detection in one ecotope might

increase awareness of the vector-search team regarding the

possibility of vector presence in other ecotopes within the same

dwelling compound. We modeled this possible source of hetero-

geneity with our ‘‘SDEc’’ covariate, which had a positive effect

(Table 5, Fig. 1). Of more relevance to our aims, inclusion of the

‘‘SDEc’’ covariate in the models allowed us to derive adjusted

effect-size estimates for the covariates of practical interest, such as

those describing observed bug density or indexing ecotope types.

We acknowledge, however, that there could be further spatial

dependencies (e.g., among ecotopes in neighboring dwelling

compounds) that the ‘‘SDEc’’ covariate does not capture. Another

potential source of variation we wanted to adjust for was variation

among search rounds. A previous analysis of data from Jaguar-

uana, focusing on T. brasiliensis site-occupancy, suggested that

sensitivity was higher in the first search round (see ref. [21]). This

was confirmed in the present analyses (Table 5); removal of the

‘‘Search 1’’ covariate from our top-ranking model resulted in a

DAICc<8.0 (details not shown). As with ‘‘SDEc’’, effect-size

estimates for covariates of more practical interest (Table 5) adjust

for this variation. Apart from independence among sites and

search rounds, our models also assume population closure (no local

extinction or colonization) over the survey period, which the short

sampling time-frame and the low vagility of triatomines virtually

ensured [21].

A further caveat refers to the use of the number of bugs

collected in each ecotope as a proxy for vector density. To be

consistent with the conceptual framework of imperfect detec-

tion, we have to acknowledge that we did not know how many

individual vectors went undetected in each ecotope, including

ecotopes with zero detections. The ‘‘Number of bugs’’

covariate has therefore to be regarded as a rough approxima-

tion to differences in vector density among ecotopes; as

expected, the effect of increasing observed density on detection

probability was obviously positive and moderately large

(Table 5, Fig. 1).

We recall that observed vector density and infestation

prevalence were both higher in Jaguaruana than in Russas

(see Table 3). Our study localities hence mirror two common

scenarios in Chagas disease vector control: (a) a typical pre-

control (or control-breakdown) scenario in Jaguaruana, with

many, relatively large infestation foci, and (b) a typical post-

control scenario in Russas, with just a few, small vector foci (see,

e.g., [17,27]). By comparing locality-specific model predictions,

we were therefore able to approximate how such scenarios may

induce vector-detection heterogeneity; our results show that

differences can be important, with vector-detection sensitivity

consistently lower in Russas than in Jaguaruana (Fig. 2). This

observation suggests that naı̈ve infestation indices may be

especially deceitful in lightly-infested localities such as those

undergoing ‘successful’ vector control (see also [17,27]). This

has obvious implications for control-surveillance programs:

larger negative bias in post-control infestation indices may lead

to overly optimistic views of vector control performance and

disease transmission risk [27–29].

We however caution that our quantitative results (i.e.,

parameter and effect-size numerical estimates) cannot be

extrapolated to unsampled areas or ecotopes – if anything else

because we did not sample probabilistically from any known

study universe of localities or ecotopes. We nonetheless believe

that our results have important implications in that negatively-

biased infestation indices and the sampling-process uncertainties

underlying such bias are, in all likelihood, general features of

disease-vector surveys – in Chagas disease [5,6,16,17,21,25,27–

29] and in other systems including arboviral diseases such as

dengue or chikungunya [30], flea-transmitted plague [31], or

sandfly-transmitted leishmaniasis (FA-F, unpublished). Regarding

Chagas disease, the negative effect of lighter infestation on

sensitivity, with bias getting worse as vector density declines, is

almost certainly a widespread issue [14–17,27,29]. In contrast,

ecotope-type effects are unlikely to be general: our finding of

lower sensitivity in brick piles and houses, and higher sensitivity

in woodpiles and goat/sheep corrals, probably reflects, at least

partially, micro-habitat preferences of the most common local

triatomine species, T. brasiliensis [21].

At any rate, knowing that such sampling-process heterogene-

ities exist and can be substantial is obviously very relevant. In

vector ecology research, ignoring this variation could lead to

wrong conclusions about drivers of site-occupancy; for example,

ecotopes in which sensitivity is lower could be incorrectly

classified as low-quality habitat. In vector control-surveillance,

this knowledge might be used to target vector-search effort

according to operational objectives and ecotope types; for

example, when a survey aims at determining infestation at the

dwelling level (which is the case in most programs), vector

searches could start in ecotopes where sensitivity is highest. This

would probably save search effort, but would also require

periodically running pilot surveys to estimate vector-search

sensitivity and how it varies in operationally- (e.g., municipal-

ities) or ecologically-relevant units (our results, for example,

likely apply over the middle-lower Jaguaribe valley and perhaps

in other similar sedimentary Caatinga lowlands).

Finally, we again emphasize that, although here we were

specifically interested in studying the detection of triatomine

bugs (or their traces) in man-made ecotopes, the underpinnings

of our approach apply to the detection/non-detection of any

organism (or its traces) in any discrete sampling unit [9].

Analogous situations arise, for example, when investigating the

patterns of ‘occupancy’ of individual organisms (e.g., persons or

vectors) by infectious disease agents for which detection

(diagnostic) methods can yield false-positive and false-negative

results [9,26]. Thus, the approach finds application whenever

some diagnoses can be classified as ‘certain’ (e.g., unambigu-

ously identifying a parasite in a microscope slide) and some as

‘uncertain’ – e.g., detecting anti-parasite antibodies (possibly

with cross-reactions) or parasite DNA (with uncertainty about,

say, parasite viability or the possibility of sample contamina-

tion). In these and similar situations, multiple detection-state

and multiple detection-method models can be used to reduce

bias in parameter estimates [9,26].

Conclusions and outlook
We have presented a detailed investigation of major sources of

detection heterogeneity in Chagas disease vector surveys. To our

knowledge, this is the first attempt at quantifying vector sampling

uncertainty when survey methods can yield spurious detections

and non-detections. Our results are far from encouraging: they
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suggest that discounting sampling-process uncertainty, and par-

ticularly false-negative results, can lead to serious, overoptimistic

misrepresentations of both disease transmission risk and vector

control performance. Reliable measures of disease vector (or

pathogen) presence/absence are essential for disease prevention;

while it is unfortunate that available triatomine-detection tools

perform poorly, with sensitivity typically below 50%, ignoring this

critical problem will not solve it. Instead, we must develop a sound

understanding of how the vector-detection process works and

incorporate the associated uncertainties into our operational

indicators. The approach we used here can help do so. We expect

that, sometime in the near future, the crucial issue of sampling-

process uncertainty will be widely acknowledged, and formally

accounted for, in routine-surveillance systems. Otherwise, many

human beings will continue to suffer vector presence and disease

transmission while researchers, control managers and internation-

al-agency officials, misled by imperfect data, celebrate public

health ‘achievements’ that may well glister but are not gold

[28,29].
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parameters; Deviance, –2log-likelihood of each model. See main
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Table S2 Summary statistics for model-averaged vector-search
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