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Abstract 

Background:  Climate and environmental factors could be one of the primary factors that drive malaria transmission 
and it remains to challenge the malaria elimination efforts. Hence, this study was aimed to evaluate the effects of 
meteorological factors and topography on the incidence of malaria in the Boricha district in Sidama regional state of 
Ethiopia.

Methods:  Malaria morbidity data recorded from 2010 to 2017 were obtained from all public health facilities of Bori-
cha District in the Sidama regional state of Ethiopia. The monthly malaria cases, rainfall, and temperature (minimum, 
maximum, and average) were used to fit the ARIMA model to compute the malaria transmission dynamics and also to 
forecast future incidence. The effects of the meteorological variables and altitude were assessed with a negative bino-
mial regression model using R version 4.0.0. Cross-correlation analysis was employed to compute the delayed effects 
of meteorological variables on malaria incidence.

Results:  Temperature, rainfall, and elevation were the major determinants of malaria incidence in the study area. 
A regression model of previous monthly rainfall at lag 0 and Lag 2, monthly mean maximum temperature at lag 2 
and Lag 3, and monthly mean minimum temperature at lag 3 were found as the best prediction model for monthly 
malaria incidence. Malaria cases at 1801–1900 m above sea level were 1.48 times more likely to occur than eleva-
tion ≥ 2000 m.

Conclusions:  Meteorological factors and altitude were the major drivers of malaria incidence in the study area. Thus, 
evidence-based interventions tailored to each determinant are required to achieve the malaria elimination target of 
the country.

Keywords:  Malaria, Temperature, Rainfall, Altitude, Boricha, Ethiopia

© The Author(s) 2021. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, 
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and 
the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material 
in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material 
is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the 
permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creat​iveco​
mmons​.org/licen​ses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creat​iveco​mmons​.org/publi​cdoma​in/
zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Background
The burden of malaria has been reduced globally due to 
the wide-range implementation of multiple interventions. 
The number of malaria cases and deaths had declined by 
18% and 48% between 2000 and 2015. Similarly, the inci-
dence and the mortality rate, both used the population 

growth into consideration, had declined by 37% and 60% 
in the same period. From 2000 to 2017 alone, 20 coun-
tries have eliminated malaria transmission and reported 
zero case for at least one year. These successful signs of 
progress of malaria control have prompted the worldwide 
possibility of malaria elimination. As a result, the World 
Health Organization (WHO) has developed a global 
malaria elimination programme in 2015  intending to 
make a malaria-free world by 2030. Currently, the elimi-
nation programme is under implementation in many 
countries including Ethiopia [1–4].
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Notable progress has been made since the elimination 
programme was launched worldwide. Globally, the num-
ber of countries reporting below 10,000 cases and below 
100  indigenous malaria cases increased from 40 to 49 
and 17 to 27, respectively, from 2010 to 2018. From 2017 
to 2018 alone, the number of countries reporting below 
10 indigenous cases increased from 19 to 24. As a result, 
19 countries had zero indigenous cases for 3 and above 
successive years from 2000 to 2018, while 4 countries, 
which were malaria endemic in 2015, attained malaria 
elimination. The burden of the disease has substantially 
declined in Africa, including Ethiopia, the continent most 
affected [1–3, 5, 6].

Climate change and geographical elevations are among 
the major factors affecting transmission and the geo-
graphical distribution of malaria. Meteorological vari-
ables, such as rainfall, temperature and humidity could 
impact the bionomics of malaria vectors, which could 
eventually determine malaria transmission intensity. 
Several studies reported the controversial association 
between climate change and malaria transmission [7–9].

Moreover, a higher elevation is another determinant 
of malaria incidence and transmission. As the altitude 
increases the temperature decreases and vice versa that 
in turn influences the transmission dynamics of the 
infection. Besides, the geographical shift of the Anopheles 
mosquito due to climate change facilitates malaria trans-
mission in previously non-malaria areas, which results in 
an uneven distribution of the disease [10–16]. The effect 
of climate varies with different agro-ecological areas. 
Therefore, malaria prediction models using meteorologi-
cal data vary from place to place thus only a single model 
could not  fit for  all geographical locations. Such incon-
sistencies of predictions are due to variations of risk fac-
tors of malaria incidence [17–19].

