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ABSTRACT: Lipopolysaccharide (LPS) is the primary compo-
nent of the outer leaflet of Gram-negative bacterial outer
membranes. LPS elicits an overwhelming immune response during
infection, which can lead to life-threatening sepsis or septic shock
for which no suitable treatment is available so far. As a result of the
worldwide expanding multidrug-resistant bacteria, the occurrence
and frequency of sepsis are expected to increase; thus, there is an
urge to develop novel strategies for treating bacterial infections. In
this regard, gaining an in-depth understanding about the ability of
LPS to both stimulate the host immune system and interact with several molecules is crucial for fighting against LPS-caused
infections and allowing for the rational design of novel antisepsis drugs, vaccines and LPS sequestration and detection methods.
Molecular dynamics (MD) simulations, which are understood as being a computational microscope, have proven to be of significant
value to understand LPS-related phenomena, driving and optimizing experimental research studies. In this work, a comprehensive
review on the methods that can be combined with MD simulations, recently applied in LPS research, is provided. We focus
especially on both enhanced sampling methods, which enable the exploration of more complex systems and access to larger time
scales, and free energy calculation approaches. Thereby, apart from outlining several strategies for surmounting LPS-caused
infections, this work reports the current state-of-the-art of the methods applied with MD simulations for moving a step forward in
the development of such strategies.

KEYWORDS: Lipopolysaccharide, molecular dynamics simulations, atomistic resolution, coarse-grained resolution, enhanced sampling,
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■ INTRODUCTION

Infections caused by multidrug-resistant bacteria are recog-
nized as one of the greatest threats to public health globally.
Specifically, Gram-negative bacteria are more prone to confer
resistance to antibiotics than their Gram-positive counterparts,
due to the complexity of their layered outer membrane
architecture.1−5 Thereby, contrary to Gram-positive bacteria,
the cell envelope of Gram-negative bacteria is composed of two
membranes, which differ in their structure and composition;
these membranes are separated by the periplasm, an aqueous
compartment that includes a peptidoglycan cell wall (Figure
1).6−10 The inner membrane (IM) is a symmetric
phospholipid bilayer.6,8,11 Conversely, the outer membrane
(OM), which represents the first line of defense from
environmental threats in Gram-negative bacteria, is asym-
metric; thus, the inner leaflet has the same phospholipid
composition as the IM, whereas the outer leaflet is mainly
composed of lipopolysaccharide (LPS) molecules.7−9,11 LPS is
the major constituent of the Gram-negative bacterial OM and
plays a pivotal role in antibiotic resistance.12,13 The structure of
LPS comprises three covalently attached domains, namely, the

lipophilic lipid A, the hydrophilic core oligosaccharide, and the
hydrophilic O-antigen, as schematized in Figure 1.14−16 LPS
molecules that include these three regions are named as
smooth (S-LPS), whereas when the O-antigen and/or portions
of the core oligosaccharide are absent, LPS is referred to as
rough (R-LPS).10,15 The lipid A moiety is the most conserved
portion and also the main toxic constituent of LPS;8,13,15,17 it
has a glucosamine disaccharide backbone that is acylated with
varying numbers of acyl chains (from four to eight) and
commonly phosphorylated.6,8,15,18 The core oligosaccharide
presents a relatively conserved structure, where two regions
can be distinguished: an inner core proximal to lipid A, that is
made of both at least one residue of 3-deoxy-D-manno-oct-2-
ulosonic acid (KDO) and several heptoses, and an outer
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hexose core distal to lipid A.8,10,15,19 Finally, the O-antigen
consists of oligosaccharide repeating units (up to 40) each
having 3−8 sugar residues; it is the most variable constituent of
LPS and determines the serological specificity.10,11,15,19,20

While lipid A is embedded in the outer leaflet of the bacterial
OM and acts as an anchor of LPS to the OM, both the core
oligosaccharide and the O-antigen are extended outward.8,14,15

LPS is a potent stimulator of the host immune system.
However, dysregulation of the host response to bacterial
infection could result in life-threatening sepsis and septic shock
for which there are no appropriate treatments so far. Hence,
since LPS can elicit an immune response toxic for the host, it
has been extensively named as an endotoxin.7,17,21−24 As a
result of the worldwide challenge of multidrug resistance, the
occurrence and frequency of sepsis will predictably increase;24

thus, the exploitation of novel approaches for treating bacterial
infections is urgently needed. In this sense, gaining an in-depth
understanding about the LPS−host interactions that take place
during immunostimulation, the interaction of LPS with several
affinity ligands, and the LPS conformation and dynamics is

crucial for making progress on the fight against LPS-caused
infections by rationally designing novel antisepsis drugs,
vaccines, and LPS detection and sequestration therapeutic
strategies. In order to address these tactics, understanding
microscopic details of the LPS systems is imperative.
Classical molecular dynamics (MD) simulations have proven

valuable for elucidating and understanding the structure,
function, and dynamics of LPS as well as its interactions
with other molecules at the atomic level. Since MD provides
incredibly detailed insights into the molecular process of
interest that often goes beyond the reach of sophisticated wet-
lab experiments, this in silico method facilitates the
interpretation of experimental data and can be used as a
prior stage to experiments, thus leading to time and cost
savings due to the significant minimization of the number of
experiments that need to be carried out.25−31 The great
significance of MD for moving a step forward on the LPS
research is supported by the exponential increase of the
number of published studies that make use of MD to simulate
LPS systems since the late 1990s, as noticed from Figure 2.

