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In this work, we introduce a general method to
deduce spectral functional equations in elasticity
and thus, the generalized Wiener–Hopf equations
(GWHEs), for the wave motion in angular regions
filled by arbitrary linear homogeneous media and
illuminated by sources localized at infinity. The work
extends the methodology used in electromagnetic
applications and proposes for the first time a complete
theory to get the GWHEs in elasticity. In particular,
we introduce a vector differential equation of first-
order characterized by a matrix that depends on the
medium filling the angular region. The functional
equations are easily obtained by a projection of
the reciprocal vectors of this matrix on the elastic
field present on the faces of the angular region.
The application of the boundary conditions to the
functional equations yields GWHEs for practical
problems. This paper extends and applies the general
theory to the challenging canonical problem of elastic
scattering in angular regions.

1. Introduction
In [1], we applied a general theory to obtain spectral
functional equations in electromagnetics and thus
generalized Wiener–Hopf Equations (GWHEs) for
scattering problems in angular regions filled by arbitrarily
linear media, inspired by [2] and described also in
[3]. The monographs [4,5] show the efficacy of the
generalization of the Wiener–Hopf (WH) technique in
practical electromagnetic wave scattering problems in
the presence of geometries containing angular regions
and/or stratified planar regions, see references therein.

In this paper, we implement for the first time
the methodology to the challenging canonical problem
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of elastic scattering in angular regions where some physical quantities are tensors. The technique
consists of three steps: (1) the deduction of functional equations in spectral domain of sub-
regions that constitute the whole geometry of the problem, (2) the imposition of boundary
conditions to get the GWHEs and (3) the solution of the system of the WH equations using
exact or semianalytical approximate techniques of factorization as the Fredholm factorization
technique [6,7].

This paper is focused on the first fundamental step and introduces the potentialities to develop
the other two steps through validations. We follow the method to obtain the WH equations in
spectral domain proposed by Jones [8,9], with the application of Fourier/Laplace transforms
directly to the PDE formulation of the problem avoiding the tricky derivation of Green’s function
in the natural domain. In this work, we use a first-order differential vector formulation for
continuous components of the fields, inspired by Bresler & Marcuvitz in [10] for stratified media
in electromagnetics. We note that some of theoretical aspects used in electromagnetics (see [1])
are not available in elasticity or are cumbersome to be extended. For this reason, the GWHEs
derivation for scattering by angular regions in elasticity is more complicated and challenging,
although following the same general theory. Indeed, the authors of this paper have preliminary
introduced in [4,5] an abstract formulation for simplified elastic scattering problems concerning
the semi-infinite crack and some initial aspects of wedge problems.

In this paper, we first extend the formulation presented in [1] to elastic problems in angular
regions using oblique Cartesian coordinates. It yields a matrix differential problem of first order
whose unknowns are the field components continuous to the faces of the angular regions. The
application of Laplace transform along one face of the angular region and the assumption of
problem invariance along the edge profile yield a matrix ordinary differential problem of first
order. Following [1] based on [11], we develop a spectral solution before imposing boundary
conditions based on the derivation of the dyadic Green’s functions in terms of eigenvectors and
eigenvalue of the algebraic matrix operator (of the first-order differential formulation) .

The projection of the solution on reciprocal vectors allows to get a set of functional equations
that relate the Laplace transforms of continuous field components along one face of the angular
regions to the ones of the other face. The imposition of boundary conditions yields a set of GWHEs
for practical angular region problems.

For the sake of simplicity, even if challenging, this work is focused on an elastic wedge problem
filled by an elastic isotropic solid and extendable to anisotropic media. This problem is considered
a fundamental problem in the mathematical theory of elastic diffraction and, despite numerous
attempts to solve it in closed form, no exact solution exists for arbitrary aperture angle of the
wedge region. Three major semianalytical approaches [12–14] have been proposed to solve this
problem in the two-dimensional case (i.e. at normal incidence). The first method is presented by
Budaev in his monograph [12] that is based on the Sommerfeld integral representation of the
elastic potentials and extends the popular and effective Sommerfeld–Malyuzhinets method to
wedge problems with two concurrent different propagation constants. The difference equations,
that initially arise from this formulation, are reduced to singular integral equations that are treated
with a regularization method. Further interesting aspects of this formulation are presented also
in [15]. A second method to study elastic wedge problems is reported in [13], where the scattered
field by the faces of the wedge is related to the Fourier transforms of the displacement field of
the faces (the spectral functions). Applying the Fourier transforms to the differential formulation
of the elastic field and taking into account the boundary conditions, the authors obtain singular
integral equations in terms of the spectral functions that are numerically solved by using the
Galerkin collocation method. An important aspect of this work is the use of recursive equations
that provide analytical continuation (propagation of the solution) of the approximate spectral
functions obtained by the numerical solution in a certain strip. New developments of this method
are reported in [16], where double Fourier transforms are introduced to obtain the kernels of
the singular integral equations. In [17], the method is extended to three-dimensional problems,
however, the proposed functional equations in spectral domain are again written in terms of
singular integral operators and not in an algebraic form. The concept of spectral representation
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of the displacements on the wedge faces is applied also by Gautesen’s group works [14,18–
20] that, according to our opinion, have produced the best practical results in the solution of
the two-dimensional elastic isotropic wedge problem [14]. The difference with respect to [13]
is the use of an integral representation in terms of the displacements in the natural domain.
Substantially, the integral representations of this method are those that in electromagnetism are
called Kirchhoff’s representations. The kernel of the integral representations are suitable Green
functions of the free space and the integral does not contain components of the stress tensors.
The traction-free boundary conditions on the faces of the wedge impose this property. Another
important aspect in these works is to resort to an extinction theorem that allows to impose the
vanishing of the displacement outside the elastic wedge. The application of the theorem allows
to use unilateral Fourier transform (or Laplace transform) on the Gautesen (Kirchhoff) integral
representations and it yields functional equations that are algebraic with respect to the Laplace
transforms of the displacements on the two faces of the wedge. We note that the arguments of
the Laplace transforms of the displacements on the two faces are different. Substantially, the
functional equations obtained in [14] are GWHEs,1 although not defined in this way.

In this paper, we derive with a systematic and efficient method spectral functional equations
in algebraic form useful to derive GWHEs in three-dimensional elastic wedge problems. These
equations are validated by comparison with the ones proposed in [14]. The proposed method has
the following important characteristics:

(i) The functional equations are easily obtained in terms of eigenvectors and eigenvalues of
a matrix that characterizes the medium filling the angular region.

(ii) These functional equations hold independently from the boundary conditions of the
angular region.

(iii) The application of boundary conditions yields a system of GWHEs for a specific problem.
(iv) The deduction of the GWHEs is general, since the method can be applied to study wave

motion in angular regions filled by arbitrary linear media.

We remark that property (i) avoids the introduction of Kirchhoff-type representations that
require the computation of Green’s function. This computation can be difficult in elasticity, see
Gautesen’s group works [14]. Property (ii) allows the possibility to study complex wave motion
problems constituted of different angular subregions or angular regions connected to planar
stratified media, see in electromagnetics [21–24]. The third and the fourth characteristics allow
the derivation of GWHEs in isotropic elastic media with plane wave source at skew incidence
and in the general case of an elastic wedge filled by anisotropic medium. Moreover, we note
that it is possible to directly compute from the spectral solution of the GWHEs the field in
every point of the angular regions, avoiding Kirchhoff’s representations and Green’s function
in natural domain. In particular, the diffracted field component can be asymptotically computed
with the saddle point method. A last but not less important property of the GWHE formulations
of wedge problems is constituted by the set of mathematical tools in complex analysis. The WH
technique provides powerful solution methods based on exact and approximate factorization
methods. In their works, Gautesen et al. have proposed a possible original method to deal with
GWHEs of elastic wedge problems, exploiting analytical properties of the unknowns, see [14]
and references therein. We propose, alternatively, the Fredholm factorization method [6,7], which
is an effective semianalytical technique for the solution of arbitrary GWHEs and it is based on
the reduction of the factorization problem to Fredholm integral equations of the second kind. We
expect, in a future work, to effectively apply the Fredholm factorization to solve the GWHEs of
elastic wedge problems using the same methodology applied in electromagnetic scattering from
dielectric wedge [5,25–28].

