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Spondyloarthritis is a common type of arthritis which affects mostly adults. It consists 
of idiopathic chronic inflammation of the spine, joints, eyes, skin, gut, and prostate. 
Inflammation is often asymptomatic, especially in the gut and prostate. The HLA-B*27 
allele group, which presents intracellular peptides to CD8+ T cells, is by far the strongest 
risk factor for spondyloarthritis. The precise mechanisms and antigens remain unknown. 
In 1959, Catterall and King advanced a novel hypothesis explaining the etiology of 
spondyloarthritis: an as-yet-unrecognized sexually acquired microbe would be causing 
all spondyloarthritis types, including acute anterior uveitis. Recent studies suggest an 
unrecognized sexually acquired fungal infection may be involved in prostate cancer 
and perhaps multiple sclerosis. This warrants reanalyzing the Catterall–King hypothesis 
based on the current literature. In the last decade, many links between spondyloarthritis 
and fungal infections have been found. Antibodies against the fungal cell wall component 
mannan are elevated in spondyloarthritis. Functional polymorphisms in genes regulating 
the innate immune response against fungi have been associated with spondyloarthritis 
(CARD9 and IL23R). Psoriasis and inflammatory bowel disease, two common comor-
bidities of spondyloarthritis, are both strongly associated with fungi. Evidence reviewed 
here lends credence to the Catterall–King hypothesis and implicates a common fungal 
etiology in prostate cancer, benign prostatic hyperplasia, multiple sclerosis, psoriasis, 
inflammatory bowel disease, and spondyloarthritis. However, the evidence available at 
this time is insufficient to definitely confirm this hypothesis. Future studies investigating the 
microbiome in relation to these conditions should screen specimens for fungi in addition 
to bacteria. Future clinical studies of spondyloarthritis should consider antifungals which 
are effective in psoriasis and multiple sclerosis, such as dimethyl fumarate and nystatin.
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introdUCtion

More than four decades ago, major histocompatibility complex (MHC) class I allele group HLA-B*27 
was identified as a potent risk factor for developing spondyloarthritis (1, 2). Despite the strength 
of this association, mechanisms accounting for the link between HLA-B*27 and spondyloarthritis 
remain a mystery. The bacterial microbiome has attracted a great deal of attention as a possible 
explanation for this link (3). While we acknowledge the importance of bacteria, we describe a likely 
role for fungi and suggest that the prostate may be an important locale harboring microbes etiologi-
cally related to spondyloarthritis.
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table 1 | Nine key observations in Harkness’ 1949 review of ReA.

Key observation Confirmation

Sexual activity often immediately 
precedes ReA onset

Confirmed by many studies (33–35); 
enteric and idiopathic cases are also 
common (36–38)

Urethritis is abacterial (urethral  
cultures are mostly negative)

Confirmed by many studies (22, 31, 32), 
though sensitive universal microbiome 
assays have not been performed

Smears and cultures of synovial  
fluid/tissue are mostly negative

Confirmed by many studies (21, 36), 
though sensitive universal microbiome 
assays have not been performed

Neisseria gonorrhoeae is acting as 
a surrogate for sexual activity and is 
neither required nor causative

This is now generally accepted (30)

ReA symptoms may not all  
be present

Confirmed by Csonka (33, 39) and now 
generally accepted

ReA relapses are common Confirmed by Csonka (33, 39) and now 
generally accepted

ReA occurs in women as well, but 
cervicitis (not urethritis) is the main 
genital symptom

This is now generally accepted (22)

When present, urethritis usually 
appears before other symptoms

This is now generally accepted (30, 40)

Sexually acquired ReA relapses can 
occur without sexual contact

Confirmed by Csonka (33, 39) and now 
generally accepted

ReA, reactive arthritis.
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Recent studies have linked the immune response against fungi 
with prostate cancer (4) and multiple sclerosis (5). Sexual risk fac-
tors of prostate cancer (6–8) and multiple sclerosis (9–12) suggest 
that there may exist an as-yet-unrecognized sexually transmitted 
infection (STI) etiologically involved in these two diseases (4, 5, 
13, 14). Epidemiological evidence suggests this elusive STI may 
be a fungal infection (15).

Many forms of spondyloarthritis have links with fungal infec-
tions, including ankylosing spondylitis (AS) (16), acute anterior 
uveitis (AAU) (16), Crohn’s disease (17, 18), and psoriasis (19, 
20). One form of spondyloarthritis, reactive arthritis (ReA), has 
clear sexual risk factors—though causal associations with known 
STIs remain uncertain (21, 22). ReA and other spondyloarthri-
tides are rare in children, and onset typically occurs in young 
adulthood (23, 24), mirroring the occurrence of STIs (25). In 
1959, Catterall and King postulated a common sexually acquired 
infectious etiology for all spondyloarthritis types, whose primary 
focus in men is the prostate (26, 27).

In this article, we review the evidence which allowed Catterall 
and King to postulate their hypothesis, and related studies pub-
lished in the six intervening decades. We then review the links 
between fungi and spondyloarthritis, in part to determine if the 
sexually acquired prostatic infection sought by Catterall and King 
(28) could be the same as the putative sexually acquired fungal 
infection suspected of causing prostate cancer (4, 15).

postUlation oF tHe Catterall–KinG 
HypotHesis

Between 1818 and 1948 many case reports were published 
describing a syndrome affecting men, consisting mainly of the 
simultaneous inflammation of the urethra, eyes, and joints (29). 
This syndrome was initially called Reiter’s disease. It is now 
called ReA due to the genital and enteric infections which often 
immediately precede onset. The classic eye inflammation in ReA 
is bilateral conjunctivitis on the external surface of the eye and 
less frequently unilateral AAU (30).

Harkness’ review of rea (1949)
After studying 126 cases, Harkness published a comprehensive 
review of ReA (29). He made several key observations (Table 1). 
Harkness extended the definition of ReA to include incomplete 
cases in which either eye or joint inflammation was absent, and 
to similar cases in women where the main genital symptom 
was cervicitis. Harkness noted that generally no microbe could 
be observed or cultured to account for urethritis or arthritis 
symptoms, and that the presence of Neisseria gonorrhoeae in a 
subset of patients—previously thought to be causative—seemed 
to be coincidental. Some idiopathic urethritis cases in his series 
were likely caused by infections that were not as well character-
ized at the time, such as Chlamydia trachomatis (serology was 
positive in 15% of his cases) and Mycoplasmataceae species. 
Idiopathic urethritis remains frequent today: its prevalence is 
about 13% in healthy American men (31), and no infectious 
agent can be found in about half of American men presenting 
with urethritis at an STI clinic (32). Similarly, no causative 

microbe can be found in about half of sexually acquired ReA  
cases (22).

