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Abstract: Secondary injuries are common during upper limb rehabilitation training because of
uncontrollable physical force and overexciting activities, and long-time training may cause fatigue
and reduce the training effect. This study proposes a wearable monitoring device for upper limb
rehabilitation by integrating electrocardiogram and electromyogram (ECG/EMG) sensors and using
data acquisition boards to obtain accurate signals during robotic glove assisting training. The collected
ECG/EMG signals were filtered, amplified, digitized, and then transmitted to a remote receiver (smart
phone or laptop) via a low-energy Bluetooth module. A software platform was developed for data
analysis to visualize ECG/EMG information, and integrated into the robotic glove control module.
In the training progress, various hand activities (i.e., hand closing, forearm pronation, finger flexion,
and wrist extension) were monitored by the EMG sensor, and the changes in the physiological status of
people (from excited to fatigue) were monitored by the ECG sensor. The functionality and feasibility of
the developed physiological monitoring system was demonstrated by the assisting robotic glove with
an adaptive strategy for upper limb rehabilitation training improvement. The feasible results provided
a novel technique to monitor individual ECG and EMG information holistically and practically, and a
technical reference to improve upper limb rehabilitation according to specific treatment conditions
and the users’ demands. On the basis of this wearable monitoring system prototype for upper limb
rehabilitation, many ECG-/EMG-based mobile healthcare applications could be built avoiding some
complicated implementation issues such as sensors management and feature extraction.

Keywords: wearable physiological system; ECG/EMG sensing; upper limb; rehabilitation training;
smart wearable device

1. Introduction

Wearable devices usually involve smart sensors to detect various parameters of the human body
and remind the wearer or caregiver to take appropriate action [1,2]. With the advances in mobile
technology and the great demand of the aging population for healthcare management, the emergence of
wearable medical devices enables people to monitor their personal health information in real time [3–5].
Preventing diseases and avoiding emergency health risks are possible due to the feature of continuous
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monitoring. To date, many wearable healthcare devices provide body biosignals, such as blood
pressure, blood glucose levels, body temperature, electroencephalograms, electrocardiograms (ECGs),
and electromyograms (EMGs), for diagnosis [6–8]. ECG and EMG, which are caused by electrical
signal variations during muscular activities, are important and commonly adopted parameters for
healthcare management.

During electrocardiography, electrodes are placed on the skin to record the electrical activities
of the heart muscles when beating over a period of time [9]. The slight electrical variation on the
skin is produced by the electrophysiologic pattern (i.e., depolarizing and repolarizing) of the heart
muscle during each heartbeat and detected using the ECG signal detection system. With the increased
awareness of people’s health and the continuous development of science and technology, the ECG signal
detection system is developed in the direction of miniaturization, family, and intelligence. Sun et al.
have integrated conductive fabric ECG electrodes into a health shirt for accurate ECG monitoring
during physical exercise [10]. Li et al. have developed a single-arm ECG-based low-power wearable
device for heart rate detection during exercise [11]. The wearable ECG monitoring device can provide
ECG signals effectively during different types of exercises, activities, and trainings, thereby providing
convenience for the rapid and accurate dynamic medical diagnosis.

Electromyography is another electrodiagnostic medicine technique to evaluate and record the
muscular electrical signal generated by skeletal muscle activities [12]. Muscle potentials can be
produced when muscle cells are activated by electricity or nerves. As such, the biomechanics of human,
medical abnormalities, or activation level can be detected and analyzed [13]. Recently, medical and
healthcare applications based on EMG signal analysis have emerged [14,15]. A versatile embedded
platform for EMG acquisition was proposed by Benatti et al. for gesture recognition [15]. Pradhan et al.
analyzed the controlled suitability of assistive devices using a dual-channel EMG biopotential amplifier,
and the EMG signals were processed and classified under the artificial neural network [16]. The feature
analysis of EMG signal could offer body muscle activity information, such as fitness, fatigue, endurance
level, and gesture [17,18].