Figure 1. Cell envelop architecture and structure of the LPS of Gram-negative bacteria.

Figure 2. Number of publications in the last 21 years related to the use of MD simulations in LPS research and found in the Scopus database using
the restrictive keywords “molecular dynamics simulation*” and “LPS”.

Journal of Chemical Information and Modeling pubs.acs.org/jcim Review

https://doi.org/10.1021/acs.jcim.1c00613
J. Chem. Inf. Model. 2021, 61, 4839−4851

4840

https://pubs.acs.org/doi/10.1021/acs.jcim.1c00613?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jcim.1c00613?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jcim.1c00613?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jcim.1c00613?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jcim.1c00613?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jcim.1c00613?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jcim.1c00613?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jcim.1c00613?fig=fig2&ref=pdf
pubs.acs.org/jcim?ref=pdf
https://doi.org/10.1021/acs.jcim.1c00613?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


Such an increase has been fueled by the feasibility of access to
biologically meaningful time and length scales, despite the
complexity of LPS-related systems, which can be accomplished
by combining different computational methods with MD
simulations.26−28,32−35

In this Review, the computational methods available in the
MD field that have been applied to investigate LPS-related
phenomena in order to support the fight against LPS-caused
infections through several tactics, such as the development of
novel antisepsis drugs, vaccines, and endotoxin capturing and
detection strategies, are outlined. The impact of these
computational methods on the progress of LPS research is
also emphasized. We begin with a brief description of both the
alternatives for representing molecules in MD simulations and
the most important enhanced sampling and free energy
calculation methods, highlighting their strengths and critical
aspects. Subsequently, studies published in the last four years
that explore, using MD simulations, the immunostimulatory
ability of LPS, the interactions that endotoxins can establish
with several molecules, and the conformation and dynamics of
LPS are reported; hence, an overview of the latest advances in
LPS research is provided. Furthermore, the applicability and
importance of the aforementioned methods to address such
studies are discussed. Thereby, this work proves particularly
useful not only for gaining insights into several approaches that
are currently being investigated for surmounting infections
caused by bacterial LPS but also for rationalizing the methods
that can be combined with MD simulations in order to address
such investigations. Additionally, due to the importance of
coupling MD simulations with wet-lab experiments to move
forward on the development of the above-mentioned strategies
for overcoming bacterial infections, we also emphasize how
MD simulations can influence the experimental work. Finally,
challenges and future directions in this field are also discussed.

■ THEORETICAL BACKGROUND

In order to investigate events related to LPS, several MD
methods have been applied. These methods range from
conventional atomistic to enhanced sampling methods. In this
subsection, the MD methods that have been employed in the

last four years to explore LPS-related systems are briefly
described. A more detailed description of these methods can
be found elsewhere.28,36−43

Depending on the definition of the elementary particles
considered in the model, molecules can be represented at
various levels of resolution, as schematized in Figure 3a. All-
atom molecular dynamics (AA-MD) simulations, which rely on
describing the molecules at atomistic resolution, represent the
common approach to reproduce the motion of biomolecular
systems.32−34 According to this simulation method, the
positions and velocities of every atom in the system are
determined by solving Newton’s equations.33,34,44 Thereby,
AA-MD enables the simulation of biological processes of
interest with considerable accuracy and a high level of
detail.37,45 Due to the short time steps of AA-MD simulations
(1−2 fs) that are required for ensuring the numerical stability,
millions or billions of time steps are typically involved in AA-
MD; this fact, along with the millions of interatomic
interactions that are commonly evaluated during each time
step, makes atomistic simulations greatly computationally
demanding.30,32,46,47 Therefore, despite enabling the capture
of the biomolecules behavior at atomic detail, the time
(typically from nanoseconds to microseconds) and length
scales that can be achieved by AA-MD simulations are
insufficient to explore several biological processes of interest
that take place on microsecond to second time scales.30,33,34,45

A popular alternative to overcome the limitations of AA-MD
is based on simplifying the representation of the biomolecules
by using coarse-grained models.32,33,37 As such, the modeling
of individual atoms, characteristic of AA-MD, is replaced by
describing groups of atoms as a single bead, which reduces the
number of particle−particle interactions to be com-
puted.32,33,39,45,48 Therefore, coarse-grained molecular dynam-
ics (CG-MD) enables the simulation of more complex and
larger systems (hundreds of nanometers) and longer time
scales (on the order of seconds) since the number of simulated
particles is lower.32,33,39,47,49 Consequently, as a result of the
decrease in the number of degrees of freedom, the potential
energy surface is smoother. This fact, along with the absence of
high frequency bonds, allows the use of longer integration time