Harkness advanced a four-part hypothesis to explain the etiol-
ogy of ReA: (a) a single as-yet-unrecognized infectious agent is 
necessary in all ReA cases; (b) some relapses are caused by non-
sexual “additional factors” that reactivate the infectious agent; (c) 
the infectious agent cannot be cleared by the immune system in at 
least some cases and remains in a latent state between attacks; and 
(d) enteric microbes are not directly causative, but rather unleash 
the single causative infectious agent.

prostatic inflammation in as and  
rea (1958)
The association between inflammation of the prostate—usually 
defined as a high concentration of leukocytes in expressed pro-
static secretion obtained by prostate massage—and non-genital 
symptoms was firmly established by Visher in 1929 (41). Visher 
tested the expressed prostatic secretion of 500 consecutive 
young men admitted for any reason to the Veterans’ Hospital in 
Waukesha, Wisconsin (41). 87 men (17%) had a high prostate 
leukocyte concentration (41). Of these 87 men, 36 men had 
radiographs taken of their spine and sacroiliac joints, of which 
20 showed signs of AS (55%) (41). This greatly exceeded the 
expected rate, though control radiographs were not used.

In 1958, a Swedish group (42) and a British group (43) 
published independent studies which replicated the association 
between prostate, spine, and sacroiliac inflammation reported 
by Visher. Both studies reported prostatic inflammation in a 
third of controls (22/66 and 28/85, respectively) and in nearly all 
AS patients (71/73 and 45/54, respectively) (42, 43). ReA cases 
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table 2 | Catterall’s prospective study of prostatic inflammation in male uveitis 
patients (27, 28).

diagnosis symptoms 
suggestive of 
spondyloarthritis

prostatic 
inflammation

prostatic 
inflammation 
(combined)

AAU (isolated) 2 PF, 6 ASI 44/70 (63%)

107/133 (80%)AAU and ReA 38 ReA 38/38 (100%)
AAU and AS 25 AS 25/25 (100%)

Chronic anterior uveitis 2 ReA, 1 ASI 8/19 (42%)

38/78 (49%)Posterior uveitis 1 ReA 13/30 (43%)
Generalized uveitis 1 AS, 4 ReA 17/29 (57%)

No uveitis 1/15 (7%)
15/90 (17%)Age matched controls 14/75 (19%)

AAU, acute anterior uveitis; PF, plantar fasciitis; ASI, atypical sacroiliitis; AS, ankylosing 
spondylitis; ReA, reactive arthritis; No uveitis, initial diagnosis was incorrect.
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were also included in these two studies, and a strong association 
with prostatic inflammation was found again (34/40 and 56/59, 
respectively) (42, 43). Many other studies reported high rates of 
prostatic inflammation in AS and ReA patients (44–47), though 
they did not include controls, so their results are difficult to 
interpret (48).

the Catterall–King Hypothesis (1959)
By 1957, it was recognized that ReA often occurred in an incom-
plete form (29). King suspected that idiopathic AAU, a common 
comorbidity of ReA and AS, was part of the same syndrome even 
when it occurred alone. King thus predicted that prostatic inflam-
mation would be associated with isolated AAU (49), as previously 
reported in small case series (50–54). To formally demonstrate 
this association, King asked Catterall to perform a prospective 
study of all new male uveitis cases from May 1957 to December 
1958 at the Institute of Ophthalmology in London (49). Catterall’s 
study confirmed that AAU was strongly associated with prostatic 
inflammation as compared to controls and to other patients in the 
series (Table 2) (27, 28).

Based on these prostatic inflammation association studies, 
Catterall and King advanced a three-part hypothesis (26, 28): (a) 
isolated AAU, ReA, and AS are part of the same syndrome; (b) 
an as-yet-unidentified genital infection is necessary for this syn-
drome; and (c) this infection is generally sexually acquired. The 
main marker of this genital infection in men was considered to be 
prostatic inflammation, as determined by counting the number 
of leukocytes in expressed prostatic secretion. Unfortunately, this 
was a low specificity marker because the vast majority of men 
with prostatic inflammation never develop the syndrome (43). 
This was thought to be due to rare genetic predispositions which 
were necessary for inflammation to occur outside the genital 
area (43). No assay available at the time managed to detect the 
putative infection (48). Four years later, one of King’s coworkers 
stated (55): “The trouble is that we have not yet identified the 
organism.”

replication by dark and Morton (1968)
The association between prostatic inflammation and isolated 
AAU was not considered biologically plausible, and Catterall’s 

results were deemed unlikely (56, 57). All studies associating 
prostatic inflammation with isolated AAU, ReA, or AS used semi-
quantitative leukocyte per high-powered field methods, which 
could have been biased by improper blinding during analysis or 
sample collection, yielding a spurious association.

To test the association between prostatic inflammation and 
isolated AAU with the least possible bias and highest accuracy, 
Dark and Morton used total ejaculate rather than expressed 
prostatic secretion (eliminating sample collection bias), used cell 
counting chambers rather than plain microscope slides (a fully 
quantitative counting method), blinded their analysis (eliminat-
ing observer bias), and excluded men with a history of urethritis 
or ReA (eliminating bias toward sexually acquired cases) (57). 
Their results were unequivocal: the association between genital 
inflammation and isolated AAU is real (57).

Hla-b*27

The HLA-B*27 allele group is the strongest genetic risk factor 
for spondyloarthritis. Its association with AS exceeds odds ratios 
of 40 in Caucasian populations (58–60), and it is also strongly 
associated with ReA (36) and isolated AAU (61). Table  3 lists 
conditions associated with the HLA-B*27 allele group. Though 
hypotheses other than antigen presentation have been proposed, 
the association of ERAP1 polymorphisms with AS in HLA-B*27 
carriers strongly suggests major histocompatibility complex 
(MHC) class I antigen presentation to CD8+ T  cells is part of 
the causative pathway leading to spondyloarthritis (62). The dis-
covery of HLA-B*27 and its association with isolated AAU, ReA, 
and AS gave much credence to the Catterall–King hypothesis by 
confirming that these conditions shared an underlying immune 
mechanism (56). It also provided evidence that the putative etio-
logical infectious agent was intracellular and that a genetically 
determined immune response caused symptoms (43).

The expression of HLA-B in various tissues and cell types 
was recently measured by the Human Protein Atlas project (74). 
HLA-B exhibited highly variable expression in different tissues 
and surprisingly was either undetected or negligibly expressed 
in a number of tissues including hepatocytes, myocytes, and soft 
tissues. HLA-B was highly expressed in the secretory epithelial 
cells of the prostate (although less in the cervix), glandular cells 
of the small intestine and colon, as well as the skin. Its expres-
sion was not measured in the eyes or joints, though the strong 
expression of HLA-B*27 in synovial lining cells of AS patients 
was reported by an older study (75). HLA-B*27 presentation of 
intracellular antigens is thus consistent with HLA-B expression in 
all spondyloarthritis sites tested.

tHe UsUal sUspeCts

Enteric microbial epidemics and sexual risk factors have both 
been convincingly associated with the onset of ReA (76). Proving 
this link was relatively easy due to the short lag of a few weeks 
between enteric/genital symptoms and ReA symptoms. The list 
of confirmed or suspected precipitating infectious agents is very 
long, especially for enteric ReA (76–78). The relative incidence 
of enteric and genital ReA cases is not firmly established. The 
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table 3 | Conditions associated with HLA-B*27 spondyloarthritides.