Poststroke survivors usually undergo long-term physical therapies for rehabilitation because the
stroke may result in nerve or muscle disabilities that highly affect their daily activities [19]. Although
stroke rehabilitation centers offer physiological activity therapy for stroke survivors under the guidance
of therapists, limited resources cannot cover the requirements of each individual [20,21]. Monitored
physiological signals were usually explained by trained personnel to improve rehabilitation protocols,
but the limited number of therapists and expensive consultation fees result in the delayed rehabilitation
process of many stroke survivors [22]. Rehabilitation using hand/wrist robots is effective for the
improvement of upper limb functions and could be adopted and operated by patients themselves as
home treatment [23,24]. The effectiveness of most existing robot-assisted rehabilitation devices [25] has
been assessed via traditional pre- and postclinical evaluations without continuous detection [26,27].
Thereby, a simple monitoring system with a real-time and detailed description of the training progress
should be developed for the easy understanding of the treatment-related exercise recovery process for
the patients.

In this study, a wearable EMG/ECG sensor-based monitoring system for upper limb rehabilitation
training is proposed. The developed system consists of three major components: (1) a wearable
monitoring device prototype with sensors (ECG/EMG sensors) and (2) soft robotic glove device, and
(3) a software platform (smartphone or laptop with Bluetooth low energy (BLE)) built for upper
limb rehabilitation monitoring applications. The ECG/EMG sensors are engineered by leveraging
the structure of installation, and the electrodes could tightly contact the skin of users. Small printed
circuit boards (PCBs) are used for ECG/EMG signal collection to enhance the wearability. The software
uses different platforms (APP and Windows software) to record, display, and analyze the ECG/EMG
information in real time, allowing users or caregivers to access the ECG/EMG information easily in
terms of graphs and high-level features. Results obtained from the monitoring system could provide
rich information for the robotic glove control system to improve the upper limb rehabilitation training
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protocols. The functionality and feasibility of the developed physiological monitoring system has been
demonstrated by adopting a robotic glove system to facilitate rehabilitation training.

2. Materials and Methods

2.1. ECG System Design and Fabrication

For wearable monitoring applications, a small number of electrodes is desirable for a good fixed
installation. A three-electrode configuration, i.e., two active electrodes as the differential inputs of
the amplifier and one ground electrode to reduce the harm of current leakage, is typical for ECG
monitoring [10]. In this study, two electrodes were adopted to monitor the ECG signal because
the two-electrode technique can achieve an isolated circuit to ensure the safety of patients without
connecting ground [28]. Two snap fasteners were used to connect the electrodes and the PCB (Figure 1a),
and the electrodes adhered to the skin tightly. The PCB had a size of 20 × 65 mm, which was convenient
for wearing in practical use. An appropriate monitoring location and good contact between the
electrodes and the skin are essential to obtain an accurate ECG signal and reduce the external noise or
interference, in other words, stable electrodes ensure good signal effect [29]. Additionally, previous
studies have analyzed the effect of human respiration, movement, and the pressure applied by clothing
on ECG signals, and results showed that the side area of the chest and the lower right rib area
(10th rib bone) are good places with low clothing pressure for stable and high-quality ECG signal
detection [10,30].

Sensors 2020, 20, x 3 of 17 

 

physiological monitoring system has been demonstrated by adopting a robotic glove system to 

facilitate rehabilitation training. 

2. Materials and Methods 

2.1. ECG System Design and Fabrication 

For wearable monitoring applications, a small number of electrodes is desirable for a good fixed 

installation. A three-electrode configuration, i.e., two active electrodes as the differential inputs of the 

amplifier and one ground electrode to reduce the harm of current leakage, is typical for ECG 

monitoring [10]. In this study, two electrodes were adopted to monitor the ECG signal because the 

two-electrode technique can achieve an isolated circuit to ensure the safety of patients without 

connecting ground [28]. Two snap fasteners were used to connect the electrodes and the PCB (Figure 

1a), and the electrodes adhered to the skin tightly. The PCB had a size of 20 × 65 mm, which was 

convenient for wearing in practical use. An appropriate monitoring location and good contact 

between the electrodes and the skin are essential to obtain an accurate ECG signal and reduce the 

external noise or interference, in other words, stable electrodes ensure good signal effect [29]. 

Additionally, previous studies have analyzed the effect of human respiration, movement, and the 

pressure applied by clothing on ECG signals, and results showed that the side area of the chest and 

the lower right rib area (10th rib bone) are good places with low clothing pressure for stable and high-

quality ECG signal detection [10,30]. 