Ethiopia has unstable and highly seasonal malaria inci-
dence with varying intensity of transmission depend-
ing on the climatic variations and geographical settings 
of the country [20]. Thus, the current study was aimed 
to investigate the impact of climate and elevations on 
malaria transmission in Boricha district, one of the 
malaria-endemic and elimination targeted districts in the 
country.

Methods
Study area and population
The study was conducted in Boricha district, in the Sid-
ama regional state of Ethiopia; located at 304 km from 
the capital city of Ethiopia, Addis Ababa. It covers a total 
area of 588.1 square kilometres. The altitude of the dis-
trict ranges from 1001 to 2076 metres above sea level. 
The mean annual rainfall of the district ranges from 801 
to 1000 mm, and the mean annual temperature ranges 

from 17.6 to 22.5 °C [21]. The district has 42 kebeles (the 
lowest administrative unit), 39 rural and 3 urban, and has 
a total populations of 325,161. Most of the population 
live in rural areas where agriculture is the mainstay of the 
community [22, 23].

The district is one of the malaria-endemic districts in 
the region. Therefore, several interventions have been 
implemented to prevent and control the disease in addi-
tion to prompt diagnosis and treatment. The diagnosis 
and treatment services have been given in both public 
and private health facilities. The public health facilities 
include one primary hospital, ten health centres, and 
thirty-nine health posts, and the private clinics includ-
ing one non-governmental clinic, one medium clinic, five 
primary level clinics, three drug stores, and eleven drug 
vendors [23].

Study design
Retrospective malaria morbidity data were collected from 
health facilities to determine the association between 
meteorological variables and topography with malaria 
incidence over the last eight years (2010–2017) in Bori-
cha district.

Source of information
The source of information was the malaria laboratory 
register logbooks at malaria diagnosis and treatment ser-
vices providing health facilities in the district. The mete-
orological data of the district were obtained from the 
National Meteorological Agency (NMA) of the country 
[24].

Malaria diagnosis
In the study area, diagnosis of malaria was performed 
based on the national malaria guideline, which recom-
mends both clinical and parasitological (laboratory) 
diagnosis of the disease in health facilities. A clinical 
diagnosis was performed based on the patient’s history. 
However, a clinical diagnosis alone was not recom-
mended except when there was no Rapid Diagnostic Test 
(RDT) or  light  microscopy in the health facilities. Para-
sitological (laboratory) diagnosis was performed using 
RDTs or light microscopy to confirm malaria parasites. 
Both thick and thin blood films were prepared to detect 
the malaria parasites. similarly, RDT was used in health 
posts to enhance malaria diagnosis at the periphery level 
[25].

Data collection techniques
In the current study, only laboratory-confirmed malaria 
cases were used. As a result, the laboratory registers of 
malaria morbidity were collected from all health facilities, 
which provide malaria diagnosis and treatment services. 
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From which, laboratory-confirmed malaria cases were 
obtained from one primary hospital, nine health centres, 
and thirty-seven health posts. The rest facilities were 
newly established and not fully equipped. As a result, it 
had been providing only the clinical diagnosis of malaria 
due to the absence of a light microscope and RDTs.

Meteorological data of the district, such as the mini-
mum temperature, maximum temperature, average tem-
perature, monthly rainfall were obtained from the NMA 
of Ethiopia [24]. The geographical coordinates of each 
kebele were recorded by geographical positioning sys-
tem using Garmin eTrex 10 device. The data of kebele 
coordinates were collected by one trained data collector, 
where the location of the health facilities, mainly health 
post in each kebele was taken as a reference point of 
measurement.

The records of laboratory registers were collected by 
trained laboratory technicians using a standard for-
mat adapted from the national laboratory malaria reg-
ister (logbook). Only the complete records, including 
the date (year and month) of diagnosis, address of the 
patients, age, sex, and the results of the diagnosis were 
included in the study. Incomplete records were excluded 
because each variable was required for analysis. Malaria 
reported from the study district only were used in the 
study, and the cases reported from out of the study area 
were also excluded. The year and month of the diagno-
sis were required to compute the trends and seasonal-
ity of malaria incidence. The address of the patients was 
required to link the cases with their specific residence, 
which was useful to understand the  geographical varia-
tions of malaria distribution at several elevation levels. 
Age and sex  were also analysed to understand the seg-
ments of the population more affected. The whole pro-
cess, data retrieving and data entry in computer software 
were highly supervised to ensure completeness and 
consistency.