Condition present in 
sexually 

acquired rea

present in aaU antibodies against 
fungi

Candida Malassezia ERAP alleles CARD9 alleles IL23R alleles

Conjunctivitis 32% (30)

Uveitis (especially AAU) 8% (30) Mannan (16)

Stomatitis 12% (30) + (63) + (63)

Cervicitis (women) 76% (22)

Cystitis 22% (30)

Prostatitis (men) 90% (42, 43) 65% (28, 57)

NSU (men) 79% (30)  

Balanitis circinata (men) 23% (30) + (64) + (64)

Keratoderma  
blennorrhagica

13% (30) – (65) + (65)

Plantar fasciitis 20% (30) 2% (28)

Peripheral arthritis 94% (30) 29% (28) Mannan (16)

Sacroiliitis 58% (43, 47) 34% (28, 57, 66)
Mannan (16)

rs30187 (60)
rs2910686 (60) rs1128905 (60) rs11209026 (60)

Spondylitis

Psoriasis M. furfur  
(67, 68)

C. albicans (67)

– (65) + (65)
rs27432 (69) rs9988642 (69)

Crohn’s disease Mannan (16, 70)
Beta-glucan (70)

Chitin (70)

+ (71) + (71)

rs2549794 (72)
rs30187 (73)

rs4077515 (72) rs11209026 (72)

Ulcerative colitis + (71) + (71)

The antibodies against fungi column indicates which fungal antigens targeted by antibodies have been associated with the condition. Mannan is the mannose polymer coat of fungi 
targeted by ASCAs. The Candida and Malassezia columns indicate if these fungal genera are often present in affected sites in healthy adults. Associations with ERAP alleles suggest 
presentation of an intracellular peptide via MHC class I receptors affects disease risk. Associations with CARD9 and IL23R alleles suggest that the innate immune response against 
fungi affects disease risk. Prostatitis is defined as an elevated leukocyte concentration in expressed prostatic secretion. Symptoms strongly associated with HLA-B*27 frequently 
occur in non-HLA-B*27 carriers as well. The vast majority of psoriasis, Crohn’s disease, and ulcerative colitis cases occur in isolated form in non-HLA-B*27 carriers, so the link with 
these diseases is not very specific.
ASCA, anti-Saccharomyces cerevisiae antibodies; AAU, acute anterior uveitis; MHC, major histocompatibility complex; ReA, reactive arthritis; NSU, non-specific urethritis;  
C. albicans, Candida albicans; M. furfur, Malassezia furfur.
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largest prospective community-based study, performed in 
Oslo (Norway) between 1988 and 1990, found that half of the 
cases were idiopathic and the remaining cases were evenly split 
between enteric and sexually acquired types (36). A smaller study 
published 10  years earlier reported a similar distribution (37). 
Another small study published 10  years later found a similar 
fraction of idiopathic cases, but a much lower fraction of sexually 
acquired cases as defined by C. trachomatis seropositivity (38).

Though various infections have been considered as possible 
triggers for isolated AAU and AS, fewer studies have investigated 
this link as compared to ReA. The onset of AS symptoms is 
gradual, so retracing infectious triggers which occurred years 
earlier is difficult.

enteric infections in rea
One of the best controlled studies of enteric ReA was conducted 
in 1962 on an American Navy ship after a sudden outbreak of 
Shigella-induced dysentery (40). Because the outbreak timing 
was circumscribed and the ship was at sea during the following 
months, all ReA cases coinciding with this outbreak could be 
traced (40). Out of a population of 1,276 male crew mem-
bers, 602 proven cases of dysentery occurred, of which nine 

developed ReA (1.5%) (40). The sequence of symptoms varied 
between individuals, with six out of nine showing the complete 
triad and with urethritis preceding other symptoms in most 
cases (40). This matches ReA presentation described in sexu-
ally acquired cases (29, 33). Less well-controlled community-
based outbreak studies also support enteric triggers for ReA, 
and have implicated many enteric infections beyond Shigella 
(76, 77). These infections include not only bacteria such as 
Salmonella, Campylobacter, Yersinia, Clostridium difficile, and 
Escherichia coli but also protists such as Giardia lamblia (79). 
Idiopathic enteric symptoms, where no plausible causative 
infection can be found, are also common in ReA (79). There is 
no obvious pattern linking these infections other than enteric 
inflammation.

Genital infections in rea
Unlike enteric infections, genital infections like Candida albicans 
and STIs do not occur in large confined epidemics, making 
associations with ReA more difficult to prove. Prior to large 
prospective studies, sporadic ReA cases seemed concentrated in 
men who consulted for urethritis symptoms resembling gonor-
rhea and shortly thereafter developed inflammation of the eyes 
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and joints (33). Sexually acquired ReA cases were thus initially 
(wrongly) deemed to be post-gonorrheal polyarthritis (47).

Sporadic ReA cases were mainly seen by urologists and 
venereologists, who considered urethritis a necessary symptom. 
In 1933, Harkness realized that a majority of urethral discharge 
cases were of non-gonococcal origin (80). The search for genital 
infections which could explain idiopathic urethritis and ReA 
began in earnest after World War II, and the presence of C. 
trachomatis (29), Ureaplasma urealyticum (29), Mycoplasma 
hominis (29), and Trichomonas vaginalis (26) was quickly dem-
onstrated in some cases. However, even after accounting for these 
new genital infections, most urethritis cases remain unexplained 
(22, 31, 32).

C. trachomatis became widely recognized as an STI in the 
1970s (81) and is currently the genital infection most convinc-
ingly associated with ReA (21, 82). The strongest evidence of 
such an association can be found in case–control studies that 
measure either serological markers of past exposure to C. tra-
chomatis or the presence of C. trachomatis itself in the genital 
tract (22, 36, 37, 83). The largest prospective community-based 
study cultured C. trachomatis in 25 of 112 ReA cases (22%) 
which occurred in Oslo (Norway) between 1988 and 1990 (36). 
The largest serological study analyzed 323 ReA cases referred 
to the Diagnostic-Research Centre of Sexually Transmitted 
Diseases in Bialystok (Poland) between 2001 and 2012, finding 
C. trachomatis IgG seropositivity in 70 cases (22%) (83). Both 
studies considered these rates to be much higher than those of 
control populations.

Due to the lack of natural experiments such as confined epi-
demics, it is difficult to demonstrate that C. trachomatis directly 
causes a subset of ReA cases and is not acting as a surrogate for 
another genital infection—as occurred with N. gonorrhoeae 
before it. This was well understood in 1968, when early reports 
of C. trachomatis in ReA were met with skepticism because 
C. trachomatis rates in ReA series were similar to those seen 
in STI clinics (84), suggesting it was acting as a surrogate for 
sexual activity and was not directly involved (85). Exposure to 
C. trachomatis cannot be demonstrated in a majority of sexu-
ally acquired cases (22, 82), let alone in all types of ReA cases 
combined (36, 38, 83), and two prospective STI clinic studies 
have confirmed that C. trachomatis is not associated with ReA in 
high STI risk populations (86, 87).