1The GWHEs differ from the Classical Wiener–Hopf equations (CWHEs) for the definitions of the unknowns in spectral
domain. While CWHEs introduce plus and minus functions that are always defined in the same complex plane, the GWHEs
present plus and minus functions that are defined in different complex planes but related together.
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The paper is organized into eight sections and we assume plane wave sources and/or sources
localized at infinity in time-harmonic fields with a time dependence specified by ejωt (electrical
engineering notation) that is suppressed. In §2, we introduce the first-order vector differential
formulation for continuous components of the elastic field in an indefinite homogeneous medium.
Note that, while in electromagnetics the continuous components of field are the transversal ones,
in elasticity, we have a more complex definition in terms of stress tensor and velocity vector.
The theory presented in §2 is also useful to study propagation in stratified media. Using oblique
Cartesian coordinates and taking into account the results of §2, §3 describes the novel application
of the method to angular regions, yielding the oblique first-order vector differential formulation
for continuous components of the elastic field. The application of Laplace transform along one
face of the angular region and assumption of a problem with invariance along the edge profile
yield a vector ordinary differential problem of first order (oblique equations). The solution of
these oblique equations, projected on the reciprocal vectors of an algebraic matrix defined in §2,
provides the functional equations of an arbitrary angular region (§4). It is remarkable that we
get functional equations independently from the materials and the sources that can be present
outside of the considered angular region. Explicit expressions in algebraic form are reported
in §5 for isotropic media and arbitrary boundary conditions. Section 6 shows the validation of
functional equations in special simplified cases reported in literature by other authors for the
planar problem; and the electronic supplementary material reports the validation of functional
equations by evaluating the characteristic impedances of half spaces in planar problems. Finally,
conclusions are reported in §7 and a glossary of the symbols useful for the readability of the
text is provided at the end (table 2). We remark that, according to our opinion, the functional
equations for the non-planar (three-dimensional) general case are deduced and reported for
the first time in literature in this paper in §5. We finally state that the scope of our paper is
to present algebraic spectral functional equations for arbitrary boundary conditions for three-
dimensional wave motion problems in angular regions that are useful for the examination of
practical problems by imposing specific boundary conditions yielding GWHE formulations.

2. First-order differential equations for continuous components of the elastic
field in an indefinite rectangular isotropic medium

In this section, we study elastic wave propagation in stratified media along a direction (say y)
and, consequently in §3, we use these results to develop the theory for angular regions.

The evaluation of the physical fields in an elastic linear medium can be generally described by
a system of partial differential equations of first order. In the absence of sources localized at finite
or in the presence of plane wave sources, the system is constituted of the translational equation of
motion and the stress–displacement equation [29,30], i.e. considering dydadic notation and time
harmonic regime we have

∇ · T = −ρω2u (2.1)

and
S = 1

2 (∇u + (∇u)′), (2.2)

where T, S and u are, respectively, the stress tensor, the strain tensor and the displacement vector,
and ρ is the mass density (′ stands for transpose). In a general media, the stress and strain tensors
have a constitutive relation given by Hooke’s Law

T = C : S, (2.3)

where C is a fourth-order stiffness tensor that in isotropic media simplifies to

C = λI I + 2μIsym, (2.4)

where λ and μ are Lamé’s constants of the elastic medium and, I and Isym are, respectively, the
unit dyadic and the symmetric fourth-order unit dyadic (tetradic).
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Using vector (Voigt) representation for tensor quantities [29] we rewrite (2.1) as

∇TT = jω p (2.5)

and
∇vv = jω S, (2.6)

with

∇T =

⎛⎜⎜⎝
∂
∂x 0 0 0 ∂

∂z
∂
∂y

0 ∂
∂y 0 ∂

∂z 0 ∂
∂x

0 0 ∂
∂z

∂
∂y

∂
∂x 0

⎞⎟⎟⎠ and ∇v =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∂
∂x 0 0

0 ∂
∂y 0

0 0 ∂
∂z

0 ∂
∂z

∂
∂y

∂
∂z 0 ∂

∂x
∂
∂y

∂
∂x 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
= (∇T)′, (2.7)

and where T, S, p and v are, respectively, the symmetric stress tensor in six-component vector
form (2.8), the symmetric strain tensor in six-component vector form (2.8), the vector momentum
density p = ρv and the vector particle velocity v = jωu:

T = (Txx, Tyy, Tzz, Tyz, Txz, Txy)′ and S = (Sxx, Syy, Szz, 2Syz, 2Sxz, 2Sxy)′. (2.8)

Inspired by [1], for electromagnetic applications, to effectively study wave motion problems in
elasticity, it is convenient to introduce the concept of transverse equations using abstract notation.

The homogeneous abstract form of (2.5) and (2.6), see §2.9 of [4], is

Γ∇ ψ = jωθ , (2.9)

where Γ∇ is a matrix differential operator of first order that relates the fields ψ and θ :

ψ =
(

T
v

)
, θ =

(
S
p

)
, Γ∇ =

(
0 ∇v

∇T 0

)
. (2.10)

The vectors ψ and θ have a constitutive relation defined by the equation

θ = Wψ , (2.11)

where the matrix W depends on the medium that is considered.
In order to close the mathematical problem (2.9)–(2.11), we need to enforce the geometrical

domain of the problem, its boundaries’ conditions and the radiation condition.
For simplicity, in the following, we consider isotropic loss-less material, however we claim that

transversal elastic equations in a general anisotropic medium assume the same form. Considering
Hooke’s Law T = CS in a loss-less isotropic medium we obtain

W =
(

C
−1

O

O R

)
, C =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

λ+ 2μ λ λ 0 0 0
λ λ+ 2μ λ 0 0 0
λ λ λ+ 2μ 0 0 0
0 0 0 μ 0 0
0 0 0 0 μ 0
0 0 0 0 0 μ

⎞⎟⎟⎟⎟⎟⎟⎟⎠
, R =

⎛⎜⎝ρ 0 0
0 ρ 0
0 0 ρ

⎞⎟⎠ . (2.12)

In the following, we use also alternative parameters to define the medium characteristics with
respect to the mass density ρ, and Lamé’s constants λ and μ

kp =ω

√
ρ

λ+ 2μ
, ks =ω

√
ρ

μ
and Zo = ksμ

ω
, (2.13)

where kp is the propagation constant of the longitudinal/principal wave, ks is the propagation
constant of the transversal/secondary wave (vertical or horizontal) and the impedance Zo is a
quantity such that stress components have the same dimensions of velocity components time Zo.
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Comparing equations (2.9)–(2.12) to the ones reported in [1] for electromagnetic applications,
we note that the stress T, the particle velocity v, the strain S and the momentum density p are
analogous, respectively, to the electric field E, the magnetic field H, the dielectric induction D and
the magnetic induction B with constitutive relations T = CS and p = ρv analogous, respectively,
to E = ε−1D and B =μH (where ε, μ can be either scalar or tensor). Moreover, (2.5)–(2.6) are the
elastic analogue of Maxwell’s equations in electromagnetism.

Substituting (2.11) into (2.9) with (2.12)–(2.13) we get the nine equations that relate the stress T
with the velocity v [4]:

(Γ∇ − jωW)ψ = 0, (2.14)

whose explicit form is

DxTxx + DzTxz + DyTxy = jksZovx,

DyTyy + DzTyz + DxTxy = jksZovy,

DzTzz + DyTyz + DxTxz = jksZovz,

Dxvx =
jks[2k2

p(Txx − Tyy − Tzz) + k2
s (−2Txx + Tyy + Tzz)]

8k2
pZo − 6k2

s Zo
,

Dyvy =
jks[k

2
s (Txx − 2Tyy + Tzz) − 2k2

p(Txx − Tyy + Tzz)]

8k2
pZo − 6k2

s Zo
,

Dzvz =
jks[k

2
s (Txx + Tyy − 2Tzz) − 2k2

p(Txx + Tyy − Tzz)]

8k2
pZo − 6k2

s Zo

Dzvy + Dyvz = jksTyz

Zo
,

Dzvx + Dxvz = jksTxz

Zo

and Dyvx + Dxvy = jksTxy

Zo

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(2.15)

where Dx = ∂/∂x, Dy = ∂/∂y, Dz = ∂/∂z.
While the constitutive parameters change only in one direction, say y, using the divergence

theorem [29], it is possible to demonstrate that the continuous components of ψ at interfaces are
the ones of v and n · T, where n is the unit normal at the interface, i.e.