 

Figure 1. Overall architecture of the wearable electrocardiogram (ECG) monitoring system: (a) ECG 

device placed on the side area of the chest and the lower right rib area (10th rib bone); (b) working 

flowchart of the ECG hardware. 

The PCB integrates a microcontroller, a signal processor, an analog-to-digital (A/D) converter, 

BLE, and power management modules (Figure 1b). The ECG signals collected by electrodes were 

delivered to the hardware filter for processing and amplified through the operational amplifier, 

converted into digital value by using the A/D converter (BMD 101, NeuroSky Company, Wuxi, 

China), read using the STM32L152 chip (STM32L152, STMicroelectronics, Geneva, Switzerland) in 

accordance with the communication protocol, and finally transmitted to the smartphone or laptop by 

using the BLE module. 

For the usability requirements of the wearable monitoring system (except the size of the circuit 

chip), power consumption is another key parameter that is closely associated with the performance 

of microcontrollers and radio chips [31]. The STM32L152 is adopted as the main chip of the circuit. 

The STM32L152 has low power consumption, small size, rich peripheral interfaces, and can directly 

communicate with the BLE module via a serial port [32,33]. The BMD101 chip is designed with an 

advanced analog front-end circuitry and a powerful digital signal processing structure, thereby 

Figure 1. Overall architecture of the wearable electrocardiogram (ECG) monitoring system: (a) ECG
device placed on the side area of the chest and the lower right rib area (10th rib bone); (b) working
flowchart of the ECG hardware.

The PCB integrates a microcontroller, a signal processor, an analog-to-digital (A/D) converter, BLE,
and power management modules (Figure 1b). The ECG signals collected by electrodes were delivered
to the hardware filter for processing and amplified through the operational amplifier, converted into
digital value by using the A/D converter (BMD 101, NeuroSky Company, Wuxi, China), read using
the STM32L152 chip (STM32L152, STMicroelectronics, Geneva, Switzerland) in accordance with the
communication protocol, and finally transmitted to the smartphone or laptop by using the BLE module.

For the usability requirements of the wearable monitoring system (except the size of the circuit
chip), power consumption is another key parameter that is closely associated with the performance
of microcontrollers and radio chips [31]. The STM32L152 is adopted as the main chip of the circuit.
The STM32L152 has low power consumption, small size, rich peripheral interfaces, and can directly
communicate with the BLE module via a serial port [32,33]. The BMD101 chip is designed with
an advanced analog front-end circuitry and a powerful digital signal processing structure, thereby
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targeting biosignal inputs ranging from the µV level to the mV level [34,35]. A bandpass filter with a
passing band of 0.5–40 Hz is formed using high- and low-pass filters [36].

2.2. EMG System Design and Fabrication

EMG is an electric signal produced by muscle activation and collected from the skin surface [37].
On the lower arm of the human body, approximately 20 muscles work together to achieve the wrist
or finger motions [38], and hand rehabilitation exercises include wrist (e.g., supination or pronation)
and finger (e.g., fist) movements [16,39]. Two muscles, namely, the flexor carpi radialis (FCR) and
the extensor carpi radialis longus (ECRL), were selected for hand motion measurement via palpation.
According to previous studies [23,24,40], these muscles are activated weakly in stroke patients. Figure 2
shows that the EMG signals were collected by placing the electrodes on the skin surface of the FCR
and the ECRL muscles.
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and the flexor carpi radialis (FCR) muscles; (b) muscle distribution.

Commercially available disposable electrodes were adopted using the EMG sensors to collect
myoelectric signal. Such electrodes have low half-cell potential and can decrease motion artifacts
efficiently, which may cause errors in the EMG signal monitoring and recording [41,42]. According to
the muscle selection (i.e., the FCR and the ECRL muscles), two active electrodes were placed on the
corresponding skin surface of the forearm, and a reference electrode was placed on the elbow joint.
These electrodes were connected to the EMG data acquisition (DAQ) board by using shielded wires to
avoid the noise caused by radio frequency and electromagnetic interference.