N. gonorrhoeae and C. trachomatis can be excluded as a cause 
of most ReA cases, even in STI clinic series (22, 29, 82, 84, 86, 
87). Their association with ReA could be due to these two STIs 
acting as surrogates for an as-yet-unrecognized sexually acquired 
infection, as proposed by Catterall and King, or it could be due 
to a direct etiological role in a minority of sexually acquired ReA 
cases. N. gonorrhoeae and C. trachomatis are both associated with 
recent changes in sexual partners (88) and thus to genital expo-
sure to a new set of microbes. In contrast with other STIs, their 
clearance by the immune system within a few months (89) makes 
them excellent markers of a recent change in sexual partners. If 
known STIs are acting as surrogates for an as-yet-unrecognized 
sexually acquired infection which causes ReA, then the strongest 
associations would be expected to be found with N. gonorrhoeae 
and C. trachomatis.

infections in as and aaU
Infectious triggers of AS and AAU have not been as widely 
studied as in ReA. The studies which have been run are small. 
Demonstrating associations with infections occurring a month 
before ReA onset is easy in comparison, whereas it often takes 
a decade for AS to be recognized (24): triggering infections will 
be hard to identify because causative microbes may have been 
cleared and seropositivity may have been lost in the interim. For 
example, C. trachomatis IgG seropositivity is lost within 6 years 
when using microimmunofluorescence assays (90).

Antibodies against Klebsiella have been associated with AS 
in many studies (91), and Klebsiella stool cultures have been 
associated with disease activity in AS (92) and AAU (93), though 
Klebsiella cannot be found in most patients (94). Antibodies 
against peptidoglycan, a common component of bacterial cell 
walls, have been associated with AS (95) and other spondyloar-
thritis types (96).

Two small studies found high rates of C. trachomatis in 
male AS patients, respectively, using cell culture (15/31) (97) 
and IgG/IgA solid phase enzyme immunoassay (20/32) (98). 
The selective reporting of C. trachomatis in only a subset of AS 
patients in the first study and the lack of comparison to a control 
group in both studies means these results are difficult to inter-
pret. A study of genital infections in women with AS reported 
a similarly high C. trachomatis rate detected by cell culture 
(15/32), which was significantly higher than the rate measured 
in controls (5/33) (99). However, a similar study performed in 
men with AS using sensitive molecular methods found much 
lower rates of C. trachomatis (1/32), which were indistinguish-
able from controls (3/120) (98); note that this study found high 
rates of C. trachomatis antibodies in these AS patients (20/32) 
(98), as reported earlier in this paragraph. Finally, two small C. 
trachomatis serological studies of AS patients of both sexes did 
not find a statistically significant association, perhaps due to low 
power (100, 101).

Studies analyzing spondyloarthritis phenotypes reported an 
increased risk of AAU in C. trachomatis seropositive patients 
(OR = 7.0, 95% CI: 1.1–44.1) (98) and Saccharomyces cerevisiae 
seropositive patients (OR  =  4.36, 95% CI: 1.08–17.64) (16). 
Anti-Saccharomyces cerevisiae antibodies (ASCAs) bind to the 
mannose polymer (mannan) coat of all fungi: such antibodies 
can be generated in response to any fungal infection. ASCAs 
were also associated with peripheral arthritis (OR = 3.78, 95% CI: 
1.57–9.15) (16) and inflammatory bowel disease (OR = 3.43, 95% 
CI: 1.15–10.20) (16). Spondyloarthritis and AS have been linked 
to ASCAs in many studies (16, 102–105), though the association 
is not as strong as in Crohn’s disease (70, 106).

Two small serological studies did not find an association 
between AAU and C. trachomatis when comparing with age-
matched controls, nor did they find an association with any 
enteric infection suspected of causing ReA (107, 108). Neither 
study measured ASCAs.

Strong consistent associations between AS/AAU and infec-
tions suspected of causing ReA are lacking. The moderate asso-
ciation between STI seropositivity and AS/AAU implied by the 
Catterall–King hypothesis cannot be confirmed nor refuted by 
current studies: higher powered studies are warranted.
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aGe at onset

Ankylosing spondylitis is more common and has a more pre-
dictable course than ReA and AAU, making it easier to study 
from an epidemiological point of view. ReA and AAU typically 
occur in attacks lasting a few weeks or months, whereas AS is 
characterized by long-term inflammation of the sacroiliac joints 
and spine.

age at onset of as
Ankylosing spondylitis risk before puberty is very low (23, 24). Its 
risk of onset increases sharply around the age of 15 years, peaks 
during young adulthood (age: 18–29 years), and tapers off expo-
nentially over the following 30 years (23, 24). This distribution 
suggests environmental factors necessary for AS (if any) affect 
mainly adults, not children.

The observation that many HLA-B*27 carriers do not develop 
AS suggests that additional genetic and environmental factors 
contribute to the disease. AS monozygotic twin concordance 
does not reach 100% (109), strongly supporting the existence of 
environmental factors. Because the monozygotic twin concord-
ance observed in AS exceeds 50% (109), environmental factors 
required for triggering the disease in genetically susceptible indi-
viduals must be ubiquitous (110). This is also consistent with the 
tapering off of AS onset risk after the age of 30 years, since by that 
age most individuals would presumably have been exposed to any 
environmental trigger and have already developed symptoms.

Sexually acquired infections match well with the age at onset 
of AS because their incidence is very low in children and peaks 
in young adulthood (25). However, no known sexually acquired 
infections other than all human papillomavirus (HPV) types 
combined are present in over half of the population. For STIs 
which can be cleared by the immune system, peak prevalence 
occurs between 18 and 24 years of age (89). STI prevalence in 
Americans of  this age group was estimated to be 53.8% for 
HPV (all types), 3.9% for herpes simplex virus type 2, 1.6% 
for C. trachomatis, 0.9% for T. vaginalis, and 0.3% for N. 
gonorrhoeae (89). C. trachomatis and N. gonorrhoeae are both 
well-established risk factors of ReA; other STIs in this list have 
not been widely studied in ReA because they do not often 
cause urethritis. Lifetime risk of sexual exposure to HPV (all 
types) in men is estimated to be 91% (111), so this infection 
reaches a high enough fraction of the population to be able 
to cause AS through a hit-and-run mechanism. In contrast, it 
appears unlikely that well over half the male population could 
be exposed to either C. trachomatis or N. gonorrhoeae, though 
formally demonstrating this is difficult based on currently 
published studies (89).

age at onset of rea and aaU
Studies of the age at first attack of ReA and AAU are much smaller 
than those related to AS. AAU is rare in children, and the high-
est risk of onset occurs in young adults (66, 112, 113). Sexually 
acquired ReA generally does not occur in children due to a lack 
of sexual activity, and its rate peaks in young adults (34, 35, 114); 
this distribution is very similar to that of AS. Enteric ReA has a 
more even age distribution within adults (36) and is also rare in 

children (115–117). At first blush, the paucity of enteric ReA cases 
in children is difficult to explain.