Data analysis
Data were entered using EpiData 3.1 and analysed 
using R version 4.0.0. Different statistical models were 
developed and used to predict the incidence and trans-
mission patterns. Auto-regressive integrated mov-
ing average (ARIMA) model was used on monthly 
time series of malaria morbidity. The general linear 
model (GLM), negative binomial and Poisson regres-
sion, was used to compute the pattern of malaria dis-
tribution in the district. Auto-correlation Function 
(ACF) and partial autocorrelation function (PACF) of 
the residuals and the Ljung-Box Q test were used for 

the model adequacy checking. The upward trends of 
malaria transmission in the district, which could highly 
explained by the environmental factors, were deter-
mined using the ARIMA model.

Data quality control measures
Data collectors, supervisor and data entry clerks were 
trained on the objective and significance of the study. 
Also, data collectors and supervisor were trained about 
the data collection tools, and data entry clerks were 
trained about the data entry software (EpiData 3.1). 
In general, training was given for two days, one day for 
data collectors and supervisor, and one day for data 
entry clerks. The completeness and consistency of the 
data were strictly followed by the supervisor of the data 
collection. Also, the principal investigator has been fol-
lowing the whole process, such as completeness and con-
sistency of collected data and entry software as well to 
enhance the quality of data.

Results
Descriptive statistics of malaria
A total of 28,413 confirmed malaria cases were 
recorded over eight years, from 2010 to 2017  in the 
study area. From which, adults 15 years and above 
age category were 14,722 (51.8%) while children 5–14 
years and < 5 years age groups were accounted for 6944 
(24.4%) and 6,747 (23.8%), respectively. A relatively 
high proportion, 14,575 (51.3%) of cases were males. 
In general, malaria occurred in all months of the year 
throughout the study period where a minimum and 
maximum monthly case number was 3 and 859, respec-
tively where the mean monthly case number was 296 
(66.77%).

Time series plot of malaria
The time series plot of malaria cases shows a clear 
downward trend of malaria in eight consecutive years 
from 2010 to 2017. Here, successive observations 
(months) revealed a steady reduction of malaria inci-
dence over the eight years. Besides, there was an identi-
cal pattern of trends of monthly malaria occurrence in 
each year indicating that the relative amplitude of sea-
sonal changes was constant over time (Fig. 1a).

Descriptive statistics of meteorological variables
Table 1 shows descriptive statistics of monthly recorded 
rainfall and temperature during the study period where 
a minimum and maximum amount of mean monthly 
rainfall was 0 and 238 mm, respectively. Similarly, the 
mean minimum and maximum values of monthly aver-
age temperature were 17.8 and 27.2 °C, respectively.
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Time series plots of meteorological variables
The series plot of rainfall revealed that the amount of 
rain was somehow constant overtime with some heavy 
downpours observed in 2013. The amount of high rain-
fall in a given period did not cause an immediate incre-
ment of malaria incidence. In general, several peaks 
and fluctuations in the series plot indicate the seasonal 
dependency of rainfall in the study area. Similar to 

rainfall, temperature exhibits cyclic patterns of occur-
rence indicating a seasonal dependency (Fig. 1b, e).

Model comparison for malaria trend analysis
Four models were compared to analyse the nature of the 
trends describing malaria incidence. Accordingly, the 

Fig. 1  Time series plots of monthly malaria cases and meteorological variables in Boricha district in Sidama regional state, Ethiopia; a (Malaria 
cases), b (Rainfall), c (Minimum temperature), d (Maximum temperature) and e (Average temperature)

Table 1  Mean monthly rainfall and temperature in Boricha 
district in Sidama regional state, Ethiopia

Variable Minimum Maximum Mean CV (%)

Rainfall 0 238 70 78.53

Min.Temperature 12.70 32.70 17.32 11.25

Max.Temperature 17.8 35.7 30.46 9.65

Average Temperature 17.8 27.2 23.92 7.06

Table 2  Model comparison for  the  trend analysis 
of monthly malaria incidence in Boricha district in Sidama 
regional state, Ethiopia

a  Means the best model based on selection criteria

Model AIC BIC

Linear 929.69 936.57

Quadratic 926.31 935.47

Log-linear 81.05 87.92

Log-quadratica 68.28 77.44
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Log-quadratic model was the best fit model based on the 
selection criteria due to the lowest Akaike’s Information 
Criteria (AIC) and Bayesian Information Criteria (BIC) 
(Table 2).