The hardware platform of the EMG system was built by using the STM32L152 chip and precision
instrumentation amplifiers (AD8221, Analog Devices, Norwood, MA, USA), and a BLE module [43].
Two groups of EMG signals would be measured from differential electrodes on the FCR and the
ECRL muscles. A two-channel block diagram of the EMG hardware test platform for forearm muscle
monitoring is presented in Figure 3. The amplitude of the original EMG signals may vary from µV
to mV, which is related to the dimension and the depth of the muscles contracting underneath the
electrodes [44,45]. The different action potential signals from the FCR and the ECRL muscles are
fed to the differential input of the precision instrumentation amplifiers. For the instrumentation
amplifier, based on the classic three operational amplifier topology, an error current at the input stage
is produced using two constant current biased transistors [46] and fed to precision current feedback
amplifiers, and the amplified differential signal and signal from reference electrode can be received by
the third operational amplifier at the inputs. Full-wave precision rectifiers, which are integrated for
high-frequency noise filtering, are used to rectify the measured EMG signals. Operational amplifiers
are applied to amplify the measured EMG signals again [47,48]. EMG signals are delivered to the A/D
converter of the STM32L152 chip for digital DAQ, and the obtained data are sent to a remote receiver
(such as smartphone or laptop) for the recognition of upper limb activities.
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Figure 3. Two-channel block diagram of the electromyogram (EMG) hardware platform.

2.3. Physiological Monitoring System for Rehabilitation Training

When the EMG and the ECG electrodes are attached to the selected muscles on the upper limb
and the chest areas, respectively, the ECG/EMG devices works. The wearable monitoring system
is then in operation, and the internal BLE modules are initiated on the circuit boards. The initial
setup for calibration parameters was loaded to the registers of the STM32L152 chip. Figure 4
illustrates the software processing framework for the ECG/EMG data. The developed software
simultaneously receives ECG/EMG data by connecting with two devices’ BLE modules via two
incorporated configuration modes. The ECG or EMG values are read based on a communication
protocol. The raw ECG or EMG values are processed and analyzed in accordance with the corresponding
mathematical methods (introduced in Section 3), and the time-varying curves are displayed on the
screen in real time. Considering the convenience and wide acceptance of smart phones, not only a
computer software but also an APP software for the physiological monitoring system were developed
to display rehabilitation information to users.
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Moreover, the developed physiological monitoring system would be applied in a soft pneumatic
robotic rehabilitation glove (SY-HR01C, Shanghai Siyi Intelligent Technology Co., Ltd., Shanghai, China)
for hand rehabilitation training demonstration as shown in Figure 5. Monotonous and repetitive palm
opening and closing movements [49,50] could be achieved by the robotic glove via pressure variation
controlled by a controller (Figure 5b), which consists of a pneumatic pump (KPV04, max pressure
75 kPa, max air mass flow rate 2.0 LPM), a data acquisition control board (STM32 chip) with BLE
module, differential pressure sensors (MPX5100DP, Freescale Semiconductor Co., Austin, TX, USA),
and valves (SMC V124A, Sintered Metal Corporation, Shenzhen, China). The controller not only uses
the fixed mode which set the working time and air pressure through the knob of box, but also connect
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with a professional software via the internal BLE module to realize the parameter setting. The BLE
module receives the control strategy orders from the physiological monitoring system and delivers it
to the control board for further analysis (Figure 5c). According to the control strategy, the pump starts
producing pressure for the robotic glove to assist hand rehabilitation training. Differential pressure
sensors monitor the pressure and offer pressure feedback to achieve precise control. During the
rehabilitation training, the upper limb muscles (FCR and ECRL) are monitored by the EMG sensors,
and the heart health status are monitored by the ECG sensor, which could real time adjust and give
scientific guidance on control strategy for hand rehabilitation training. In this study, a healthy subject
with normal hand postures was selected to ensure the reliability and the feasibility of the muscular
activity experiment [51,52].
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3. Results and Discussion

3.1. ECG Signal Processing

In this study, the developed software for ECG data processing could perform real-time signal
filtering, smooth, feature extraction, display, and rehabilitation training level judgement. First,
the high-frequency interference obtained from the electrodes in the ECG monitoring progress was
filtered using a 40 Hz low-pass filter. The window median filtering algorithm was adopted without
degrading the original ECG signals to reduce the baseline drift [10]. Moreover, the ECG signal obtained
using this developed monitoring system may be influenced by the noise caused by body movements.
Muscle contractions and unstable contact between the skin and the electrodes during movements
directly interfere with the signals and have generated unpredictable artifacts [53]. Therefore, artifacts
must be eliminated using the adaptive threshold filter method during ECG signal processing [54,55].
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Through the above processing steps, the obtained data nearly approached the actual ECG signal and
reliably presented the features (e.g., QRS complex) of the cardiac health situation of patients.