The largest sexually acquired ReA cohort study demonstrated 
that relapses sometimes coincide with genital or enteric infec-
tions but in many cases seem unprovoked (33, 39). Most of these 
relapses were attributed to flare-ups rather than to repeated 
exposure to triggering microbes (39). Urethritis is often the first 
symptom in enteric ReA, suggesting enteric infections are acting 
as one of many possible cofactors that can trigger flare-ups of a 
latent genital infection. This could explain why a wide range of 
enteric infections are associated with ReA, and why enteric ReA 
is rare in children (115–117) despite ample exposure to enteric 
microbes (115).

linKs WitH FUnGi

The association between ASCAs and spondyloarthritis (16, 
102–105) warrants analyzing links between fungal infections 
and conditions listed in Table  3. In a recent study, Maillet 
et  al  demonstrated that ASCAs are more strongly associated 
with peripheral symptoms (uveitis, arthritis, and inflammatory 
bowel disease) than axial symptoms (spondylitis and sacroiliitis), 
and with the absence of HLA-B*27 alleles (16). ASCAs are a 
biomarker of CD4+ T cell recognition of fungal mannoproteins, 
suggesting the recognition of fungi by CD4+ T  cells may play 
an important role in peripheral spondyloarthritis symptoms, 
and in cases where antigen presentation to CD8+ T cells is less 
efficient due to the absence of HLA-B*27 alleles. CD4+ T  cell 
recognition of Malassezia antigens resulting in a Th1 response 
has been reported in psoriasis (20), though it has not been studied 
in spondyloarthritis.

Rare homozygous mutations in either CARD9 or in the 
IL-17/IL-23 pathway cause chronic mucocutaneous candidiasis 
by impairing the immune response against fungi (118–120). 
Similarly, IL-17 inhibitors increase candidiasis risk (121). 
Genome wide association studies have linked prevalent func-
tional CARD9 and IL23R polymorphisms to AS and associated 
conditions (Table 3). These genes are involved in the inflamma-
tory cascade downstream of phagocyte recognition of fungal cell 
wall components beta-glucan (mainly through Dectin-1) and 
mannan (mainly through Dectin-2) (110, 122, 123). These are 
the two primary antigens leading to phagocytosis of fungi such as 
Malassezia furfur (124) and Cryptococcus neoformans (125). These 
links with fungi suggest that the immune response against fungal 
antigens may be an important component of spondyloarthritis, 
and interventions targeting cytokines associated with fungal 
infections—for example, the anti-IL-17A drug secukinumab 
(126)—may improve symptoms.

Fungi and Uveitis
ASCAs are strongly associated with uveitis in spondyloarthritis 
patients (16), but antibodies against various bacteria suspected 
of causing ReA are not (107, 108). Similarly, circulating CD4+ 
T cells in uveitis patients are more sensitive than controls to fungal 
antigens (C. albicans) after a 24-h antigen exposure period (127), 
whereas sensitivity to bacterial antigens (Staphylococcus aureus, 
Clostridium tetani, and Mycobacterium tuberculosis) and protist 
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antigens (Toxoplasma gondii) are similar in both groups (127). 
Intermediate uveitis is associated with multiple sclerosis onset 
(128) and with the HLA-DRB1*1501 allele (129), which are both 
associated with the immune response to fungi (5). A small study 
reported that oral dimethyl fumarate, a fungicidal compound 
known to be effective in multiple sclerosis and psoriasis, improved 
chronic idiopathic uveitis symptoms in four patients (130).

Though most cases of uveitis are considered idiopathic, 
some cases can be attributed to infections: bacteria (especially  
M. tuberculosis, C. trachomatis, Treponema pallidum, and 
Borrelia burgdorferi), viruses (especially herpes viruses), protists 
(especially T. gondii), and fungi (especially C. albicans) can cause 
uveitis (131). In a very large study of uveitis etiology, infections 
were reported in 13% of anterior uveitis, 7% of intermediate uvei-
tis, 40% of posterior uveitis, and 43% of panuveitis cases (131). 
The abovementioned studies indicate that increased immune 
sensitivity to fungal antigens may be an important risk factor of 
idiopathic uveitis, especially in association with spondyloarthritis 
and multiple sclerosis.

Fungi and inflammatory bowel disease
About 10% of spondyloarthritis patients also have inflammatory 
bowel disease (Crohn’s disease or ulcerative colitis) (16, 24), 
a rate significantly higher than that of the general population 
(<1%) (132). Enteric inflammation can be found in about 60% of 
spondyloarthritis patients, though it is usually subclinical (133). 
Functional CARD9 and IL23R alleles are also associated with 
isolated Crohn’s disease and ulcerative colitis (Table 3), suggest-
ing the immune response against fungi may play an important 
role here as well.

The recognition of fungal antigens is accentuated in human 
peripheral blood mononuclear cells (PBMC) from Crohn’s disease 
patients as compared to controls (134, 135); this was attributed 
to increased expression of Dectin-1, Dectin-2, and the mannose 
receptor (135). A similar study focused on bacterial antigens 
found that CD4+ T cell activation through antigen presentation 
by PBMC was elevated in inflammatory bowel disease patients as 
compared to controls when exposed to either C. albicans or nine 
bacterial species (136). Because CD4+ T cells recognize antigenic 
peptides which are more species specific than sugars recognized 
by monocytes, this study should be repeated with a wider panel of 
medically important fungi including Malassezia and Cryptococcus 
species. These two genera are taxonomically very distant from 
Candida and are expected to share few antigenic peptides despite 
sharing antigenic sugars such as beta-glucan and mannan. CD4+ 
T  cell recognition of Candida and Malassezia antigens can be 
very different, as demonstrated in psoriasis (20). Crohn’s disease 
is strongly associated with antibodies against conserved fungal 
antigen sugars (especially mannan, but also beta-glucan and 
chitin) (70), and recent gut microbiome studies suggest a fungal 
etiology (17, 18, 137, 138).

Three recent studies using vedolizumab in Crohn’s disease and 
ulcerative colitis patients reported that this intervention triggered 
peripheral arthritis, sacroiliitis, or psoriasis in about 10% of cases 
(139–141); these are the most common symptoms associated 
with spondyloarthritis (Table 3). Vedolizumab blocks the α4β7 
integrin homing receptor, preventing lymphocytes originating 

from the gut from returning there during recirculation (141). It 
is thus plausible that following activation due to antigen exposure 
in the gut, stray lymphocytes subsequently trigger inflammation 
upon reaching the peripheral joints, sacroiliac joints, and skin 
(142, 143) by recognizing a similar or identical antigen in these 
sites (144). Since Crohn’s disease is strongly associated with an 
immune response against fungi, these may be fungal antigens.

The distribution of the age at onset of isolated AS (24) is very 
similar to that of AS with inflammatory bowel disease (24) and 
to that of isolated Crohn’s disease (145, 146): risk is low before 
puberty, increases sharply around the age of 15  years, peaks 
during young adulthood (age: 18–29 years), and tapers off over 
the following 30  years (146). Though Crohn’s disease is not as 
strongly associated with an MHC class I allele as AS, associations 
with ERAP alleles and interactions between ERAP alleles and 
MHC class I alleles have also been reported in Crohn’s disease 
(72, 73). It is thus plausible that exposure to the same sexually 
acquired intracellular fungal infection is necessary for both 
spondyloarthritis and isolated Crohn’s disease, and that genetic 
predisposition determines which symptoms appear following 
exposure to this environmental factor.