ψ t = (Tyy, Tyz, Txy, vx, vy, vz)′. (2.16)

The transverse equations of a field are equations that involve only the components that remain
continuous along the stratification according to the boundary conditions on the interfaces and,
starting from (2.15), in general they assume the following form:

− ∂

∂y
ψ t =M

(
∂

∂z
,
∂

∂x

)
ψ t, (2.17)

where we have a first-order derivative along y and a matrix differential operator in x and z.
The reduction of the elastic differential problems to the transverse equations starts from

deriving expressions of the discontinuous components (along y) direction (Txx, Tzz, Txz) from the
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fourth, the sixth and the eighth of (2.15). We get

Txx = kp
2(−2ksTyy + 4jZo(Dxvx + Dzvz)) + ks

2(ksTyy − 2jZo(2Dxvx + Dzvz))

ks
3 ,

Tzz = kp
2(−2ksTyy + 4jZo(Dxvx + Dzvz)) + ks

2(ksTyy − 2jZo(Dxvx + 2Dzvz))

ks
3

and Txz = − j(Dzvx + Dxvz)Zo

ks

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(2.18)

By substituting (2.18) into the six non-used equations of (2.15) (i.e. equations at lines 1, 2, 3, 5, 7
and 9) we get the transverse equations (2.17), where

M
(
∂

∂z
,
∂

∂x

)

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 Dz Dx 0 −jksZo 0

Dz − 2Dzkp
2

ks
2 0 0 jDxDz(4kp

2−3ks
2)Zo

ks
3 0 M26(Dz, Dx)

Dx − 2Dxkp
2

ks
2 0 0 M34(Dz, Dx) 0 jDxDz(4kp

2−3ks
2)Zo

ks
3

0 0 − jks
Zo

0 Dx 0

− jkp
2

ksZo
0 0 Dx − 2Dxkp

2

ks
2 0 Dz − 2Dzkp

2

ks
2

0 − jks
Zo

0 0 Dz 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (2.19)

M34(Dz, Dx) = − j(ks
4 + (4Dx

2 + Dz
2)ks

2 − 4Dx
2kp

2)Zo

ks
3 (2.20)

and M26(Dz, Dx) = − j(ks
4 + (Dx

2 + 4Dz
2)ks

2 − 4Dz
2kp

2)Zo

ks
3 , (2.21)

and where Dx = ∂/∂x, Dy = ∂/∂y, Dz = ∂/∂z.
The transverse equations along the y-direction take the form reported in (2.17),

where M(∂/∂z, ∂/∂x) is a matrix differential operator of arbitrary differential order and
dimension that, in the case of electromagnetic and elastic problems, has, respectively,
dimensions 4 and 6, both with differential order 2 in x and z. In the following, we
assume that the geometry of the elastic wave-motion problem as well as the eventual
boundary conditions are invariant along the z-direction, thus, without loss of generality,
when a source depends on an e−jαo z factor, also the total field depends on the same
factor, i.e. ψ t =ψ t(x, y, z) = f(x, y) e−jαo z, see for instance [17] before (2.8). Of course,
the same behaviour can be obtained by applying a Fourier transform also along the
z-direction and assuming an incident plane wave with a particular skew direction that yields
e−jαo z. However, for simplicity, we prefer to avoid the use of a double Fourier transform, recalling
that in the present context an arbitrary source can be expanded in a summation of plane waves.

It yields (∂/∂z)ψ t(x, y, z) = −jαoψ t(x, y, z), i.e. ∂/∂z → −jαo, thus

M
(
∂

∂z
,
∂

∂x

)
=M

(
−jαo,

∂

∂x

)
= Mo + M1

∂

∂x
+ M2

∂2

∂x2 , (2.22)
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where Mm with m = 0, 1, 2 are 6 × 6 matrices and do not depend on x, as they are easily derived
from (2.19)

Mo =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 −jαo 0 0 −jksZo 0

−jαo

(
1 − 2kp

2

ks
2

)
0 0 0 0 − jZo(4αo

2kp
2+ks

4−4αo
2ks

2)
ks

3

0 0 0 − jZo(ks
2−αo

2)
ks

0 0

0 0 − jks
Zo

0 0 0

− jkp
2

ksZo
0 0 0 0 −jαo

(
1 − 2kp

2

ks
2

)
0 − jks

Zo
0 0 −jαo 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

(2.23)

M1 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 1 0 0 0

0 0 0 αoZo(4kp
2−3ks

2)
ks

3 0 0

1 − 2kp
2

ks
2 0 0 0 0 αoZo(4kp

2−3ks
2)

ks
3

0 0 0 0 1 0

0 0 0 1 − 2kp
2

ks
2 0 0

0 0 0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(2.24)

and M2 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0
0 0 0 0 0 − jZo

ks

0 0 0 4jZo(kp
2−ks

2)
ks

3 0 0

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (2.25)

(a) The eigenvalues and the eigenvectors ofM in spectral domain
By applying a Fourier transform along the x-direction to (2.17) with (2.22)–(2.25) (Mm = 0, m> 2)
in the absence of source, we obtain an ordinary vector first-order differential equation

− d
dy
Ψ t(η) = M(η)Ψ t(η), (2.26)

where ψ t(x) = (1/2π)
∫∞

−∞ Ψ t(η)e−jηx dη (notation with omission of y, z dependence) and

M(η) =M(−jαo, −jη) = Mo − jηM1 − η2
M2, (2.27)

where ∂
∂z → −jαo for the field factor e−jαo z (see comment before (2.22)) and ∂

∂x → −jη for the
property of Fourier transforms.

Now, let us investigate the properties of the eigenvalue problem (2.28) associated with (2.26)

M(η) ui(η) = λi(η)ui(η), (2.28)

where ui(η) and λi (i = 1 . . .n) are, respectively, the eigenvectors and the eigenvalues of the 6 × 6
matrix M(η) (2.27). In the presence of a passive medium, we observe that three eigenvalues (say
λ1, λ2, λ3) present non-negative real part and the other three eigenvalues (say λ4, λ5, λ6) present
non-positive real part. In the following, we use also alternative expressions:

λ1 = jξp(η) = −λ4, λ2 = λ3 = jξs(η) = −λ5 = −λ6. (2.29)

The explicit form of (2.29) are expressed in terms of τop =
√

k2
p − α2

o , τos =
√

k2
s − α2

o

ξp(η) =
√
τ 2

op − η2, ξs(η) =
√
τ 2

os − η2, (2.30)
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with Im[kp,s]< 0, Im[τop,os]< 0 in lossy media. Since k2
p,s = k2

x + k2
y + k2

z = η2 + ξ2
p,s + α2

o , ξp,s(η) are
multivalued functions of η. In the following, we assume as proper sheets of ξp,s(η), the ones
with ξp,s(0) = τop,os and as branch lines of ξp,s(η) the classical line Im[ξp,s(η)] = 0 (see in practical
engineering estimations Ch. 5.3b of [31]) or the vertical line (Re[η] = Re[τos,op], Im[η]< Im[τos,op]).
In (2.29), we have that λ1, λ2, λ3 (λ4, λ5, λ6) are related to progressive (regressive) waves and, ξp,s

are with non-positive imaginary part. In this framework, we associate the direction of propagation
to attenuation phenomena.