To investigate the effect of seasonality, the logarithmic 
transformed malaria incidence data were regressed on 
the quadratic trend and seasonal dummies. The results 
indicate that the model was significant at p < 0.05 level 
(F-statistic = 548.7, p < 0.0001, R-square = 98.94%; and 
adjusted R-square = 98.76%) (Table 3).

To measure the monthly changes, the data of malaria 
cases were first transformed and then regressed on the 
square trend and monthly dummy variables. The month 
of November has approximately 5.774 more malaria 
cases than other months suggesting that it is the month 
in which the highest number of malaria cases occurred. 
The least number of malaria cases occurred in April and 
January (Table 3).

The data were stationary (Augmented Dickey-Fuller 
Test, p = 0.01) time series. The results showed that the 
model that best fits the original data were ARIMA (2,1,2) 
(Table 4).

Hence, the model for predicting future malaria case 
was Zt = Xt − Xt−1 and the model obtained was; ARIMA 
(2,1,2): Xt = α1Xt−1 + α2Xt−2 + β1Zt−1 + β2Zt−2 + ǫt ; 
where, α, andβ are parameters and ǫt is the residual term. 
The substituted estimates of the parameters obtained 
were; ARIMA (2,1,2):

The final estimate of parameters for the model showed 
that the AR (1), AR (2), and MA (2) parameters had a 
p-value below 0.05, indicating a significant model param-
eter (Table 4).

Cross‐correlation analysis of meteorological variables 
and malaria incidence
Cross-correlation analysis showed that minimum tem-
perature, maximum temperature, average temperature 
and rainfall have significantly lagged correlations with 
malaria case occurrence (Fig. 2). Cross-correlation anal-
ysis of rainfall shows a positive correlation with malaria 
cases (Fig. 2d). A regression model on lag 6, 7, 12, 13, and 
15 of previous monthly average temperature, lag 3 and 
11 of previous monthly mean minimum temperature, lag 
2 and 3 of previous monthly mean maximum tempera-
ture and lag 0, 2 and 8 of previous mean monthly rain-
fall were found as the best prediction model for monthly 
malaria incidence. The monthly mean minimum, mean 
maximum and average temperatures were the leading 
and monthly mean rainfall was the lagging variable of the 
monthly malaria incidence.

The auto-correlations and PACF do not exceed the 
significant bounds, which was good. Using the Ljung-
Box test there was no significant (p = 0.9927) auto-
correlations between successive forecasting errors. The 
Ljung-Box test yielded a p-value of more than 0.05 indi-
cating that the model was free from serial correlation. 
The values were normal as they rest on a line and were 
not all over the place. All the graphs are in support of the 
assumption that there was no pattern in the residuals and 
hence calculated the forecast while the model residuals 
were homoscedastic (Fig. 3).

Forecasts (Fig. 4) based on an ARIMA (2,1,2) model in 
2030  in November and December months, the malaria 
incidence were expected to be 88.367 and 88.281, respec-
tively, which was approximately constant over all the 
year. The mean and variance for the malaria incidence 
were 1.17 and 5.17, respectively, with the ratio of variance 
to mean 4.40. The Poisson model is often criticized for its 
restrictive property that the conditional variance equals 
the conditional mean. Real-life data are often character-
ized by over dispersion that is the variance exceeds the 

Xt =− 0.2884Xt−1 + 0.683845Xt−2

+ 0.018611Zt−1 + 0.867888Zt−2 + ǫt

Table 3  Estimates of  the  log-quadratic model 
with  seasonal effects on  malaria incidence in  Boricha 
district in Sidama regional state, Ethiopia