Fungi and psoriasis
Approximately 15–35% of spondyloarthritis patients also have 
psoriasis (16, 24), which is somewhat higher than the rate meas-
ured in the general population (<10%) (147). Many studies have 
associated psoriasis with fungi. Candida colonization of the gut 
(19, 148) and antibodies against C. albicans (67) and M. furfur (67, 
68) are associated with psoriasis. The application of lysed M. furfur 
cells to the skin of psoriasis patients induces psoriasis-like lesions 
much more frequently than in controls (149). Psoriasis patients’ 
PBMC readily produce a Th1 response when incubated with M. 
furfur antigens (20), whereas the same response does not occur 
in controls, nor when using C. albicans or Trichophyton rubrum 
antigens (20). The chitin binding protein YLK-40 is associated 
with psoriasis and is a marker of disease severity (150); chitin is a 
highly conserved fungal antigen which is not present in bacteria 
or in human cells. Finally, many fungicidal compounds have been 
shown to reduce psoriasis symptoms (151–158), though such 
drugs can also induce psoriasis flare-ups (159)—such flare-ups 
have been tentatively attributed to a Jarisch–Herxheimer reaction 
(154, 156).

Though the incidence of psoriasis peaks at about the same 
age as AS (24), incidence in children and older adults is much 
higher in psoriasis (160). The age at onset of isolated AS and AS 
with psoriasis is nearly identical (24). This suggests that psoriasis 
may be a heterogeneous disease, of which only a subset of cases 
share a common etiology with AS (161). A recent study of ERAP 
alleles in psoriasis supports this hypothesis: ERAP alleles are only 
associated with psoriasis onset in adolescents and young adults 
(162), suggesting that the same sexually acquired intracellular 
fungal infection may be necessary for both spondyloarthritis and 
this subset of psoriasis cases.

The efficacy of oral nystatin in reducing psoriasis symptoms 
(154–157) [oral nystatin is not absorbed and thus limited to 
killing fungi in the gut (163, 164)], the expression of αEβ7 inte-
grin by CD8+ T cells in psoriatic lesions (165) (αEβ7 integrin 
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table 4 | Main observations supporting a common sexually acquired intracellular fungal infection in spondyloarthritis, prostate disease, and multiple sclerosis.

spondyloarthritis, reviewed here prostate disease, reviewed  
in ref. (4)

Multiple sclerosis, reviewed  
in ref. (5)

Sexually 
acquired

•	 Sexual risk factors of reactive arthritis (especially Neisseria 
gonorrhoeae and Chlamydia trachomatis)

•	 Paucity of spondyloarthritis before the age of 15 years, peak 
onset during young adulthood (age: 18–29 years)

•	 Genital involvement (especially prostatitis and urethritis)

•	 Sexual risk factors of prostate cancer 
(age at first intercourse, number of 
sexual partners, and exposure to 
any STI)

•	 Sexual risk factors of multiple sclerosis 
(especially herpes simplex virus type 2)

•	 Paucity of multiple sclerosis before the  
age of 15 years, peak onset during  
young adulthood (age: 18–29 years)

Fungal •	 Antibodies against fungi associated with spondyloarthritis and 
Crohn’s disease

•	 CARD9 and IL23 alleles suggest that detection of fungal 
antigens is occurring in spondyloarthritis, Crohn’s disease and 
ulcerative colitis

•	 PBMCs more sensitive to fungal antigens in Crohn’s disease 
and uveitis.

•	 Malassezia strongly associated with granulomatous pediatric 
Crohn’s disease

•	 Malassezia patch test induces psoriatic inflammation
•	 PBMC Th1 response to Malassezia strongly associated with 

psoriasis
•	 Enteric Candida colonization associated with psoriasis
•	 Fungicides reduce psoriasis and psoriatic arthritis symptoms

•	 PSP94 protects men from prostate 
cancer in a dose-dependent manner 
and is an antimicrobial protein 
targeting fungi (not bacteria)

•	 PSP94 truncation is a biomarker of 
BPH

•	 Melanin can be found in the prostate

•	 Antibodies against fungi associated  
with multiple sclerosis

•	 HLA-DRB1*1501 increases risk of  
multiple sclerosis and causes excessive 
immune response against fungi

•	 Fungicides reduce multiple sclerosis 
symptoms

Intracellular •	 HLA-B*27 and ERAP1 alleles suggest that intracellular antigen 
presentation is occurring

•	 PSP94 only fungicidal within cytosol 
of prostate secretory epithelial cells 
(elsewhere in the prostate, it is 
inhibited by calcium ions)

•	 PSP94 truncation in BPH coincides 
with cytotoxic T cell response

•	 Prostate secretory epithelial cells 
containing melanin inclusions are 
targeted by CD8+ T cells

•	 CD8+ T cells in multiple sclerosis  
lesions and ERAP1 alleles suggest that 
intracellular antigen presentation is 
occurring

BPH, benign prostatic hyperplasia; PBMC, peripheral blood mononuclear cells; PSP94, prostate secretory protein 94; STI, sexually transmitted infection.
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is a marker of mucosal origin), and the triggering of psoriasis 
by vedolizumab (140, 141) suggest that some psoriasis cases 
may be caused by lymphocytes originating in the gut. The 
many links with fungi described earlier and the associations 
between ERAP alleles and psoriasis (162) suggest that similar 
intracellular fungal antigens are present in the gut and on the 
skin, providing a common antigenic target for CD8+ T cells 
migrating from the gut to the skin. The only fungal genus 
currently known to be highly prevalent on the human skin 
is Malassezia (65), present in both healthy skin and psoriatic 
lesions (166). Several groups have proposed that a loss of 
immune tolerance to Malassezia may cause some psoriasis 
cases (149, 151, 153, 167, 168). Malassezia are found within 
skin keratinocytes (169) and have recently been detected in 
the gut (71, 138, 170).

Fungi and prostate disease
The presence of idiopathic prostatic inflammation affecting men 
has been recognized for a very long time, both in isolation and in 
association with spondyloarthritis (41, 43, 48). The association 
between prostatic inflammation and spondyloarthritis, combined 
with other genital symptoms and sexual risk factors in ReA, sug-
gests that a chronic genital infection may reach the prostate and 
cause these conditions (26, 27).

Fungal infections of the prostate are considered rare in 
immune-competent individuals (171), and few studies have 

investigated possible fungal etiologies in prostate disease (4). 
The recent discovery of an abundant fungicidal protein in the 
prostate (172) indicates that a fungal infection reaches this site, 
hence necessitating such an antimicrobial protein. This protein 
is called either prostate secretory protein 94 (PSP94) or beta-
microseminoprotein, and is encoded by the MSMB gene. High 
PSP94 concentration in the prostate protects men from prostate 
cancer in a dose-dependent manner (173–176), suggesting pros-
tatic fungi may be an important etiological component of prostate 
cancer (4). PSP94 concentration interacts with sexual risk factors 
in affecting prostate cancer risk, suggesting this fungal infection 
may be sexually acquired (15). Sexual risk factors have been 
widely studied in prostate cancer and are well recognized (6–8), 
though no specific causative infection has been strongly associ-
ated with prostate cancer (177). Due to inhibition by calcium ions 
(172), PSP94’s fungicidal activity within the prostate is restricted 
to the cytosol of secretory epithelial cells, suggesting that targeted 
fungi must be intracellular and must invade these cells (4).