Since the matrix M(η) is diagonalizable, M(η) is semisimple2 ([32], Ch. V.9). The semisimple
property is fundamental to develop the procedure as it yields a set of independent eigenvectors
ui(η) even with the same eigenvalues. Although a theory about geometric and mathematical
multiplicity of eigenvalues is available in practice, we checked the diagonalizability of M(η) using
a Jordan decomposition algorithm that in our case yields M(η) = U

−1
DU, where the matrix U

is a matrix with column elements ui(η) and D is a diagonal matrix with diagonal elements the
eigenvalues λi. In relation to the eigenvectors ui(η), we introduce the reciprocal vectors νi(η) (see
ch. 3.16 of [32]) that, in the general elastic case with αo �= 0, can be computed by inversion of the
matrix U. The vectors νi(η) satisfy the bi-orthogonal relations

νj · ui = δji, i.e. 1t =
6∑

i=1

uiνi, (2.31)

where · is the vector scalar product, δij is the Kronecker symbol and 1t is the unit dyadic defined
in terms of dyadic products and such that 1t · a = a · 1t = a for an arbitrary vector a.

From a physics point of view, the eigenvalues λ1 = −λ4 are associated with longitudinal P
(principal) waves, while λ2 = −λ5 and λ3 = −λ6 are relevant to the transversal S (secondary)
waves of two types: secondary vertical (SV) and secondary horizontal (SH). The P, SV and SH
waves are not decoupled when αo �= 0, while if αo = 0 we have two decoupled problems: one
related to P and SV waves (planar problem) and the other to SH waves (anti-planar problem).

The computation of eigenvectors in (2.28), using Wolfram Mathematica®, it yields in compact
notation

U =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Zo(αo
2+η2−ξ 2

s )
ksαo

− 2Zoξs
ks

0 Zo(αo
2+η2−ξ 2

s )
ksαo

2Zoξs
ks

0

− 2Zoξp

ks
− αoZo

ks
− Zoξs

ks

2Zoξp

ks
− αoZo

ks

Zoξs
ks

− 2ηZoξp

ksαo

Zo(ξ 2
s −η2)

ksη
αoZoξs

ksη

2ηZoξp

ksαo

Zo(ξ 2
s −η2)

ksη
− αoZoξs

ksη

η
αo

− ξs
η

− αo
η

η
αo

ξs
η

− αo
η

ξp
αo

1 0 − ξp
αo

1 0

1 0 1 1 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (2.32)

whose columns are ui(η) corresponding to the eigenvalues as defined and ordered in (2.29). The
inverse of U yields in its rows the reciprocal vectors νi(η)

V =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

− αo
2ksZo

− αo
2

2ksZoξp
− αoη

2ksZoξp

αoη

ks
2 − αo(αo

2+η2−ξ 2
s )

2ks
2
ξp

αo
2

ks
2

− αo
2+η2

2ksZoξs

αo
2ksZo

η
2ksZo

η(αo
2+η2−ξ 2

s )
2ks

2
ξs

αo
2+η2

ks
2

αo(αo
2+η2−ξ 2

s )
2ks

2
ξs

αo
2ksZo

− (ks−αo)(ks+αo)
2ksZoξs

αoη
2ksZoξs

− αoη

ks
2 − αoξs

ks
2

1
2 − αo

2

ks
2

− αo
2ksZo

αo
2

2ksZoξp

αoη
2ksZoξp

αoη

ks
2

αo(αo
2+η2−ξ 2

s )
2ks

2
ξp

αo
2

ks
2

αo
2+η2

2ksZoξs

αo
2ksZo

η
2ksZo

− η(αo
2+η2−ξ 2

s )
2ks

2
ξs

αo
2+η2

ks
2 − αo(αo

2+η2−ξ 2
s )

2ks
2
ξs

αo
2ksZo

(ks−αo)(ks+αo)
2ksZoξs

− αoη
2ksZoξs

− αoη

ks
2

αoξs

ks
2

1
2 − αo

2

ks
2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

(2.33)

2A square matrix of dimension n is called semisimple iff it has a basis of eigenvectors in R
n.
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In the following §§3–5, the eigenvectors ui(η) and the reciprocal vectors νi(η) will be used to obtain
functional equations that relate spectral quantities in elastic wave motion problems between the
two terminal faces of an angular region for an arbitrary αo, i.e. non-planar problems. We also note
that ui(η) and νi(η) can be used to build the solution of the transverse equations (2.26) in Laplace
domain for elastic wave motion problems in a rectangular stratified region [33].

3. First-order differential oblique equations for continuous components of the
elastic field in an angular region

In this section, we introduce the oblique equations for continuous components of the elastic field
in an angular region using an oblique system of Cartesian axes and applying the properties
reported in §2 for rectangular regions. In the following sections, first, we deduce spectral
functional equations then, by imposing boundary conditions, the GWHEs for angular shaped
regions.

With reference to figure 1 where angular regions are defined thorough the angle γ (0< γ <π ),
we introduce the oblique Cartesian coordinates u, v, z in terms of the Cartesian coordinates x, y, z:

u = x − y cot γ , v = y
sin γ

or x = u + v cos γ , y = v sin γ , (3.1)

with partial derivatives

∂

∂x
= ∂u
∂x

∂

∂u
+ ∂v

∂x
∂

∂v
= ∂

∂u
,

∂

∂y
= ∂u
∂y

∂

∂u
+ ∂v

∂y
∂

∂v
= − cot γ

∂

∂u
+ 1

sin γ
∂

∂v

and
∂

∂u
= ∂x
∂u

∂

∂x
+ ∂y
∂u

∂

∂y
= ∂

∂x
,

∂

∂v
= ∂x
∂v

∂

∂x
+ ∂y
∂v

∂

∂y
= cos γ

∂

∂x
+ sin γ

∂

∂y
.

⎫⎪⎪⎪⎬⎪⎪⎪⎭ (3.2)

Starting from (2.17) with (2.22) the transverse (with respect to y) equation of dimension n = 6 for
an elastic problem with invariant geometry along z-direction (i.e. e−jαoz) is

− ∂

∂y
ψ t =M

(
−jαo,

∂

∂x

)
ψ t =

(
Mo + M1

∂

∂x
+ M2

∂2

∂x2

)
ψ t. (3.3)

Note that for elastic problems, we have second differential order in x. Substituting (3.2), in
particular ∂/∂x = ∂/∂u and ∂/∂y = − cot γ (∂/∂u) + 1/sin γ (∂/∂v), into (3.3), we obtain

− ∂

∂v
ψ t =Me

(
−jαo,

∂

∂u

)
ψ t =

(
Meo + Me1

∂

∂u
+ Me2

∂2

∂u2

)
ψ t, (3.4)

where

Meo = Mo sin γ, Me1 = M1 sin γ − I cos γ, Me2 = M2 sin γ. (3.5)

For the sake of simplicity and in order to get simple explicit expressions, we consider
homogeneous isotropic media filling the angular regions. In this case, the explicit forms of
Mem, m = 0, 1, 2 (3.5) are straightforwardly derived from (2.23)–(2.25). By applying the Fourier
transform along x = u direction to (3.4), i.e. ψ t(x) = (1/2π )

∫∞
−∞ Ψ t(η)e−jηx dη with notation

omitting v, z dependence, we obtain the ordinary system of differential equations

− ∂

∂v
Ψ t = Me(γ , η)Ψ t (3.6)

with

Me(γ , η) =Me(−jαo, −jη) = Meo − jηMe1 − η2
Me2 (3.7)

since ∂/∂u = (∂/∂x)
FT↔ −jη.
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v,X

x,u

d
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p
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o
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Y

y

s

c

a

j = ±p

g

j = 0

j

Figure 1. Angular regions and oblique Cartesian coordinates. The figure reports the x, y, z Cartesian coordinates and r,ϕ, z
cylindrical coordinates useful to define the oblique Cartesian coordinate system u, v, z with reference to the angular region
1 0<ϕ < γ with 0< γ <π . In the figure, the space is divided into four angular regions delimited by ϕ = ±γ , 0,π ,
and the face boundaries are labelled a, b, c, d, o, p, q, s. The figure reports also the local-to-face-a Cartesian coordinate system
X , Y , Z ≡ z. Note that x ≡ u and v≡ X .