The QRS complex is closely associated with the depolarization of the right and the left ventricles of
the human heart and the contraction of the large ventricular muscles, which is the basis of ECG feature
analysis. The duration, amplitude, and morphology of the QRS complex are useful in diagnosing
disease states (e.g., predicting cardiac arrhythmia and conduction abnormalities) [56,57]. For the QRS
complex detection, the baseline data, peak value, and lowest value were taken as the “Q”, “R”, and
“S” data, respectively. The wave peak points R, P, T, and the possible clutter peaks were marked to
obtain the first-order difference for the ECG data sequence and then find the maximum points. These
R, P, and T marks were shown in a section analysis (Figure 6b), which extracted from the raw ECG
data plot (Figure 6a). Half of the maximum amplitude value of the detected maximum point was
used as the threshold value because the amplitude of the peak value of the R wave was large, and
the maximum value other than the peak value of the R wave was excluded. The threshold was set
again on the time difference between the adjacent R waves on the basis of the traditional differential
threshold method [54], and the singularity was removed by the minimum value of the R–R interval.
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The peak points can be detected by analyzing the slopes of the ECG curve, and the heart rate
variability (HRV) can be obtained by recording the time difference between adjacent peaks. HRV is
used to analyze the heartbeat intervals (i.e., the R–R intervals), providing a passive approach to quantify
fatigue [58,59]. The HRV is commonly applied to evaluate the mental workload and the stress of
people. For instance, the variation in HRV indicates a decrease in mental workload, which usually
occurs among drivers who drive for long periods of time [60,61]. Therefore, the HRV can be extracted
in real time via the ECG data processing for fatigue detection during rehabilitation trainings.

A support vector machine (SVM) is a supervised machine learning model that uses classification
algorithms to deal with two-group (e.g., excited and fatigue) classification problems, which are trained
using various R–R interval signals [62,63]. The initial time interval in experiment is used as a learning
phase of SVM for each individual. Generally, the transition from the normal level to the fatigue status
was related to a steady decline in pulse rate and associated with an increase in the HRV. When steady
values in HRV are observed, the SVM can determine whether the person is experiencing fatigue,
and the software system takes the necessary actions, such as alerting. Thus, long-time, safe, and
moderate rehabilitation training can be guaranteed on the basis of such applications. In this experiment,
one subject (male, 34 year, 76 kg, 170 cm, healthy) was involved as a demonstration example for
repeated measurements and analysis. According to his subjective feeling, the excited status usually
occurred in the morning, and the fatigue status occurred in the evening, thereby the data of excited
and fatigue status were planned to be collected at 10:00 in the morning and 11:00 in the evening,
respectively. The ECG data obtained in the excited and the fatigue status could be used to validate
the SVM judgement. Figure 7a,b demonstrate the HRV values for the excited and the fatigue status,
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respectively, and revealed that the pitch of the HRV changes was irregular when the subject was in the
excited status and became regular when the subject was in the drowsy status.Sensors 2020, 20, x 8 of 17 

 

 

Figure 7. Heart rate variability (HRV) values for activity analysis: (a) excited status; (b) fatigue status. 

The ECG monitoring system can be used to detect long-term human heart physiological 

characteristics for rehabilitation training through the ECG data processing, feature extraction and 

analysis, and fatigue algorithm test. 