Interestingly, an aberrant truncated form of PSP94 lacking 
the fungicidal region is strongly associated with benign prostatic 
hyperplasia (BPH) (178, 179), and prostate epithelial cells in BPH 
tissue do not stain for PSP94 in histological studies, as opposed 
to healthy tissue (180, 181). This suggests that the cytotoxic T cell 
immune response against secretory epithelial cells observed in 
BPH (182) may be triggered by the loss of PSP94-mediated immu-
nity against a ubiquitous (183) intracellular fungal infection.
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present in or on an intracellular fungus, and then present this peptide to 
CD8+ T cells on the infected host cell’s surface. In this example, a peptide 
from a fungal cell wall mannoprotein is presented to a CD8+ T cell. Cell wall 
mannoproteins are good antigen candidates due to their abundance, though 
presentation of peptides from other fungal proteins is also plausible.
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Histological studies have found melanin inclusions within 
secretory epithelial cells of the prostate targeted by CD8+ T cells 
(184–186), though a fungal infection was not considered as a 
possible explanation. Fungi synthesize melanin as a defense 
mechanism when exposed to fungicides (187, 188), so an intra-
cellular fungus exposed to PSP94 within these cells could explain 
the presence of melanin.

PSP94 is also present in glandular epithelial cells of the cervix 
(189) [the main genital inflammation site of ReA in women 
(22)] and colon (189, 190) (one of the main inflammatory bowel 
disease inflammation sites). It is not present in the skin (190). Its 
presence in the eyes and joints has not been tested.

PSP94’s ortholog in pigs has conserved its fungicidal activity 
(172) despite rapid evolution (191) resulting in changes to half 
of the amino acids in the protein (192). Humans and pigs shared 
an ancestor about 90 million years ago, suggesting that PSP94 is 
coevolving with fungal infections in both species, and PSP94’s 
fungicidal activity confers a selective advantage to host fitness 
(193).

animal Models
PSP94’s conserved fungicidal properties suggest that rodents 
may also be infected with fungal species targeted by this protein. 
In 1956, Pearson noticed that the injection of Freund’s adjuvant 
(lysed Mycobacterium suspended in oil and water) into the 
footpad of Wistar and Long-Evans rats resulted in symptoms 
resembling ReA: lymphocyte-mediated inflammation of the 
joints, genitals, skin, and eyes ensued 10–16  days later (194, 
195). Lipidic Mycobacterium extracts readily induced arthritis as 
well, suggesting that the adjuvant’s causative antigens were not 
proteins or peptides (195). It was later shown that alpha beta 
T cells were the main mediators of inflammation (196). Because 
alpha beta T cells directly recognize peptides rather than lipids, 
offending antigens may have already been present at the site of 
adjuvant administration. Host and commensal microbe antigens 
were considered the most probable target of these T cells, both 
in the footpad and in the many other sites of inflammation 
(195). Such sites appeared to be sterile by cell culture (195), and 
no self-antigens were strongly associated with this condition 
(197): the underlying mechanisms in this animal model remain 
unresolved (3). Likewise, the antigenic target in the widely used 
HLA-B27/β2m transgenic rat model of spondyloarthritis remains 
to be identified. It has been demonstrated that development of 
genital tract inflammation precedes and is required for the 
development of arthritic symptoms in these animals (198). We 
therefore hypothesize that a fungal infection at this site could be 
a contributing agent to the ensuing pathology.

Reactive arthritis-like symptoms can be induced in geneti-
cally predisposed rodents through exposure to various fungal 
stimuli: C. albicans (199), beta-glucan (110, 200), and mannan 
(110, 123). Dectin-2, CARD9, and IL-23 seem to be important in 
these animal models because knocking out Dectin-2 or CARD9 
or blocking IL-23 reduces symptoms (110, 123).

An animal model of arthritis based on the injection of 
Streptococcus pyogenes cell wall antigens into the knee joint of 
mice demonstrated that a minute quantity of C. albicans added 
to this injection skewed the T  cell immune response toward 

Th17, markedly increasing the level of inflammation (201). 
Interestingly, C. albicans alone, even in large quantities, caused 
little inflammation (201). This suggests that the immune response 
to fungal infections is muted unless inflammatory cofactors such 
as bacterial antigens are also present, giving a plausible explana-
tion for Pearson’s animal model of ReA: Mycobacterium antigens 
may have stimulated an immune response against an elusive 
fungal infection already present in the rat footpad and other 
sites of inflammation. For example, Mycobacterium glycolipid 
trehalose dimycolate upregulates the expression of Mincle (202), 
and Mincle was recently shown to be a key receptor in an animal 
model of Mycobacterium-induced uveitis (203). Mincle has a very 
high affinity to alpha-mannose, an antigen found in Malassezia 
but not in other medically important fungal species (204). A 
very recent study reported that alpha-mannan induces uveitis 
in an animal model with an efficiency similar to Mycobacterium 
antigens (123). These findings suggest antigenic challenges may 
increase phagocytic activity directed against Malassezia, leading 
to activation of alpha beta T  cells which recognize Malassezia 
peptides.

The hypothesis of an adaptive immune response against a 
fungal infection proposed in the previous paragraph is quite 
speculative and would be on more solid ground if there existed 
a disseminated ubiquitous fungal infection in an animal. One 

https://www.frontiersin.org/Medicine
https://www.frontiersin.org
https://www.frontiersin.org/Medicine/archive


10

Laurence et al. Spondyloarthritis, AAU, and Fungi

Frontiers in Medicine | www.frontiersin.org April 2018 | Volume 5 | Article 80

such infection was discovered in 2012 in mealworms (205): 
this fungus-like eukaryote is vertically transmitted to all indi-
viduals and is present throughout the mealworm body, though 
it is concentrated in the genitals and is sexually transmitted as 
well (205). To the best of our knowledge, no fungal infection 
with similar properties has been found in a rodent or other 
mammal. If such a fungal infection existed in humans, it could 
explain why a heterogeneous set of inflammatory stimuli 
can cause ReA: each stimulus can trigger the loss of immune 
tolerance to this disseminated fungal infection by acting as an 
immunological adjuvant which provokes an adaptive immune 
response against fungal antigens. This would explain why fun-
gal colonization and fungal antigens are effective at breaking 
immune tolerance. If this elusive fungal infection was mainly 
sexually acquired in humans, this would explain why children 
and young teens are at very low risk of conditions associated 
with HLA-B*27, and why ReA has manifest sexual risk factors 
and genital symptoms. Finally, a fungal etiology would explain 
why functional polymorphisms in genes which are part of the 
immune response against fungi are associated with conditions 
listed in Table 3.