Figure 3. Schematics of (a) all-atom (balls and sticks) and coarse-grained (shaded spheres) representations and (b) the rugged energy landscape of
a biomolecule.
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steps (10−30 fs) than typical time steps of AA-MD, which in
turn implies longer simulations. Besides, smoothing the energy
function also leads to faster sampling the conformational states
of the system under investigation using CG-MD in comparison
to AA-MD over similar time scales.32,39,46,47

Although coarse-grained modeling enables the investigation
of biomolecular processes beyond the time and length barriers
of AA-MD, dismissing atomic details in the models of
biomolecules may lead to inaccuracies on the properties to
be predicted as well as to the impossibility of examining other
properties. Therefore, coupling the accuracy of all-atom
models and the efficiency of coarse-grained ones is
desirable.33,37,39,50 In this regard, atomic resolution and time-
size scalability can be accomplished by following strategies
such as (i) reconstructing all-atom structures from coarse-
grained simulations (known as backmapping or reverse
mapping) and (ii) using hybrid all-atom/coarse-grained
(AA/CG) models for the simulations.37,49,51,52 Backmapping
entails the conversion of coarse-grained models to all-atom
structures in order to recover atomic information from CG
simulations;49,52 conversely, hybrid multiscale AA/CG models
combine different levels of resolution at once, providing an
atomistic description of the regions of interest, while
enhancing the sampling speed by using coarse-grained
resolution in the remaining regions.32,43,48,51−53

Additionally, when performing MD simulations, sufficient
sampling of the conformational space of the system under
investigation is of paramount importance, so that all physically
relevant conformational states can be considered.54,55 How-
ever, complex biomolecular systems are characterized by
rugged energy landscapes, and the crossing of energy barriers
between metastable states can be difficult. This fact leads to the
trapping of such systems in energy wells of the conformational
space, thus hindering the exploration of new states (Figure
3b).36,41,55,56 In order to surmount this limitation and widen
the sampling time scales that are typically accessed by MD,
several enhanced sampling approaches have been devel-
oped.36,56 Furthermore, an appropriate sampling enables the
calculation of the free energy of the processes under study.32

Therefore, in the following, we briefly explain the fundamentals
of enhanced sampling methods used in LPS research for both
exploring slow events and computing the free energy of the
phenomena of interest. Prior to such explanation, it should be
pointed out that enhanced sampling methods can be applied
with both atomistic and coarse-grained molecular representa-
tions in order to successfully explore the system of interest.57

Additionally, coarse-graining is also an enhanced sampling
method since by coarse-graining the system the number of
degrees of freedom is reduced and the potential energy surface
is smoothened.32,33

Umbrella sampling (US) is one of the most commonly used
methods for enhancing sampling. In practice, this method
introduces a bias potential (termed as umbrella potential) to
guide the system from one state to another (e.g., from being
free in solution to being bound to a membrane). The pathway
between these states is covered by performing independent
MD simulations (so-called windows) using umbrella poten-
tials. Subsequently, individual umbrella windows can be
combined using different methods, the most commonly used
being the weighted histogram analysis method (WHAM). It
should be pointed out that the choice of the parameters of the
umbrella potentials is of paramount importance; for example,
the selection of the force constant is key, since the bias

potentials are typically harmonic.38,41,58−60 Additionally,
Hamiltonian replica-exchange with solute tempering
(HREST) has also been used to enhance the sampling
efficiency. Particularly, in the HREST2 method, the temper-
ature is the same for all replicas, whereas the potential energy
for each of them is scaled differently.61,62

On the other hand, in steered MD (SMD) simulations,
conformational sampling is facilitated by applying a time-
dependent external force to lead the motion of the selected
atoms.36,38,42 Typically, one end of the molecule is kept fixed,
whereas the opposing one is subject to the external force (for
instance harmonic), which can be applied following several
protocols, including, pulling at constant velocity or force. It is
worth mentioning that such force could be exerted to any atom
or group of atoms; thus, it is not restricted to be applied to the
ends of the molecule.36,42,63,64 For this simulation method, the
restraint stiffness and the pulling velocity are of paramount
importance for the derived results.36,42

The free energy of the events under investigation can be
computed in silico using several methods, which differ in
accuracy and computational cost.32,65,66 The Linear Interaction
Energy (LIE), Molecular Mechanics Poisson−Boltzmann
Surface Area (MM-PBSA), and Molecular Mechanics Gener-
alized Born Surface Area (MM-GBSA) methods are frequently
used for free energy calculations since they exhibit an
intermediate performance in terms of efficiency and
accuracy.65,67,68 These methods solely evaluate the initial and
final states of the system, and thus, they are called end-point
methods.65,67,69