3.2. EMG Signal Processing 

The obtained EMG signal is a combination of the EMG potentials and the real-time noise and 

offset, which need to be filtered and processed. Given that the raw EMG data are not suitable for 

direct analysis, the features of the raw EMG data must be extracted, and other noise should be 

removed. Among a variety of feature extraction methods (e.g., root mean square (RMS), mean 

absolute value slope, mean absolute value, slope sign changes, zero crossings, and waveform length) 

that have been used on different occasions [64,65], RMS is the most effective for real-time human 

muscular activity estimation. The RMS of the EMG signal can be calculated using the equation: 





N

i

iv
N

RMS
1

21
 (1) 

where N indicates the segment number (N = 200), and vi is the voltage at the i-th sampling. The RMS 

data were extracted from the raw EMG signal (Figure 8) to validate the algorithm. The feature of the 

raw EMG signal for the activity level of the muscle to be characterized can be determined using the 

calculated RMS values. The RMS value could reflect the level of the physiological activities in the 

motor unit during contraction. For weak muscle activity, the relationship between the activity 

intensity and the EMG signal had the same trend. For strong muscle activity, the same relationship 

did not correspond to the activity intensity variations, which needed another calculation method 

because the signal amplitude of muscle activity was saturated. 

 

Figure 8. EMG signal processing for RMS analysis: (a) raw EMG signal; (b) RMS of EMG signal. 

Figure 7. Heart rate variability (HRV) values for activity analysis: (a) excited status; (b) fatigue status.

The ECG monitoring system can be used to detect long-term human heart physiological
characteristics for rehabilitation training through the ECG data processing, feature extraction and
analysis, and fatigue algorithm test.

3.2. EMG Signal Processing

The obtained EMG signal is a combination of the EMG potentials and the real-time noise and
offset, which need to be filtered and processed. Given that the raw EMG data are not suitable for direct
analysis, the features of the raw EMG data must be extracted, and other noise should be removed.
Among a variety of feature extraction methods (e.g., root mean square (RMS), mean absolute value
slope, mean absolute value, slope sign changes, zero crossings, and waveform length) that have been
used on different occasions [64,65], RMS is the most effective for real-time human muscular activity
estimation. The RMS of the EMG signal can be calculated using the equation:

RMS =

√√√
1
N

N∑
i=1

v2
i (1)

where N indicates the segment number (N = 200), and vi is the voltage at the i-th sampling. The RMS
data were extracted from the raw EMG signal (Figure 8) to validate the algorithm. The feature of the
raw EMG signal for the activity level of the muscle to be characterized can be determined using the
calculated RMS values. The RMS value could reflect the level of the physiological activities in the
motor unit during contraction. For weak muscle activity, the relationship between the activity intensity
and the EMG signal had the same trend. For strong muscle activity, the same relationship did not
correspond to the activity intensity variations, which needed another calculation method because the
signal amplitude of muscle activity was saturated.

However, the signal collected by the EMG module from the skin surface has no baseline, which may
bring analysis difficulties due to individual differences. Hence, a normalization process for the EMG
signal should be established. The method can obtain the maximum RMS value (RMSM) of the EMG
data before the rehabilitation training and use the normalization process to calculate the nonnormalized
RMS values [48,51]. The equation is presented as follows:

RMSN =
RMS

RMSM
(2)

where RMSN, RMS, and RMSM are the normalized RMS, nonnormalized RMS, and benchmark RMS
of EMG (i.e., maximum RMS of EMG value), respectively. A manual testing approach was used to
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help the tested hand move to the extreme position and obtain the maximum RMS of the EMG value.
The test was repeated thrice to reduce the measurement error in the experiment, and the average value
was adopted as the RMSM.
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The activities of certain muscles on different positions produce different EMG signals [14,15].
Therefore, the real-time EMG signals can predict the motions of the upper limb, and the RMS of the
EMG signal indicates the level of muscle activities in training. Figure 8 shows the segmentation process
of EMG with two-channel monitoring. A group of hand motions (i.e., hand closing, forearm pronation,
finger flexion, and wrist extension) were designed (Figure 9a–d), and each motion monitoring was
recorded. The RMS of the EMG data and the raw signals collected from the selected FCR and ECRL
muscles of the subject were simultaneously displayed (Figure 9e–f). For the action of forearm pronation
and finger flexion, the activity intensity of the FCR muscle was greater than that of the ECRL muscle.
For the action of hand closing and wrist extension, the activity intensity of the ECRL muscle was
greater than that of the FCR muscle. Therefore, according to the EMG characteristics of different
muscles and motions, scientific and personalized rehabilitation training programs can be designed for
users in accordance with their activity intensity demands.
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positions: (a–d) designed hand motions; (e) FCR muscle monitoring in channel 1; (f) ECRL muscle
monitoring in channel 2.
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The EMG DAQ device and data processing method were developed, optimized, and validated
using corresponding experiments to provide a discriminatory signal to the user during the upper limb
rehabilitation training. This work successfully demonstrated that upper limb muscle activity intensity
could be detected and used for EMG monitoring in rehabilitation training.