Variable Coefficient Standard error p-value

Trend 0.03638 9.058e–03 0.000131

Trend square − 0.0005767 9.043e–05 1.01e–08

January 4.845 2.752e–01 < 2e–16

February 5.346 2.765e–01 < 2e–16

March 5.333 2.777e–01 < 2e–16

April 5.147 0.2788 < 2e–16

May 5.448 2.799e–01 < 2e–16

June 5.493 2.808e–01 < 2e–16

July 5.596 2.817e–01 < 2e–16

August 5.579 2.825e–01 < 2e–16

September 5.623 2.832e–01 < 2e–16

October 5.544 2.839e–01 < 2e–16

November 5.774 2.845e–01 < 2e–16

December 5.468 2.850e–01 < 2e–16

Table 4  Parameter estimates of the ARIMA (2,1,2) Model

Parameter Estimate Std. error Z-statistic Confidence 
interval

ar1 (φ) − 0.29 0.11 − 2.51 − 0.51 − 0.06

ar2 (φ) 0.68 0.10 6.25 0.47 0.90

ma1 (θ) 0.02 0.08 0.24 − 0.13 0.17

ma2 (θ) 0.87 0.07 − 12.49 − 1.00 − 0.73
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mean. The negative binomial regression model is a gener-
alization of the Poisson regression model that allows for 
over dispersion by introducing an unobserved heteroge-
neity term for observation. For this, the negative binomial 
model is recommended to model the data. Thus, Table 5 
proved this since AIC and BIC for the Negative Binomial 
model are less than the Poisson regression model, which 
implies Negative Binomial is best to account for the 
dispersion.

Multiple Negative Binomial analysis indicated that sea-
son, rainfall, elevation, mean temperature, sex, and age 

Fig. 2  Cross-correlation functions of mean minimum temperature (a), Average Temperature (b), mean Maximum Temperature (c), and Rainfall (d)

Fig. 3  Diagnostic checks of ARIMA (2,1,2) residuals. Time series of residuals, the Autocorrelation function of residuals, Partial autocorrelation 
function of residual

Fig. 4  Malaria incidence monthly forecast for 2030
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category were significantly associated with malaria inci-
dence. November was more likely [exp (0.6977)] to have 
higher malaria incidence as compared to April. The least 
malaria incidence was recorded in April. For a unit incre-
ment of rainfall in millimetres the odds of malaria inci-
dence increase by exp (0.0031249) = 1.003 (adjusted for 
the other variables), which implies that for a unit incre-
ment of rainfall malaria incidence increases by 0.3%. 
Elevation 1801–1900 m equals exp (0.3888692) = 1.475 
(adjusted for the other variables), which implies that 
malaria incidence on elevation 1801–1900 m was 1.475 
times more likely observed than elevation > 2000 m. For 
a unit increment of mean temperature, malaria inci-
dence decreases [exp (-0.1263) = 0.88] by 11.86%. Malaria 
incidence in males was 1.11 times more likely than in 
females. Malaria incidence in the age group of 5–14 years 
was [exp (-0.7748)] 0.4608 times less likely than the age 
group of 15 and above years.

It is often interesting to compare these models in a 
statistical sense using the Akaike information criterion 
(AIC) and Bayesian Information Criteria (BIC). In much 
literature reviewed that the models with the smallest 
AIC and BIC value is the better one and therefore, Nega-
tive Binomial regression model is responsible model 
to account for this data (Table 5).

Discussion
Globally, the burden of malaria is declining due to the 
intensive and wide range implementation of preventive 
and control measures, and many countries are heading 
to achieve the elimination goal by 2030. However, sev-
eral factors could challenge and reverse or delay the suc-
cess of the elimination programme [5, 6]. In the current 
study, the effect of meteorological factors and altitude 
on malaria incidence was investigated. Accordingly, the 
finding revealed that rainfall, temperature, and elevation 