The LIE method involves performing only two MD
simulations: one of the ligand complexed with the receptor
and the other of the ligand in solution. Thereby, according to
the LIE approach, the binding free energy is linearly
proportional to the difference between energy averages of
electrostatic and van der Waals interactions of the ligand with
its surroundings in the bound and free states; these differences
are scaled by two empirical parameters.38,65,68,70−72 In the
MM-PBSA and MM-GBSA methods, the free energy could be
computed from three separate simulations (i.e., ligand−
receptor complex, free receptor, and free ligand); however,
simulating only the complex is more commonly done due to
stability issues.38,65,68,73 Hence, the free energy is calculated
from the vacuum molecular mechanics (MM) energies, the
polar and nonpolar solvation free energies, and the conforma-
tional entropy change upon ligand−receptor binding. The
polar contribution to the solvation free energy is calculated
using the Poisson−Boltzmann equation (MM-PBSA method)
or the generalized Born model (MM-GBSA method).67,68,74,75

On the other hand, US is one of the most common
approaches for calculating the Potential of Mean Force (PMF),
i.e., the free energy profile of the event under investigation
along a reaction coordinate. To this end, the initial
conformations for USMD are commonly provided by other
enhanced sampling methods, such as SMD; additionally,
individual umbrella windows are typically combined using
WHAM.41,60,76,77

Once the basics about MD methods, regarding system
representation, conformational sampling, and free energy
calculation approaches, have been introduced, in the following
section, we discuss the use of these methods to investigate
LPS-related phenomena. Additionally, a brief picture of
different strategies to fight against bacterial infections will be
given.
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■ PROGRESS IN LPS RESEARCH THROUGH MD
Investigating the immunostimulatory ability of LPS, the
interactions it can establish with other molecules as well as
its conformation and dynamics is of paramount importance in
order to surmount the multidrug resistance challenge and
combat the Gram-negative bacterial infections by developing
novel antisepsis drugs, vaccines, and LPS detection and
sequestration therapeutic strategies. MD simulations have
been understood as a powerful tool for addressing such issues;
particularly, advances in algorithms and computational
resources have enabled the study of LPS events at biologically
relevant time and length scales. Additionally, the success of
MD simulations for examining LPS phenomena has also been
fostered by the availability of X-ray crystallographic structures
of both LPS and the molecules involved in the events under
investigation.34,37 In the following subsections, the MD
methods that have been used for exploring events related to
the immunostimulatory capacity of LPS, its conformation and
dynamics, and the interaction of LPS with other molecules are
discussed; moreover, the structures employed in these studies
that are stored in different databases have been included in
Table 1, due to their importance for performing MD

simulations. It should be pointed out that studies that are
not mentioned in Table 1 typically use modeled structures
derived from a variety of methods.
LPS Immunostimulatory Ability. LPS molecules can be

recognized by the innate immune system, which makes LPS a
pathogen associated molecular pattern (PAMP). Thereby,
upon bacterial infection, LPS is recognized by the complex
composed of Toll-like receptor 4 (TLR4) and myeloid
differentiation factor 2 (MD2); as a result of the LPS
recognition, the TLR4−MD2 complex triggers a pro-
inflammatory response in order to provide an immediate
host defense against invading bacteria.7,17,22,24,79,81,89 This
immune response is advantageous for eliminating bacteria as
long as it is controlled. However, the overstimulation of the
TLR4-signaling pathway can lead to sepsis and septic shock,
which substantiates the endotoxic potential of LPS; specifically,
the lipid A moiety of LPS is responsible for such endotoxic
activity. Therefore, the development of strategies to diminish
the exaggerated and detrimental LPS-induced immune
response is of outstanding importance.21,22,24,79,81,82,86,87,90,91

In this regard, several MD studies have focused on gaining an
improved understanding about key steps in the TLR4
activation by LPS. Moreover, the rational design of TLR4−
MD2 antagonists that inhibit TLR4 signaling by competing

with LPS in the binding to MD2, as illustrated in Figure 4, has
evolved into a hot research topic. Thereby, MD2 and TLR4

have been understood as promising targets for the design of
antisepsis drugs, and thus, several TLR4−MD2 inhibitors have
been reported in the literature.22,24,79,82,87,92 In this subsection,
works that make use of MD simulations for moving a step
forward in the elucidation of key steps of the TLR4 pathway
and in the design of TLR4−MD2 antagonists are discussed;
these studies have been included in Table 2.
Kargas et al.81 employed a multiscale MD simulation