(a) Link between eigenvalues ofM(η) andMe(γ , η)
In the oblique coordinate system, the solution of (3.6) is related to the eigenvalue problem

Me(γ , η) uei(γ , η) = λei(γ , η)uei(γ , η), (3.8)

where λei and uei(γ , η) (i = 1 . . .n) are, respectively, the eigenvalues and the eigenvectors of the
6 × 6 matrix Me(γ , η). Using (3.6) and (3.7), equation (3.8) becomes

(Mo sin γ − jηM1 sin γ − η2
M2 sin γ) uei(γ , η) = (λei(γ , η) − jη cos γ )uei(γ , η) (3.9)

and thus

M(η) uei(γ , η) =
(
λei(γ , η) − jη cos γ

sin γ

)
uei(γ , η). (3.10)

Comparing (3.10) with (2.28), we observe the relation among the eigenvalues and the eigenvectors
of the two problems. The two problems defined by the matrices M(η) and Me(γ , η) have the same
eigenvectors

uei(γ , η) = ui(η), (3.11)

thus the same reciprocal vectors and related eigenvalues

λei(γ , η) − jη cos γ
sin γ

= λi(η). (3.12)

Since Me(γ , η) and M(η) have the same eigenvectors (3.11), i.e. ui(η) reported in the columns
of (2.32), we note the important property that the eigenvectors of Me(γ , η) do not depend on the
aperture angle γ of the angular region (figure 1). From (3.12), the eigenvalues λei of Me(γ , η) can
be rewritten using the notation (2.29)–(2.30)

λe1(γ , η) = j(η cos γ + sin γ ξp(η)),

λe2,e3(γ , η) = j(η cos γ + sin γ ξs(η)),

λe4(γ , η) = j(η cos γ − sin γ ξp(η))

and λe5,e6(γ , η) = j(η cos γ − sin γ ξs(η)),

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
(3.13)



12

royalsocietypublishing.org/journal/rspa
Proc.R.Soc.A477:20210624

..........................................................

where the first three λei are related to progressive waves and the last three to regressive waves
according to the definitions reported in §2. The corresponding eigenvectors and reciprocal vectors
corresponding to λei are ui and νi reported in (2.32) and (2.33) according to (3.11).

As we will see in the next section, the bi-orthogonal basis ui and νi can be used to build the
solution of the transverse equations (3.6) in Laplace domain for elastic wave motion problems in
an angular region with arbitrary αo, i.e. non-planar problems.

4. Solution of the oblique equations for angular regions
With reference to figure 1, let us introduce the Laplace transforms of ψ t(u, v) (2.16)

ψ̃ t(η, v) =
∫∞

0
ejη uψ t(u, v) du, (4.1)

for regions 1,2 and ψ̃ t(η, v) = ∫0
−∞ ejη uψ t(u, v) du for regions 3,4. The Laplace transforms applied

to (3.4) yield

− d
dv
ψ̃ t = Me(γ , η) ψ̃ t + ψ s(v), (4.2)

with

Me(γ , η) = Meo − jηMe1 − η2
Me2. (4.3)

Note that (4.3) and (3.7) share the same symbol and explicit mathematical expression, however,
the first is related to a Fourier transform while the second to a Laplace transform, thus obviously
they have the same eigenvalues and eigenvectors.

The term ψs(v) is obtained from the derivative property of the Laplace transform and for each
angular region we obtain a different expression. In particular, we indicate with ψas(v) the value
of ψs(v) on the face a, see figure 1, (0 ≤ v <+∞, u = 0+), with ψbs(v) the value of ψs(v) on the face
b (−∞ ≤ v < 0, u = 0+), with ψcs(v) the value of ψs(v) on the face c (−∞ ≤ v < 0, u = 0−) and with
ψds(v) the value of ψs(v) on the face d (0 ≤ v <+∞, u = 0−).

Since (4.2) is a system of six ordinary differential equations of first order with constant
coefficients in a semi-infinite interval, we have mainly two methods for its solution: (1) to apply
the dyadic Green’s function procedure in v domain, and (2) to apply the Laplace transform in v
that yields a linear system of six algebraic equations from which one can write down the general
solution in terms of eigenvalues and eigenfunctions. We note that both methods are effective
and in particular the second method is more useful for representing the spectral solution in each
point of the considered angular region. However, it initially introduces complex functions of
two variables. As proposed in the following subsections, we prefer the first method because,
by this way, we get the functional equations of the angular regions that involve directly complex
functions of one variable.

Using the concept of non-standard Laplace transforms (see §1.4 of [4]), the validity of (4.2) and
(4.3) in the absence of sources is extended to the total fields in the presence of plane-wave sources
or sources located at infinity from any direction yielding isolated poles in spectral domain.

With reference to figure 1, let us now focus the attention on the angular region 1 in detail. The
results for the other regions will follow a similar procedure. We observe that the selection of four
angular regions as in figure 1 related to a unique aperture angle γ does not limit the applicability
of the method. In fact, all the equations (once derived) can be used with a different appropriate
aperture angle just by replacing γ with the proper value. The purpose of deriving the functional
equations with a unique γ is related to the fact that we formulate and solve the angular region
problems by analysing once and for all the matrix Me(γ , η) (4.3). We recall also that the imposition
of boundary conditions and media for each region will be made only while examining a practical
problem and it yields GWHEs from the functional equations.
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(a) Region 1: u> 0, v > 0
Focusing the attention on region 1 (figure 1), i.e. u> 0, v > 0, (4.2) holds with

ψs(v) =ψas(v) = −Me1 ψ t(0+, v) + jηMe2 ψ t(0+, v) − Me2
∂

∂u
ψ t(0+, v). (4.4)

Equation (4.2) is a system of differential equations of first order of dimension six, whose solution
ψ̃ t is obtainable as a sum of a particular integral ψ̃p with the general solution of the homogeneous

equation ψ̃o [11]
ψ̃ t = ψ̃o + ψ̃p. (4.5)

The solution of the homogeneous equation must satisfy

− d
dv
ψ̃o = Me(γ , η) ψ̃o. (4.6)

Considering the solution form ψ̃o = C e−λ(γ ,η)vu(η), the most general solution is

ψ̃o(γ , v) =
6∑

i=1

Cie
−λei(γ ) vui(η), (4.7)

where λei and ui (i = 1 · · · 6) are the eigenvalues and the eigenvectors of the matrix Me(γ , η),
respectively, reported at (3.13) and (2.32).

In the presence of a passive medium, following the properties described in §2a, we observe
that the first three eigenvalues λei, i = 1, 2, 3 present non-negative real part and are related to
progressive waves along positive v direction while the last three eigenvalues λei, i = 4, 5, 6 present
non-positive real part and are related to regressive waves. The evaluation of the particular integral
ψ̃p(η, v) of (4.2) is easier if carried out in dyadic notation, i.e.

− d
dv
ψ̃ t = Me(γ , η) · ψ̃ t + ψs(v), (4.8)

where Me is the dyadic counterpart of the matrix Me assuming canonical basis.3 It yields

ψ̃p(η, v) = −
∫∞

0
G(v,v′) · ψs(v

′) dv′, (4.9)

where G(v, v′) is the dyadic Green’s function of (4.8), i.e. solution of

d
dv

G(v, v′) + Me(γ , η) · G(v, v′) = δ(v − v′)1t (4.10)

with the unit dyadic 1t of dimension six.
Based on the theory reported in [11,33], we apply the methodology reported in §4 and

appendix B of [1], where we build the dyadic Green’s function for arbitrary boundary conditions
by selecting progressive and regressive waves in indefinite half-space as homogeneous solutions
of (4.10). It yields

G(v, v′) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

3∑
i=1

uiνi e−λei(γ ,η)(v−v′), v > v′

−
6∑

i=4

uiνie
−λei(γ ,η)(v−v′), v < v′

. (4.11)

In our framework, we avoid to impose the boundary condition at this step, since we want to
find functional equations that are free of this constraint, as described in [1] based on [11]. Only,
while investigating a practical problem, we will impose a boundary condition to the functional
equations (for instance in region 1 at face ϕ = 0, i.e. u> 0, v = 0 and face ϕ = γ , i.e. u = 0, v > 0)
yielding GWHEs of the problem.