3.3. Physiological Monitoring System Interface

A software platform was designed and developed for the physiological monitoring system by
using a multithread technology [66], allowing users to observe the physiological characteristic variation
dynamically and in real time toward the upper limb muscle active intensity and the heart activities
during rehabilitation training. The mobile application and the computer software were developed for
this monitoring system to provide convenience and gain wide acceptance from users.

The developed mobile application interface (Figure 10a) consisted of two graph panels and five
main functional tabs, including “Scan”, “Send”, “Save”, “Clear”, and “D-wave”. The Scan function,
the first tab, is for scanning the broadcasting BLE devices and establishing connection with one.
The Send function, the second tab, is for communicating with the respective PCB for the user’s control
parameters transmission (such as data collection rate, glove working cycles, etc.). Data can be saved
using the Save function and cleaned using the Clear function. The D-wave function, the fifth tab, is for
finding the peaks of the data curves. Graph panels include the data display and the graph depict
function. The graph depict plots a view of the accumulative ECG or EMG data along with the time to
visualize the relevant physiological characteristics variation of subject in real time. In this program,
two timers were responsible for working smoothly. One timer was responsible for receiving data, and
the other timer was responsible for processing and display.
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For the computer software, a user-friendly interface with a customized graphical user interface
was designed. Various function buttons and control modes are available for users to set customized
rehabilitation monitoring parameters. The interface involves four different areas (Figure 10b) (1) the
parameters setting area, where users can input the data collection rate to control data delivering
frequency; (2) the button-controlled area for special action control; (3) the data display area to present
real-time monitored information in curves; and (4) the calculation display area for showing the key
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monitoring parameters (such as heart rate, muscle intensity average values). A two-graph panel was
designed to display the real-time graphical illustrations of the EMG and the ECG data.

The software system is described with the function of monitoring, visualizing, and recording
detailed ECG/EMG data. Soft robotic glove control parameters could also be input on the software
interface. Furthermore, more physiological parameters such as physical activity, and threats to safety,
etc. could be revealed by the collected data and offered reminding [2,3,11]. Thus, a physiological
monitoring system composed of the software platform and hardware device for rehabilitation training
has been established successfully.

3.4. Upper Limb Rehabilitation Application

To further evaluate the feasibility and usability of the developed physiological monitoring system
in practical use with the implemented device, a soft robotic rehabilitation glove was adopted as an
application for testing. The experiment was carried out in two situations—when the subject (good
sleep last night, get up at 7:00 in the morning, and keep awake till evening test) was in the excited
status and in the fatigue status. Data of the excited status were collected at 10:00 am, while data of the
fatigue status were obtained at 11:00 pm. EMG data were collected from selected muscles at three
different stages for analysis as shown in the Table 1.

Table 1. Physiological data of a subject in different time intervals.

Time
Interval

Excited Status Fatigue Status

ECRL
(RMS)

FCR
(RMS)

ECG
(HRV)

ECRL
(RMS)

FCR
(RMS)

ECG
(HRV)

1st min 2.0 ± 0.4 V 1.6 ± 0.4 V 101 ms 1.8 ± 0.3 V 1.5 ± 0.3 V 96 ms
30th min 1.8 ± 0.3 V 1.5 ± 0.4 V 80 ms 1.5 ± 0.2 V 1.4 ± 0.2 V 99 ms
60th min 1.6 ± 0.4 V 1.5 ± 0.3 V 113 ms 1.3 ± 0.3 V 1.5 ± 0.2 V 98 ms