approach to elucidate the mechanism and the structural basis
underlying the homodimerization of the TLR4 transmembrane
domain (TMD), which is a key step in the TLR4 signaling
pathway. Hence, CG-MD simulations of the TLR4 TMD
embedded in a palmitoyl-oleoyl-phosphatidyl-choline (POPC)
membrane were first performed; subsequently, the principal
conformations of the TLR4 TMDs assembly were back-
mapped to all-atom representations, and AA-MD simulations
were carried out. The use of this multiscale approach allowed
them to increase the simulation time scale; specifically, they
reached simulation times higher than 13 and 100 μs for all-
atom and coarse-grained simulations, respectively. Addition-
ally, Kargas et al.81 explored the coupling between the
ectodomain (ECD) and the TMD of TLR4 in order to
rationalize experimental insights previously derived. They
carried out CG-MD simulations of monomeric and dimeric
ECD/TMD of TLR4 in complex with MD2 within a POPC
membrane in the absence or presence of peptide linkers.
Further directions of the investigations regarding the domains
coupling could be focused on performing similar studies
including the cytosolic Toll/interleukin-1 receptor (TIR)
domain of the TLR4 and also on refining the molecules’
resolution and, thus, enhancing the accuracy of the simulations
using all-atoms models, which entails a considerable increase in
the computational demand.

Table 1. X-ray Crystallographic Structures Stored in the
Databases of the Molecules Involved in This Worka

aNote: The subindex “2” indicates tetrameric structures.

Figure 4. Overview of the activation (a) and inhibition (b) of TLR4−
MD2 by LPS and antagonistic molecules, respectively.
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Table 2. MD Studies Focused on the Immunostimulatory Ability of LPSa

aForce fields that have been used for each investigated system have not been specified; force fields that are included in the Table refer to the ones
used in the study. *1, GAFF + R.E.D.; *2, specific modifications to the force field were included, check the original publication; *3, the force field
for some of the molecules could not be specified in the original publication.
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Additionally, Huber et al.79 investigated the transfer of the
LPS in the TLR4 pathway in near-atomic detail. They
developed CG models for lipid A, bacterial OMs, and the
individual receptors involved in the TLR4 pathway, namely,
CD14 (cluster of differentiation 14), MD2, and TLR4.
Specifically, they first tested, through CG-MD simulations,
the reliability of the models in order to accurately reproduce
atomistic MD simulations or experimental observations.
Afterward, they substantiated the hypothesis that lipid A
follows a funnel-like transfer through the receptors that
comprise the TLR4 cascade. To this end, they performed US
and PMF calculations to derive the affinity of lipid A to the
immune receptors as well as the energy required for its removal
from different membranes (symmetric lipid A bilayer and
asymmetric OMs with and without porins) into solvent.
Hence, Huber et al.79 concluded that the transfer process is
promoted by an affinity gradient for lipid A, since the relative
binding affinities increased from lipid A aggregates or bacterial
OMs without or with inserted porins via CD14 to the terminal
TLR4−MD2 complex. Finally, they performed CG-MD
simulations of a system composed of lipid A bound to CD14
and the TLR4−MD2 complex at the plasma membrane in
order to derive the spontaneous assembly of the CD14−
MD2−TLR4 receptors. The resultant conformations were
used to simulate the complete transfer of lipid A from CD14 to
the TLR4−MD2 complex; for that purpose, they applied a
harmonic biased potential in order to promote the lipid A
transfer from CD14 to MD2. From these simulations, they
proposed a stepwise process for the lipid A exchange between
CD14 and TLR4−MD2, which entails the formation of a
hydrophobic bridge between CD14 and TLR4−MD2 and the
gradual migration of lipid tails from CD14 to MD2.
On the other hand, several potent inhibitors of the TLR4−

MD2 activity, such as ursolic acid, have been reported in the
literature; however, their inhibition mechanism was poorly
understood at atomic detail.87 Motivated by this fact, Niu et
al.87 investigated the inhibition mechanism of the TLR4−MD2
complex by ursolic acid through AA-MD simulations and the
MM-PBSA method for estimating the binding free energy.
Apart from elucidating the binding mode of ursolic acid with
TLR4−MD2, they identified residues that play a pivotal role in
the complexation of ursolic acid with TLR4−MD2 by
decomposing the binding free energy into the residues’
contribution. From this study, they proposed a possible
inhibition mechanism of ursolic acid to TLR4−MD2. Addi-
tionally, Tafazzol and Duan82 investigated the interactions
between the TLR4−MD2 receptor and two ligands, namely,

LPS and neoseptin3 (peptidomimetic compound), in order to
elucidate the mechanism that underlies the modulation of
TLR4−MD2 at atomic detail. To this end, they carried out
AA-MD simulations of ligand-bound and ligand-free mouse
TLR4−MD2 (mTLR4−MD2) tetramers and a ligand-free
mTLR4−MD2 heterodimer. Furthermore, they computed the
binding free energy of the dimer interfaces between the
monomers in the (TLR4−MD2)2 tetramer as well as that of
the interface between the heterodimers (TLR4−MD2/TLR4*-
MD2*) using the MM-GBSA and MM-PBSA methods.
Finally, they identified crucial residues of these interfaces in
the formation of the TLR4−MD2 tetramer by performing a
per-residue decomposition of the binding free energies.
Furthermore, inhibitors for the TLR4−MD2 complex have