3Any dyadic A =∑
ij Aijeiej can be represented by a matrix A with elements Aij where ei are unit vectors and vice versa.
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By substituting (4.7) and (4.9) with (4.11) into (4.5), it yields

ψ̃ t(η, v) =
6∑

i=1

Cie
−λei(γ ) vui −

3∑
i=1

uiνi ·
∫ v

0
e−λei(γ ,η)(v− v′)ψas(v

′) dv′

+
6∑

i=4

uiνi ·
∫∞

v

e−λei(γ ,η)(v− v′)ψas(v
′) dv′. (4.12)

Looking at the asymptotic behaviour of (4.12) for v→ +∞ we have that the divergent terms are
the ones in

∑6
i=4 Ci e−λei(γ ) vui. For this reason, we assume Ci = 0, i = 4, 5, 6. Note in particular the

vanishing of the last three integral terms as v→ +∞ (last sum in (4.12)).
Setting v = 0 in (4.12), we have

ψ̃ t(η, 0) =
3∑

i=1

Ciui +
6∑

i=4

uiνi ·
∫∞

0
eλei(γ ,η)v′

ψas(v
′) dv′. (4.13)

Multiplying (4.13) by νi(η) for i = 1 . . . 6, using bi-orthogonality, we obtain

νi · ψ̃ t(η, 0) = Ci, i = 1, 2, 3

and νi · ψ̃ t(η, 0) = νi ·
�

ψas(−jλei(γ , η)), i = 4, 5, 6

⎫⎬⎭ , (4.14)

where λei(γ , η) are reported in (3.13) and
�

ψas(χ ) is the Laplace transform in v along face a (v = r in
cylindrical coordinates)

�

ψas(χ ) =
∫∞

0
ejχvψas(v) dv. (4.15)

We note that in the first three equations of (4.14) we use progressive reciprocal vectors and we
obtain Ci that are needed in the computation of the homogeneous portion of the solution ψ̃ t(η, v)
(4.12) through Green’s function method. In particular, the unknowns Ci, i = 1, 2, 3 are related to
the Laplace transform ψ̃ t(η, 0) evaluated in the lower face of the angular region (v = 0). We now
focus attention on the last three equations of (4.14) obtained by using regressive reciprocal vectors
that yield the three functional equations of the angular region. We rewrite them as

νi · ψ̃ t(η, 0) = νi ·
�

ψas(−mai(γ , η)), i = 4, 5, 6, (4.16)

with
ma4(γ , η) = mp(γ , η) = jλe4(γ , η) = −η cos γ + ξp sin γ

and ma5,a6(γ , η) = ms(γ , η) = jλe5,e6(γ , η) = −η cos γ + ξs sin γ .

}
(4.17)

In (4.16), the Laplace transforms of combinations of the field components defined on the
boundaries of an angular region, i.e. v = 0 (face o) and u = 0 (face a) in figure 1, are related to
each other. These functional equations are the starting point to define the GWHEs of region 1.
They are valid for any linear isotropic elastic medium filling the region. Moreover, in (4.16), we
note that the reciprocal vectors and eigenvectors do not appear in the definitions of the Laplace
transforms on the field. Only the eigenvalues are used as an argument of the Laplace transforms

on the right-hand side. In the following, we apply the notation + to ψ̃ t(η, 0) and
�

ψas(−mai(γ , η)),

i.e. ψ̃ t+(η, 0) and
�

ψas+(−mai(γ , η)), to highlight that these Laplace transforms are plus functions
respectively in η and χ = −mai(γ , η), i.e. they are regular in the upper half plane of the complex
plane η and χ .

Note that the functional equations (4.16) contain spectral unknowns defined into two different
complex planes (η and χ = −mai(γ , η)) related together via (4.17) and thus, when we impose the
boundary conditions we get GWHEs and not CWHEs (except in the case of γ = π ).

Explicit forms of functional equations (4.16) are obtained and reported in §5 for isotropic
media, however the theory reported in this paper can be applied to more complex media.
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(b) From region 1 to the other angular regions
Now, let us repeat the procedure for region 2 (figure 1), i.e. u> 0, v < 0. The solution ψ̃ t(η, v) of
the system of differential equations of first order of dimension six (4.2) is obtainable as sum (4.5)
of the general homogeneous solution ψ̃o with a particular integral ψ̃p defined in terms of

ψs(v) =ψbs(v) = −Me1 ψ t(0+, v) + jηMe2 ψ t(0+, v) − Me2
∂

∂u
ψ t(0+, v) (4.18)

in region 2 (v < 0). We note that (4.18) is equal to (4.4) but with different support in v. The
homogeneous solution takes the form (4.7). In the presence of a passive medium, we recall
that the first three eigenvalues present non-negative real part and are related to progressive
waves along positive v while the last three eigenvalues present non-positive real part and are
related to regressive waves, thus looking at the asymptotic behaviour of (4.7) for v→ −∞ we
have Ci = 0, i = 1, 2, 3. Once the dyadic Green’s function specialized for region 2 is obtained, the
solution is

ψ̃ t(η, v) =
6∑

i=4

Ciuie
−λei(γ ,η) v−

3∑
i=1

uiνi ·
∫ v
−∞

e−λei(γ ,η)(v− v′)ψbs(v
′)dv′

+
6∑

i=4

uiνi ·
∫ 0

v

e−λei(γ ,η)(v− v′)ψbs(v
′) dv′ (4.19)

before imposing the boundary conditions. Setting v = 0 in (4.19), we have

ψ̃ t(η, 0) =
6∑

i=4

Ciui −
3∑

i=1

uiνi ·
∫ 0

−∞
eλei(γ ,η)v′

ψbs(v
′) dv′. (4.20)

Multiplying (4.20) by νi(η) for i = 1 . . . 6, using bi-orthogonality, we obtain

νi · ψ̃ t(η, 0) = Ci, i = 4, 5, 6

and νi · ψ̃ t(η, 0) = −νi ·
�

ψbs(jλei(γ , η)), i = 1, 2, 3

⎫⎬⎭ (4.21)

where λei(γ , η) are reported in (3.13) and where

�

ψbs(χ ) =
∫ 0

−∞
e−jχvψbs(v) dv =

∫∞

0
ejχrψbs(−r) dr, (4.22)

is the left Laplace transform of ψbs(v) in v along face b (figure 1) or the Laplace transform in r of
ψbs(−r) in cylindrical coordinates (r,ϕ, z). The properties of (4.21) are the same as for region 1. In
particular, we focus attention on the last three equations obtained by using progressive reciprocal
vectors that yield the functional equations of the angular region. We rewrite them as

νi · ψ̃ t(η, 0) = −νi ·
�

ψbs(−mbi(γ , η)), i = 1, 2, 3 (4.23)

with
mb1(γ , η) = mpb(γ , η) = −jλe1(γ , η) = η cos γ + ξp sin γ ,

and mb2,b3(γ , η) = msb(γ , η) = −jλe2,e3(γ , η) = η cos γ + ξs sin γ .

⎫⎬⎭ (4.24)

In (4.23), the Laplace transforms of combinations of the field components defined on the
boundaries of an angular region, i.e. v= 0 (face o) and u = 0 (face b) in figure 1, are related
together. These functional equations are the starting point to define the GWHEs of region 2 by
imposing boundary conditions and in particular they can be coupled to the ones of region 1 to
build a structure with two angular regions with different elastic properties.

Observing (4.23), we note that at the second members we have that, in general,
�

ψbs(−mbi(γ , η))
contains discontinuous field components at the boundary u = 0, v < 0 of the angular region, while
ψ̃ t(η, 0) (by definition 2.16) is continuous at the boundary u> 0, v = 0.
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Similarly to what has been done in [1] for electromagnetic applications, we can repeat the
procedure to obtain functional equations for regions 3 and 4 (figure 1).

5. Explicit form of the functional equations for non-planar (three-dimensional)
problems in angular regions

In this section, according to our opinion, we deduce and report for the first time in the literature
explicit spectral functional equations in algebraic form for the non-planar (three-dimensional)
elastic scattering problem in isotropic angular regions with arbitrary boundary conditions.

(a) Explicit form for region 1
We remark that (4.16) are the functional equations of region 1 for an elastic wave motion problem
in an isotropic medium at skew (non-planar) incidence (αo �= 0). The functional equations for the
two-dimensional (planar and anti-planar) problems are a particular case of the general wave
motion problem with αo = 0. In the following, we demonstrate for validation that the GWHEs
obtained from the proposed functional equations enforcing the boundary conditions and the
functional equations obtained in [14] using the Gautesen (Kirchhoff) integral representations in
the natural domain are identical, although the applied notations are different from each other and
not immediate in the comparison.