According to ECG monitoring, a significant variation occurred in HRV when people started
with an excited status, and the HRV variation was small when people started with a fatigue status.
Although the number of subject and relevant data were limited and cannot represent all, such findings
have already been demonstrated by previous studies [59–61]. With regard to the EMG analysis, when
comparing the variation amplitudes between the excited and fatigue status, the intensities of muscle
activity in excited status were greater than that in fatigue; when comparing the variation amplitudes
between the first and last training bout, the intensities of muscle activity were perceived to significantly
decrease along with the training time. These findings indicated that the muscle performance level was
closely associated with the psychological fatigue level that may significantly influence the rehabilitation
training effects. Thus, it is better to undergo rehabilitation training in the excited status and adopt the
developed system for real time physiological monitoring to ensure the training efficacity. Traditional
glove assisting training without physiological monitoring could not provide adaptive control for the
glove to improve rehabilitation training, as shown in Figure 11a. To optimize control performance of the
robotic glove for improving rehabilitation training and refer to some related adaptive control methods
in similar studies [67–70], an adaptive control strategy was induced into the glove control system
as presented in Figure 11b. For instance, if the HRV variation of 10 consecutive measurements less
than 5 ms was considered as the fatigue level which matched the subjective judgement of the subject,
the ECG sensors could then easily determine whether the user is in the excited or fatigue status based on
the monitored data. In this case, once the user was in the fatigue status, the pressure of the pneumatic
glove would be weakened to protect muscles from secondary injuries, and when the user was in the
excited status, the pressure would be strengthened to increase training intensity gradually. Meanwhile,
the intensity of muscle activity could also be predetermined as control parameters (e.g., ECRL muscle
activity intensity = 1.5 V) to perform a certain motion task. According to the monitored intensity
variation of muscle activities, the difference between the predetermined and detected EMG data could
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offer adaptive commands to the pneumatic robotic glove for pressure adjusting in order to maintain
the predetermined performance level. Thereby, the developed training device with an adaptive control
strategy could enable users to perform rehabilitation exercises easily and sustain the training endurance.

The results illustrated in Figure 12 showing that without adopting this adaptive control strategy,
the intensity of muscle activity decreases with time, and after using the adaptive control strategy,
the intensity of muscle activity could be maintained at a required level to ensure and sustain the
rehabilitation training effectiveness. Although there are some similar systems for muscle activity
monitoring and rehabilitation [51,71,72], few studies developed a real time wearable system with
simple operation, and traditional methods indicate the difficulty to effectively apply intensive training
programs without real time monitoring [47]. With the purpose to improve rehabilitation effects, it is
important to ensure that the involved patients are in the excited status for repetitive movements in
order to stimulate neuroplasticity [73]. Therefore, the developed real time physiological monitoring
system was meaningful, which could visualize the training effects and help to assist and adjust training
for a long period of time. In the future, more subjects would be recruited in clinical trials to further
explore the treatment effects of this system-based robotic glove for upper limb rehabilitation and to
offer an optimal rehabilitation training protocol for each individual.Sensors 2020, 20, x 12 of 17 
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4. Conclusions

This study demonstrates a newly developed wearable physiological monitoring system which
integrated the ECG/EMG sensors and the DAQ boards to obtain accurate physiological signals during
upper limb rehabilitation training. A robotic glove was adopted as an applied example of the developed
system to assist upper limb rehabilitation training, and the commonly adopted hand activities were
monitored using EMG sensors, while the physiological status of people (from excited to fatigue)
was detected by the ECG sensor. The ECG/EMG signals obtained from the electrodes were filtered,
amplified, digitized, and then transmitted to a remote receiver (i.e., smart phone or laptop) via the BLE
module for further analysis. A software platform integrating several algorithms (i.e., SVM algorithm for
excited and fatigue judgement, RMS algorithm for EMG analysis, adaptive algorithm for rehabilitation
training control) for data analysis. Moreover, this platform was combined with a robotic glove control
module, which could provide an accurate control strategy to the robotic glove for rehabilitation training
improvement. The information of ECG/EMG, such as heart rate, heartbeat intervals, and ECRL and
FCR muscle intensity, was real time displayed on the interface of software, which provided a large
amount of medical reference information for doctors or patients. We demonstrate the highly-integrated
and multifunctional physiological monitoring system which can be used to assist the robotic glove
improving upper limb rehabilitation training. The feasible result provided a novel technique to monitor
individual ECG and EMG information holistically, which can be potentially applied in upper limb
rehabilitation training in accordance with the specific treatment condition and the users’ demands.
Based on this wearable EMG and ECG system prototype, many ECG/EMG-based mobile healthcare
applications can be built to avoid complicated implementation issues, such as sensor management and
feature extraction, and may considerably improve the effectiveness of home treatment.
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