been designed.22,24,92 For instance, Borio et al.24 developed
novel TLR4−MD2 antagonists based on anionic glycolipids. In
order to elucidate the structural basis for the interaction affinity
between such Lipid A mimetics (LAMs) and MD2, they
complemented their experimental studies with MD simu-
lations. Hence, they carried out AA-MD simulations of human
and mouse MD2 (hMD2 and mMD2, respectively) complexed
with the compound with the highest antagonist activity
(denoted as LAM2); they computed the antagonist-hMD2/
mMD2 binding free energy using the LIE method, and from
this calculation, they estimated the LAM2−hMD2 dissociation
constant. From the MD studies, they concluded that the
binding of LAM2 to hMD2 is 3-fold tighter than to lipid A,
which substantiate the antagonist potential of LAM2 and thus
their capability for competing with lipid A and displacing it
from the binding cleft of hMD2.
Collectively, the complexity of the innate immune receptors

requires the use of CG models or the introduction of
multiscale approaches (i.e., combination of AA and CG-MD
simulations) in order to comprehensively investigate key steps
in the TLR4 signaling pathway. Additionally, free energy
calculations enable not only the determination of the
antagonist potential of TLR4−MD2 inhibitors but also the
identification of key residues for the binding of agonistic or
antagonistic molecules to the TLR4−MD2 complex as well as
the estimation of the energy associated with crucial stages in
the TLR4 signaling pathway. Thereby, from MD simulations,
the dimerization of TLR4 TMDs and the coupling between the
transmembrane and ecto-domains of TLR4 have been
investigated; moreover, important interactions for the for-
mation of the TLR4−MD2 tetramer have been identified.
Furthermore, it was demonstrated that the stepwise transfer of
LPS in the TLR4 pathway is fostered by an affinity gradient.

Figure 5. Schematic of the strategies, based on considering LPS as a target, for treating bacterial infections. (Images were freely provided by
Pixabay98 or created).
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Lastly, the inhibition of the TLR4−MD2 activity by natural
(ursolic acid) and synthetic (LAMs) compounds has been
computationally explored, revealing the antagonist potential of
these molecules.
LPS as Target Molecule. The design of novel drugs to

downregulate the immune response that LPS induces has
received significant attention for treating Gram-negative
bacterial infections. However, other strategies are focused on
the development of vaccines based on O-antigens. The
extracorporeal capture of the LPS released into the blood-
stream during infection has also been the focus of intense
research; additionally, the development of point-of-care
(POC) systems for endotoxin detection in order to diagnose
early stage Gram-negative bacterial infections is an unfulfilled
need. Therefore, LPS is understood as a target molecule of
outstanding interest.20,91,94−97 These tactics for fighting against
LPS-caused infections have been schematized in Figure 5, and
MD studies that address such investigations have been
reviewed in Table 3.
LPS sequestration and detection require the identification of

molecules that bind to LPS with high affinity and selectivity,
making LPS a target molecule of significant interest. Once LPS
binding molecules are found, modifications can be introduced
to such ligands in order to enhance the specificity and strength
of their interaction with LPS for the specific application.20,91 In
this regard, Jagtap et al.91 assessed the potential of alexidine
dihydrochloride (hereafter alex) as an efficient LPS binder in
order to be further used for diagnostic purposes. In their study,
Jagtap et al.91 combined spectroscopy techniques and AA-MD
simulations. While the binding sites and stoichiometry could
be determined with some of these analytical techniques, they
carried out MD simulations to investigate the mechanism of
the alex−lipid A and alex−LPS interaction, thus supporting the

results they obtained experimentally. It is worth mentioning
that, in the first set of simulations, the lipid A portion of LPS,
instead of the whole LPS molecule, was considered. This
simplification, which significantly reduces the complexity of the
systems under investigation, stems from the important role that
lipid A has on ligand−LPS binding as well as from the fact that
the ability of LPS to activate the immune system can be mainly
attributed to its lipid A constituent.
In addition to alex, other molecules that are able to interact

with LPS have also been in silico investigated. This is
particularly the case of the human antimicrobial peptide
(AMP) LL-37, polymyxin B (PMB), or Temporin L (TempL)
and its analog Q3K-TempL, whose interaction with LPS/lipid
A bilayers has been explored by Martynowycz et al.,99 Santos et
al.,100 and Farrotti et al.,101 respectively. Additionally, the
binding of lipid A to receptors involved in the immune system
response (CD14, MD2, TLR4) has been thoroughly
investigated by Taffazol and Duan82 and Huber et al.79