To explicitly represent (4.16) in region 1, we need νi reported in the rows of V (2.33), the Laplace
transform of the field ψ̃ t(η, 0) along x, u> 0, v= 0+ (face o, see figure 1) and the Laplace transform
�

ψas(−mai(γ , η)) along x, u = 0+, v > 0 (face a, see figure 1). An important property of functional
equations is that they report combinations of field components that are continuous on the two
boundaries of the angular region. This property is fundamental to enforce boundary conditions
in particular while connecting the angular region to a different body. We observe that, while
ψ̃ t(η, 0) is continuous at face o by definition (2.16), we need some mathematical manipulations

to demonstrate that
�

ψas(−mai(γ , η)) (4.4) is defined in terms of continuous field components at
face a for an arbitrary aperture angle γ , since its expression contains potential discontinuous
components such as derivatives of the field. The proof follows.

According to a local-to-face-a Cartesian coordinate system X, Y, Z ≡ z (figure 1),
we have that the continuous components of the field are TYY, TYZ, TXY, vX, vY, vZ,

but
�

ψas(−mai(γ , η)) and thus ψs(v) =ψas(v) are originally defined in terms of
Tyy, Tyz, Txy, vx, vy, vz and their derivatives, which in general are discontinuous, see
(4.15), (4.4) and (2.16). In fact, the explicit form of ψas(v) (4.4), using (3.5) and (2.23)–
(2.25), is:

ψas(v)

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Tyy cos(γ ) − Txy sin(γ )
ks

3Tyz cos(γ )+Zo sin(γ )(jDuvzks
2−4αokp

2
vx+ks

2(ηvz+3αovx))
ks

3

ks
3Txy cos(γ )+sin(γ )(2kp

2(−2jDuvxZo+ksTyy−2Zo(αovz+ηvx))+ks
2(−ksTyy+Zo(4jDuvx+3αovz+4ηvx)))

ks
3

vx cos(γ ) − vy sin(γ )

vx sin(γ )
(

2kp
2

ks
2 − 1

)
+ vy cos(γ )

vz cos(γ )

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(5.1)
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with Du = ∂/∂u|u=0+. As a first step to check the properties of (5.1) on face a, we derive
expressions for Du components of the velocity that appears at the second and third
components of (5.1). Noting that Du = Dx and Dz = −jαo, from the fourth and the eighth
basic equations reported in (2.15), we have

Duvx =
jks[2k2

p(Txx − Tyy − Tzz) + k2
s (−2Txx + Tyy + Tzz)]

8k2
pZo − 6k2

s Zo

and Duvz = jksTxz

Zo
+ jαovx.

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ (5.2)

Substituting (5.2) into (5.1), we get an expression of ψas(v) in terms of T and v
components without derivatives but still defined in terms of x, y, z. Now, in order to
rewrite ψs(v) =ψas(v) =ψs(X, Y = 0) only in terms of the local continuous components
TYY, TYZ, TXY, vX, vY, vZ (face a, see figure 1), we formulate the rotational problem
between components along x, y, z with respect to their definition along X, Y, Z. Without
loss of generality, assuming 0< γ <π ,

T = R
−1
a Ta Ra, (5.3)

T =

⎛⎜⎝Txx Txy Txz

Txy Tyy Tyz

Txz Tyz Tzz

⎞⎟⎠ , Ta =

⎛⎜⎝ TXX TXY TXZ

TXY TYY TYZ

TXZ TYZ TZZ

⎞⎟⎠ ,

Ra =

⎛⎜⎝ cos(γ ) sin(γ ) 0
− sin(γ ) cos(γ ) 0

0 0 1

⎞⎟⎠ , (5.4)

and v = R
−1
a va, v =

⎛⎜⎝vx

vy

vz

⎞⎟⎠ , va =

⎛⎜⎝vX

vY

vZ

⎞⎟⎠ . (5.5)

Substituting (5.3) and (5.5) into (5.1) after the application of (5.2), it yields an expression
of ψas(v) in terms of the components Ta and va in X, Y, Z

ψas(v)

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

TXY sin(γ ) + TYY cos(γ )
αoZo(ks

2−2kp
2)(vX sin(2γ )+vY cos(2γ ))

ks
3 − αovYZo(ks

2−2kp
2)

ks
3 + ηvZZo sin(γ )

ks
+ TYZ

ψas3(v)
vX cos(2γ ) − vY sin(2γ )

vY(kp
2 cos(2γ )−kp

2+ks
2)+kp

2
vX sin(2γ )

ks
2

vZ cos(γ )

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (5.6)

where

ψas3(v)(4kp
2ks

3 − 3ks
5) = ks

3TXY cos(γ )(4kp
2 − 3ks

2) + sin(γ )[αo(−vZ)Zo(4kp
2 − 3ks

2)
2

+ ks(4kp
4(TXX + TYY − TZZ) − 2kp

2ks
2(2TXX + 4TYY − 3TZZ)

+ ks
4(TXX + 4TYY − 2TZZ))]

+ 4ηZo(4kp
4 − 7kp

2ks
2 + 3ks

4)(vY sin(γ ) − vX cos(γ )). (5.7)

We recall that the procedure aims at finding ψas(v) in terms of the continuous
field TYY, TYZ, TXY, vX, vY, vZ. The result of the proposed substitutions is that the
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components of ψas(v) (5.6) are all expressed in terms of the continuous field except
the component 3. In fact, from the beginning, the component 3 of (5.1) contains Duvx

that is represented by the first of (5.2) where the discontinuous Txx, Tzz are present.
The subsequent application of (5.3) and (5.5) does not change the properties ψas(v) in
terms of continuous components and in particular the third component contains the
discontinuous components TXX, TZZ as reported in (5.6) with (5.7). Noting that the basic
equations (2.15) are invariant for rotations of the coordinate axes, by applying the sixth
of (2.15) in X, Y, Z coordinates we get

TZZ = ks(ks
2 − 2kp

2)(TXX + TYY) + 2αovZZo(4kp
2 − 3ks

2)

2(ks
3 − kp

2ks)
. (5.8)

The substitution of (5.8) intoψas3(v) (5.7), after mathematical manipulations, yields an
expression in terms of continuous field, whose embedding in (5.6) gives a representation
of ψas(v) only in terms of continuous field at face a

ψas(v)

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

TXY sin(γ ) + TYY cos(γ )
αoZo(ks

2−2kp
2)(vX sin(2γ )+vY cos(2γ ))

ks
3 − αovYZo(ks

2−2kp
2)

ks
3 + ηvZZo sin(γ )

ks
+ TYZ

sin(γ )(4ηvYZo sin(γ )(k2
p−k2

s )+ks
2(αovZZo−ksTYY))+2ηvXZo sin(2γ )(ks−kp)(kp+ks)+ks

3TXY cos(γ )

ks
3

vX cos(2γ ) − vY sin(2γ )
vY(kp

2 cos(2γ )−kp
2+ks

2)+kp
2
vX sin(2γ )

ks
2

vZ cos(γ )

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

(5.9)

From (5.9), we note that ψas(v) is defined only in terms of continuous field component
at face a. Now, the application of Laplace transform (4.15) to ψas(v) yields the
explicit expression of the spectral functional equations (4.16) for region 1 in terms
of continuous components. We remark that this property is fundamental to easily
impose impenetrable boundary conditions and to couple region 1 with other penetrable
surrounding regions of arbitrary geometry and in general non-homogeneous to
region 1.

The property of the elastic wave motion problem to be formulated in terms of a differential
problem (4.2) with sources ψas(v) (5.9) defined only in term of continuous field on the boundary
represents an equivalence theorem in elasticity analogous to the well-known equivalence theorem
in electromagnetism. In fact, the solution is given by ψ̃ t(η, v) (4.12) through Green’s function
formulation only in terms of continuous components on the two faces of the angular region
(Ci on face o and ψas(v) on face a), see (4.12)–(4.14). This property is corresponding to
the well-known Schelkunoff’s equivalence theorem together with the uniqueness theorem in
electromagnetics [34], where the equivalent sources are defined in terms of the components of
electromagnetic field E, H tangent (continuous) to (at) the boundaries. A tentative text may be the
following.