Table 5  Poisson and negative binomial regression analysis and model comparison

Parameter Poisson regression Negative Binomial

Estimate (std. error) P-value Estimate (Std. Error) P-value

Intercept 2.0412050 (0.1071191) < 2e–16 2.5712491 (0.2180926) < 2e–16

Month August 0.1997012 (0.0321717) 5.39e–10 0.1489509 (0.0596761) 0.01256

Month December 0.5959069 (0.0338554) < 2e–16 0.6129467 (0.0621383) < 2e–16

Month February 0.4727498 (0.0339011) < 2e–16 0.6179138 (0.0614459) < 2e–16

Month January 0.5595071 (0.0360984) < 2e–16 0.6190579 (0.0648127) < 2e–16

Month July 0.2041098 (0.0314755) 8.89e–11 0.1460258 (0.0593064) 0.01381

Month June 0.2536605 (0.0316676) 1.15e–15 0.1937207 (0.0588766) 0.00100

Month March 0.5101808 (0.0326023) < 2e–16 0.5079790 (0.0602246) < 2e–16

Month May 0.2597362 (0.0312052) < 2e–16 0.2216359 (0.0576237) 0.00012

Month November 0.7095393 (0.0297147) < 2e–16 0.6977014 (0.0570473) < 2e–16

Month October 0.3252624 (0.0310680) < 2e–16 0.3767558 (0.0572062) 4.52e–11

Month September 0.4173954 (0.0312603) < 2e–16 0.3839196 (0.0587822) 6.52e–11

April (Reference)

 Elevation > 2000 m 0.2372410 (0.0291927) 4.41e–16 0.1554760 (0.0537200) 0.00380

 Elv1801-1900 m 0.3615582 (0.0236513) < 2e–16 0.3888692 (0.0425264) < 2e–16

 Elv1901-2000 m 0.2054667 (0.0237197) < 2e–16 0.1932937 (0.0422989) 4.88e–06

  Elv < 1800 m (Reference)

Rainfall 0.0031166 (0.0001301) < 2e–16 0.0031249 (0.0002604) < 2e–16

 TMP AVG – 0.1036946 (0.0050472) < 2e–16 – 0.1262568 (0.0099988) < 2e–16

 TMPMIN 0.0075262 (0.0040111) 0.0606 0.0071389 (0.0074662) 0.33899

Sex male 0.0518893 (0.0118691) 1.23e–05 0.1047463 (0.0228256) 4.45e–06

 Female (Reference)

  Age 5–14 – 0.7515411 (0.0145588) < 2e–16 – 0.7747979 (0.0275689) < 2e–16

  Age < 5 – 0.7798807 (0.0147003) < 2e–16 – 0.8021734 (0.0276449) < 2e–16

  Age 15 + (Reference)

Theta (std. error) – 0.46420

 AIC 89,437 67,948

 BIC 89607.08 69211.15
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at the kebele/village levels were the major drivers of the 
disease.

In general, monthly rainfall and temperature at specific 
time lags had influenced the incidence of malaria. Rain-
fall had a positive correlation with malaria occurrences at 
lag 0 and lag 2 months. This indicated the increased risk 
of malaria transmission during the rainy time and when it 
gets lower at the end of the 2nd -month lag. Similar find-
ings were also reported from different areas of the coun-
try and elsewhere in the world. A study in Kenya reported 
an increased incidence of malaria with 2-month lags of 
rainfall. A study in southwest Ethiopia reported that 
mean rainfall has a positive correlation with the malaria 
incidence at lag two to four months. Similarly, rainfall 
was a direct driver of malaria in Eritrea with various lag 
times (Lag 1, 2, 3, and 4) of the month. In addition, a 
strong correlation between rainfall and malaria transmis-
sion was reported from different geographical settings of 
Africa [19, 26, 27]. However, contrary, a negative asso-
ciation was reported from West Africa [16], whereas an 
insignificant association was reported from Ghana [28].

The lag effect of temperature was observed on the bur-
den of malaria incidence in the current study. As a result, 
the minimum temperature showed a negative correlation 
with malaria incidence. A similar finding was reported 
from Ghana where minimum temperature lagged at three 
months was negatively correlated with malaria incidence. 
This could be due to the temperature that has a critical 
role in the regulation of growth, development, and sur-
vivor-ship of mosquito and malaria parasite, and also 
determines the period of the gonotrophic cycle. Hence, 
a minimum temperature could impede the development 
of mosquitoes’ larvae and pupae. As a result, a minimum 
temperature could delay the infectiousness of mosquitoes 
and results in low malaria transmission [28].

In this study, the maximum temperature was also nega-
tively correlated with malaria incidence. A similar find-
ing was also reported from southwest Ethiopia, where 
the maximum temperature at several lags, Lag 0 to 4 
months was negatively correlated with the malaria inci-
dence. A negative association of temperature and malaria 
incidence was also reported from Western Ethiopia [16, 
19]. In contrast, others reported the positive correlation 
of temperature with malaria incidence. On the other 
hand, there was no association between monthly malaria 
incidence and mean maximum temperature in India. 
Besides, the influence of meteorological variables varies 
in different settings of the same country. For instance, 
rainfall, minimum, and maximum temperature showed 
a different correlation with malaria incidence in different 
regions of Ethiopia [29, 30].