Given that these biomolecules successfully interact with LPS/
lipid A, they could be used as LPS sequestration or detection
agents. In fact, some of these molecules have been
experimentally demonstrated to exhibit a strong affinity toward
LPS as discussed by Basauri et al.,20 who comprehensively
reviewed various LPS binding molecules with different origins.
Moreover, the molecular basis of the LPS or lipid A
interactions with the aforementioned molecules derived from
these computational studies could pave the way for the design
of novel molecules with improved binding affinity toward LPS,
thus progressing on the development of novel methods for LPS
sequestration or detection.
On the other hand, the development of vaccines based on

O-antigen polysaccharides has also been of outstanding
interest. For that purpose, understanding how the unit length

Table 3. MD Studies Based on LPS as a Target Molecule

*1, specific modifications to the force field were included, check the original publication.
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and sequence diversity (i.e., sugar constituents, presence of
branched or unbranched structures, etc.) of O-antigens impact
their antigenicity is crucial for making further progress on
vaccine design.10,96,97 In this regard, Blasco et al.10 explored
the conformation and dynamics of Escherichia coli O91 O-
antigen by nuclear magnetic resonance (NMR) experiments
and extensive MD simulations. Hence, through AA-MD, they
investigated such O-antigen polysaccharide when it was free in
solution as well as when it was a component of the LPS in a
bilayer. For this latter scenario, membranes containing LPS
composed of O-antigen polysaccharides with 5 or 10 repeating
units (RUs) were modeled. Additionally, Aytenfisu et al.97

investigated how modifications in the composition of Klebsiella
pneumoniae O1 and O2a O-antigen polysaccharides could
affect antigenicity. Particularly, they explored the alterations on
the conformational properties and accessibilities of these O-
antigen polysaccharides, which were polygalactans, resulting
from the addition of a branch to their structure. To this end,
they simulated O-antigens composed of D-galactan-II and
varying numbers of RUs of D-galactan-I or D-galactan-III
(branched variant of D-galactan-I) through AA-MD; in this
work, sampling was enhanced by combining HREST2 with
correction maps as biasing potentials (bpCMAP), namely, the
HREST2-bpCMAP method.
Overall, the interactions derived from MD simulations

between LPS or lipid A and the molecules reported throughout
this work could serve as the cornerstone to design new ligands
that bind to endotoxins with high affinity; hence, these
molecules could be used to develop LPS sequestration or
detection therapeutic strategies. On the other hand, the
exploration of the conformation and dynamics of O-antigens
through AA-MD simulations contributes to the elucidation of
their antigenicity potential, thus facilitating the design of
vaccines. Thereby, the studies of Blasco et al.10 and Aytenfisu
et al.97 promote the development of vaccines based on E. coli
O-91 and K. pneumoniae O1 and O2 O-antigen polysacchar-
ides, respectively. It is worth mentioning, as reported by
Aytenfisu et al.,97 that sampling the conformations of O-
antigen polysaccharides can be successfully enhanced by using,
for instance, the HREST2 method.

■ COUPLING MD SIMULATIONS AND
EXPERIMENTAL WORK IN LPS RESEARCH

As it has been demonstrated through this work, important
progress on the development of different strategies (i.e.,
antisepsis drugs, vaccines, and LPS sequestration and detection
methods) for fighting against LPS-caused infections has been
accomplished by taking advantage of MD. However, many of
the reviewed studies are not purely computational, but they
combine MD simulations and wet-lab experiments. This fact
stems from the potential of MD simulations for supporting
wet-lab experiments, either guiding their performance or
facilitating the interpretation of experimental results.30,31 In
this section, we examine representative studies that combine
MD and experiments in order to successfully fulfill the
aforementioned strategies, thus highlighting the importance of
MD simulations to influence experimental work.
MD is commonly used to understand the molecular basis of

experimental observations and to support the experimental
results. Thereby, Borio et al.24 carried out MD simulations and
free energy calculations in order to investigate the structural
basis underlying the high affinity binding between LAMs,
which had been previously developed, synthesized, and

biologically evaluated, and human and mouse MD2. They
computationally confirmed the TLR4 antagonist potential of
one of these LAMs (named as LAM2), which was in
agreement with the results from the in vitro experiments.
Similarly, Peng and co-workers83 performed in vitro and in
silico studies in order to assess the suitability of lovastatin as a
TLR4 antagonist. Particularly, they drew on MD simulations to
elucidate the interaction of lovastatin and MD2. The findings
derived from the simulations regarding the lovastatin binding
site in MD2 and the stabilization of the MD2 conformation
correlated well with the experimental results. Additionally, the
performance of in vitro and in silico assays allowed Zhang et
al.85 to examine the molecular recognitions and binding modes
of (+)-naltrexone-based TLR4 antagonists and MD2. Partic-
ularly, MD simulations were carried out to gain molecular
insights and investigate the dynamics of the interaction of
(+)-naltrexone, its derivates, and lipid A with MD2; moreover,
the computationally calculated binding free energies were in
agreement with their TLR4 antagonistic activities and binding
affinities determined experimentally. On the other hand, Jagtap
et al.91 combined several experimental techniques and MD
simulations to explore the mechanism of interaction between
alex and E. coli LPS. Thereby, they experimentally determined
the binding stoichiometry, the binding sites, and the
thermodynamic and kinetic binding and dissociation constants,
whereas MD simulations were carried out to support
experimental data and to gain insights into the conformational
interaction between these molecules. In silico results were in
agreement with the experimental ones, which proves the
potential of alex to neutralize LPS. Finally, aiming at assessing
the self-assembly propensity in solution of LAMs that were
designed to be further used as TLR4 modulators, Cochet et
al.93 performed MD simulations of one of these LAMs in water
in order to understand, at an atomistic level, its aggregation
behavior that they had observed experimentally.
Additionally, MD simulations can be performed prior to