ConClUsion

The hypotheses put forward by Harkness in 1949 to explain the 
etiology of ReA (29), and expanded by Catterall and King in 1959 
to include prostatic inflammation, AS, and isolated AAU (26, 28), 
have remained consistent with the scientific literature published 
since. The evidence reviewed here supports the existence of 
an as-yet-unrecognized genital infection which is a necessary 
etiological factor in spondyloarthritis. While the existence of an 
as-yet-unrecognized genital infection may seem to be far-fetched 
at first, such a hypothesis has been proposed to explain the sexual 
risk factors of multiple sclerosis (9, 14) and prostate cancer (7, 8, 
13) based on evidence completely unrelated to spondyloarthritis 
(Table  4). Recent studies have implicated fungal infections in 
multiple sclerosis (5, 206–208) and prostate cancer (4, 15, 172), 
and these infections appear to be intracellular in both cases 
(Table 4) (4, 209, 210).

A commonly held view is that ReA-causing inflammation is 
aseptic, and chronic inflammation in the joints, spine, and eyes is 
due to autoimmunity (75). Associations with ERAP alleles and the 
wide variety of MHC class I alleles present in HLA-B*27-negative 
patients suffering from conditions listed in Table 3 suggest that 
many epitopes can be involved in the disease process. Thus, the 
hypothesis of molecular mimicry-induced autoimmunity trig-
gered by an intracellular infection confined to the genitals cannot 
easily explain non-genital symptoms, unless this infection mim-
icked a wide range of human antigens (this seems unlikely). This 
suggests that the putative infection is not confined to the genitals, 
but rather spreads throughout the body and provides antigens 
necessary for inflammation in all affected sites, as proposed by 
Visher (41). This hypothesis is plausible because the only known 
microbial STI in humans which cannot be cleared by the immune 
system also spreads from the genitals and causes a wide variety of 
seemingly unrelated symptoms in infected sites: these symptoms 

are known as secondary and tertiary syphilis, and are caused by 
the bacterium T. pallidum (211).

The many links between fungi and conditions listed in Table 3 
reviewed here suggest that a ubiquitous intracellular fungus, 
which usually reaches the genitals of adolescents and young 
adults through sexual activity, is a necessary etiological factor 
in these conditions. In a majority of individuals, this infection 
would remain asymptomatic or subclinical because immune 
tolerance is maintained. How and where immune tolerance is lost 
would be mostly genetically determined (43); this would explain 
why symptoms vary widely between infected individuals and 
why different conditions in Table 3 are associated with different 
genes. For example, HLA-B*27 molecules would have a high 
affinity to an antigenic protein in or on this fungus (Figure 1), 
frequently leading to a loss of immune tolerance in the sacroiliac 
joints and spine through the detection of this fungus in these sites. 
When immune tolerance is marginal, extraneous factors such as 
unrelated enteric or genital microbes would cause exacerbation 
of symptoms or flare-ups by acting as immunological adjuvants. 
These adjuvants are likely bacteria and unrelated fungi which 
infect or colonize mucosal surfaces, pushing lymphocytes in 
these sites to recognize the intracellular fungus, clonally expand, 
recirculate, enter non-mucosal tissue, and cause inflammation by 
detecting the intracellular fungus in such tissue.

The updated Catterall–King hypothesis proposed here has 
important implications for future studies. The microbiome of the 
prostate and cervix should be included in studies of conditions 
listed in Table 3. The many links with fungal infections described 
here highlight the limitations of 16S consensus microbiome 
techniques which can only detect bacteria. Techniques such 
as deep sequencing of total RNA (212–214) or DNA (166), 
while more expensive, should be used because they can detect 
microbes from the entire tree of life (including fungi). Recent 
studies have shown that many as-yet-unrecognized infections 
are present in humans (166, 215), so the existence of a novel 
microbe present in the genitals and in other sites is plausible. For 
example, molecular studies of oral (216) and genital (217) fungi 
in healthy individuals found many novel species. It would be 
interesting to know if fungal colonization of the gut is a risk fac-
tor of spondyloarthritis, as demonstrated in Crohn’s disease (17, 
18) and psoriasis (19, 148), and if antifungal compounds such as 
dimethyl fumarate improve the course of spondyloarthritis, as 
demonstrated in psoriasis (158), psoriatic arthritis (218, 219), 
and multiple sclerosis (220).

The possible association between Malassezia and psoriasis (20, 
149, 151, 153, 167, 168) suggests that particular attention should 
be given to Malassezia species in spondyloarthritis. Malassezia 
are ubiquitous facultative intracellular fungi which are difficult to 
detect. Because of their unique requirement for lipids, they do not 
grow in commonly used fungal culture media (221). Their DNA 
is difficult to extract (222), possibly because of their uniquely 
thick cell wall (221). ITS1 and ITS2, two of the most commonly 
used primers for fungal consensus PCR, have, respectively, two 
and one mismatches with Malassezia sequences, leading to 
underrepresentation in PCR products. Recent reports suggest 
that Malassezia are not limited to the skin and are present in the 
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mouth (63), nose (223), gut (71, 138, 170), breast (224), brain 
(225, 226), and lung (227).

Malassezia have the right properties to be able to cause spon-
dyloarthritis: they are ubiquitous, intracellular, present on the 
skin (65, 166), glans penis (64), mouth (63), and gut (71, 138, 
170). Malassezia have beta-endorphin receptors which stimulate 
the secretion of lipases necessary for their growth (228–230), and 
high beta-endorphin levels are found in the prostate (231–233). 
Malassezia have been strongly associated with granulomatous 
Crohn’s disease in a pediatric biopsy study (OR  =  25.2, 95% 
CI: 2.45–259, P = 0.0025) (138) and with Dectin-1 SNPs in an 
inflammatory bowel disease study (18). Reads from unidenti-
fied Malasseziales were reported in several recent studies of 
the skin (166, 234) and gut (18), suggesting some species and 
strains remain to be discovered. To the best of our knowledge, 
Malassezia’s presence in the joints, eyes, and prostate has not been 
tested.

Because Malassezia are common on the human skin, they can 
be inadvertently inserted in clinical specimens, causing spuri-
ous findings. Much care must be taken to ensure that these fungi 
are actually present in sampled sites. Though our preliminary 
microbiome results suggest that they are present in the prostate, 
excluding contamination beyond all doubt has proven to be 
challenging. As opposed to most infection types, Malassezia 
are ubiquitous and are part of the normal human microbiome, 

making their association with disease very difficult to prove. 
For example, distinguishing chronic inflammation caused by 
autoimmunity against human antigens and immunity against 
ubiquitous commensal microbe antigens on the psoriatic skin 
is not trivial, as healthy sites and psoriatic lesions have about 
the same microbiome (166). Microbes present in more sterile 
sites such as the joints, eyes, or prostate could provide important 
clues as to which species may be involved in spondyloarthritis.

Since the evidence available at this time is insufficient to 
definitely confirm the Catterall–King hypothesis, microbiome 
studies similar to that performed by Kellermayer et  al  (138) 
should be performed to test this hypothesis.
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