These findings depicted the complex and multi-factorial 
epidemiology of malaria, which in turn requires a thorough 

investigation of different approaches. Also, the meteoro-
logical factor is not the only factor influencing malaria inci-
dences. Other factors such as land-use, land cover, water 
management, populations at risk, demographic and socio-
economic status of a community, poor hygiene, population 
movement, and activities exposing to infection and utiliza-
tion of existing interventions could highly determine the 
transmission pattern. Besides, several models have been 
used in different studies thus the findings require precau-
tions during interpretations [8, 9, 28, 29, 31–33]. Therefore, 
further investigation of potential determinants of malaria 
transmission is highly recommended to device evidence-
based intervention of malaria elimination.

Elevation has impacted the incidence of the disease. 
Thus, as altitude increased the burden of disease was 
decreased. As the altitude increase the temperature 
decrease, and vice versa that influences the incidence and 
transmission of infection [10–12]. In addition, the geo-
graphical shifts of the Anopheles mosquito due to climate 
change facilitate malaria transmission in previously non-
malarious areas [13, 14], and the variation of the range 
of temperature influences the incidence and transmis-
sion of infection due to its direct effect on development 
and survivorship of vectors and malaria parasites [8]. 
Furthermore, altitude has an indirect effect on malaria 
transmission by determining temperature. As the altitude 
increase the temperature decrease, and vice versa that 
influences incidence and transmission [10–12].

The predictive tool was developed to forecast malaria 
incidence in the future, which is highly useful to track 
the pace of elimination for the reasonable allocation of a 
scarce resource. As a result, the ARIMA (2, 1, 2) model, 
the best fit model was used to predict the malaria inci-
dence by 2030, the target year for malaria elimination. 
Accordingly, a point forecasts for the year 2030 shows 
that the number of malaria case will fluctuate around 88 
per month, which is approximately constant throughout 
the year. This showed the probable reduction of malaria 
incidence and indicated whether the elimination goal 
would be achieved in a defined time or not.

Similarly, according to global modelling of malaria 
eradication trajectory for 2030 and 2050, the burden of 
malaria will increase in some parts of America and the 
Horn of Africa due to rising temperature and precipi-
tation. In addition, as of the recent trajectory, expected 
global technical strategy milestones of malaria incidence 
set for 2020, 2025, and 2030 will not be achieved. This is 
because, given estimated 57 malaria incidence per 1000 
population at risk in 2018, estimated malaria incidence 
in 2020, 2025, and 2030 would be 54, 48, and 42 instead 
of the required 34, 14, and 6 per 1000 population at risk, 
respectively, to meet the milestones of global technical 
strategy for malaria [4, 6].
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Although the malaria incidence has been declined 
in the past decades the number of cases from 2015 
to 2017 warranted the possible resurgence of the dis-
ease. Besides, 2% more malaria case was reported 
in 2016 compared to 2015, which raised questions 
whether global malaria elimination programme could 
be attained on time or not [4, 5]. Therefore, the pros-
pect of malaria elimination requires more effort and 
attention than ever. Therefore, efficient and effective 
utilization of existing interventions, new alternative 
and complementary control intervention technologies/
tools, and allocating/mobilizing adequate resources is 
highly required to achieve the elimination goal during 
the defined period.

In this study, other meteorological parameters like 
relative humidity, the effect of malaria interventions 
and entomology information were not included, which 
is the limitation of the study in general and a prediction 
model in particular.

Conclusions
The findings of the present study showed a significant 
effect of rainfall and temperature on malaria incidence 
at several lags of the month. Rainfall was positively cor-
related with the malaria incidence while the tempera-
ture was negatively correlated. In addition, there was a 
variation of malaria distribution across different levels 
of geographical elevation. These were among the pri-
mary determinants of malaria incidence while other 
factors, such as malaria interventions and the abun-
dance of malaria vectors could also influence the inci-
dence of malaria. Therefore, a further study addressing 
such factors is required for further understanding and 
will be the next prior assignment in the study setting. 
Besides, equitable distribution and effective utilization 
of the existing malaria interventions are highly required 
to attain the elimination goal of the country.
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