experiments in order to guide their performance. In this regard,
Sestito and co-workers80 performed MD simulations to assess
the binding pose stability of one of the calixarene-based TLR4
antagonists that they had designed with the TLR4−MD2
complex and also to elucidate the interactions that were
involved in such binding. Once the calixarene/TLR4-MD2
binding and thus the antagonist potential of such calixarene
was in silico investigated, these calixarenes were synthesized
and their capacity to inhibit LPS-stimulated TLR4 signaling
was experimentally assessed. Similarly, Cochet et al.93

elucidated the binding interactions between several in silico
designed LAMs with the TLR4−MD2 complex by MD
simulations in order to evaluate their possible applicability as
TLR4 modulators. Subsequently, they synthesized these LAMs
and tested experimentally their ability to bind to hMD2.
Collectively, MD simulations can be integrated with wet-lab

experiments in different ways in order to make progress on the
development of strategies for fighting against bacterial
infections. Thereby, MD can be used after the experiments
in order to support experimental evidence and to facilitate their
rationalization due to the atomistic insights that can be derived
from this in silico method. Additionally, when MD simulations
are performed prior to wet-lab experiments, the knowledge
derived from MD can be used to guide experimental work.
Regardless of how MD is coupled with the experiments, it has
demonstrated its potential for influencing experimental work.
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■ FURTHER DIRECTIONS AND CONCLUDING
REMARKS

MD simulations have been applied to gain an improved
understanding about phenomena related to LPS and, in turn,
to develop strategies in order to surmount Gram-negative
bacterial infections, as evidenced from previous sections.
Throughout this work, it has been indicated that such an
investigation has been addressed, in most studies, by
combining several computational methods, namely, enhanced
sampling and free energy calculation methods, with MD
simulations. Particularly, the combination of enhanced
sampling methods with MD simulations has made it possible
to close the gap between the time and length scales that can be
accessed with MD simulations and the ones involved in
biologically relevant processes. In this regard, advances on the
elucidation of the molecular basis for the activation and
inhibition of TLR4−MD2 signaling and the design of vaccines
based on O-antigens as well as on the capture of LPS by
bioaffinity ligands have been made. These investigations have
significantly contributed to the rational development of
diagnostic and therapeutic strategies for fighting against LPS-
caused sepsis. Thereby, knowledge gained from MD
simulations has proved crucial for advancing the development
of sepsis treatments, for example, by discovering hit or lead
compounds for the design of immunomodulatory and anti-
inflammatory molecules or by meeting the need of identifying
molecules that could replace some trapping molecules that are
currently used for the extracorporeal clearance of LPS from
blood due to the associated health hazards they pose, such as
PMB. Additionally, MD simulations have played an important
role in the development of in vitro diagnostic systems for the
early detection of bacterial infections, which is key for
enhancing survival for LPS patients. However, further progress
on the development of these strategies requires a deeper
exploration of the TLR4 signaling pathway and the interaction
of LPS with different molecules, which calls for the
investigation of phenomena whose characteristic time and
length scales could still be beyond the possibilities of current
day MD simulations. Under this scenario, as it has been
demonstrated in this work, the development of multiscale
models represents an interesting alternative for moving a step
forward in the exploration of different phenomena related to
LPS in order to fight against bacterial infections.
Overall, in this broad overview about the application of MD

simulations to explore different LPS-related phenomena,
complemented with their use in the interpretation of
experimental evidence or for guiding the performance of
experiments, we provide a global picture about the great
importance of MD simulations in the development of strategies
for overcoming LPS-caused infections. With a special focus on
the combination of MD simulations and several computational
methods (i.e., enhanced sampling and free energy calculation
approaches), this Review proves the potential of MD to be
used as a predictive tool.

■ DATA AND SOFTWARE AVAILABILITY

The production simulation software used in the works
reviewed throughout this study are free of charge and can be
downloaded from their corresponding Web sites: GROMACS
(http://www.gromacs.org/), NAMD (http://www.ks.uiuc.
edu/Research/namd/), AMBER (https://ambermd.org/),
and CHARMM (https://www.charmm.org/). In most of the

reviewed works, relevant data are included in the manuscript
and/or in the Supporting Information files; in other studies,
data are made available upon request.79,84,88
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