Equivalence theorem in elasticity: A field in a lossy region is uniquely specified by the sources within
the region plus the continuous components of the fields over the boundary.

In order to avoid trivial identities for αo = 0 and in order to simplify a little the explicit form of
functional equations (4.16), we redefine the reciprocal vectors νi starting from the rows V(i, :), i =
1..6 of (2.33) according to the following scaling (reciprocal vectors as eigenvectors are defined up
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to a multiplicative constant):

ν1 = 2Zoξpk2
s V(1, :)
αo

, ν2 = 2Zoξsk2
s V(2, :), ν3 = 2Zoξsk2

s V(3, :)

ν4 = 2Zoξpk2
s V(4, :)
αo

, ν5 = 2Zoξsk2
s V(5, :), ν6 = 2Zoξsk2

s V(6, :).

⎫⎪⎪⎪⎬⎪⎪⎪⎭ (5.10)

With (5.10), (4.16) take the form (5.11)–(5.13), where the T, v quantities with lower-case
subscripts in the LHS of the equations are defined for u> 0, v = 0+ and are Laplace transforms
in η, while the T, v quantities with upper-case subscripts are defined for u = 0+, v > 0 and are
Laplace transforms in −mp, −ms, −ms, respectively, in the RHS of (5.11), (5.12), (5.13).

ks(−Tyyξp + ηTxy + αoTyz) + Zo[2ξp(ηvx + αovz) + vy(αo
2 + η2 − ξ2

s )]

= Zo[vY(αo
2 + kp

2 − ks
2) + vX sin(2γ )(η2 − ξ2

p ) + 2ξp(ηvX cos(2γ )

−ηvY sin(2γ ) + αovZ cos(γ )) + vY cos(2γ )(η2 − ξ2
p ) + 2αoηvZ sin(γ )]

+ ks[−ξp(TXY sin(γ ) + TYY cos(γ )) + ηTXY cos(γ ) − ηTYY sin(γ ) + αoTYZ], (5.11)

ksξs(ηTxy + αoTyz) + ksTyy(αo
2 + η2)

+ Zo[ξ2
s (ηvx + αovz) + 2vy(αo

2 + η2)ξs − (αo
2 + η2)(ηvx + αovz)]

= ksξs[ηTXY cos(γ ) − ηTYY sin(γ ) + αoTYZ]

+ ks(αo
2 + η2)[TXY sin(γ ) + TYY cos(γ )]

+ Zo{ξs[ξs(ηvX cos(2γ ) − ηvY sin(2γ ) + αovZ cos(γ )) + vX(αo
2 + 2η2) sin(2γ )

+ vY(αo
2 + 2η2) cos(2γ ) + αo

2vY + 2αoηvZ sin(γ )]

− (αo
2 + η2)[ηvX cos(2γ ) − ηvY sin(2γ ) + αovZ cos(γ )]}, (5.12)

ks
3Tyz + ξs{Zo[ks

2vz + 2αovyξs − 2αo(ηvx + αovz)] + αoksTyy} − αoks(ηTxy + αoTyz)

= Zo{αo sin(2γ )[vX(−αo
2 − 2η2 + ks

2) + 2ηvYξs] − αo cos(2γ )[vY(αo
2 + 2η2 − ks

2)

+ 2ηvXξs] + vZ cos(γ )(ks
2 − 2αo

2)ξs + ηvZ sin(γ )(ks
2 − 2αo

2) + αovY(ks
2 − αo

2)}
+ ks{TYZ(ks

2 − αo
2) + αoξs[TXY sin(γ ) + TYY cos(γ )] + αoη[TYY sin(γ ) − TXY cos(γ )]}. (5.13)

We remark that (5.11)–(5.13) are the functional equations of region 1 for an elastic wave motion
problem in an isotropic medium at skew (non-planar) incidence (αo �= 0). These equations,
according to our opinion, are deduced and reported for the first time in the literature.

In particular, by applying the traction-free boundary conditions (Txy = Tyy = Tyz = TXY =
TYY = TYZ = 0), (5.11)–(5.13) becomes GWHEs formulating the three-dimensional elastic wedge
problem considered in [17]. This formulation is important because it allows to get semianalytical
solutions via the Fredholm factorization method as developed by the authors in [4]. According to
the authors’ opinion, this technique constitutes a very power tool for the accurate approximate
solutions of arbitrary WH equations. We remark that the GWHEs are algebraic, while in [17],
the solution is obtained by functional equations written in terms of singular integral operators
and solved by numerical technique. We assert that the semianalytic solution using the Fredholm
factorization method allows physical insights by asymptotics in spectral domain.

(b) Explicit form for region 2
In this subsection, we repeat the procedure reported in §5a for region 2 (figure 1), i.e. u> 0, v < 0,
but with a different aperture angle, as reported in figure 2b: the aperture angle of region 2 is γ
instead of π − γ as originally taken in figure 1. This difference is of great utility in the analysis



20

royalsocietypublishing.org/journal/rspa
Proc.R.Soc.A477:20210624

..........................................................

v,X

x,u

d4

1

2

3

Oq

P

b

p
o

r

z

Y
X2

y

Y2

s

c

a

j = ±p

g

j = 0

j

v,X

x,u

v

4

1

2

3

Oq
p

P

b

o

r

z

Y
X2

Y2

y

s

c

d
a

j = ±p

p – gj

g

g

j = 0

(b)(a)

Figure 2. Angular regions and oblique Cartesian coordinates. (a) re-reports figure 1 for convenience and it is the reference for
the theory developed in the previous sections. (b) shows the new framework of the space divided into four angular regions for
wedge structures. We note symmetry between regions 1(3) and 2(4). The figure reports the x, y, z Cartesian coordinates and
r, ϕ, z cylindrical coordinates useful to define the oblique Cartesian coordinate system u, v, z with reference to the angular
region 1 0<ϕ < γ with 0< γ <π and u,v, zwith reference to the angular region 2 (only in (b)). The face boundaries are
labelled a, b, c, d, o, p, q, s. The figure reports also the local-to-face-a Cartesian coordinate system X , Y , Z ≡ z and the local-to-
face-b Cartesian coordinate system X2, Y2, Z2 ≡ z (only in (b)). The X , Y , Z ≡ z and X2, Y2, Z2 ≡ z Cartesian coordinate systems
are obtained from x, y, z Cartesian coordinate system by rotation, respectively, for a positive γ and−γ .

of wedge structures with symmetries. For this purpose, we first start by deriving functional
equations of region 2 (4.23) with the original aperture angle γ (figures 1 and 2a) for an elastic
wave motion problem in an isotropic medium at skew (non-planar) incidence (αo �= 0). Second,
we apply the change in the aperture angle and the rotation of the local reference system. To
explicitly represent (4.23) for region 2, we need νi reported in the rows of V (2.33), the Laplace

transform ψ̃ t(η, 0) along x, u> 0, v= 0 (face o) and the Laplace transform
�

ψbs(−mbi(γ , η)) along
x, u = 0, v < 0 (face b). We observe that, while ψ̃ t(η, 0) is continuous at face p by definition

(2.16), we need some mathematical manipulations to demonstrate that
�

ψbs(−mbi(γ , η)) (4.18)
is defined in terms of continuous field components at face b for an arbitrary aperture angle
γ , since its expression contains potential discontinuous components such as derivatives of the
field.

According to a local-to-face-b Cartesian coordinate system X2, Y2, Z2 ≡ z (figure 2),
we have that the continuous components of the field are TY2Y2, TY2Z2, TX2Y2,

vX2, vY2, vZ2, but
�

ψbs(−mbi(γ , η)) and thus ψs(v) =ψbs(v) are defined in terms of
Tyy, Tyz, Txy, vx, vy, vz and their derivatives, which in general are discontinuous, see
(4.22), (4.18) and (2.16). In fact, the explicit form of ψbs(v) (4.18), using (3.5) and (2.23)–
(2.25), yields the same expression of ψas(v) given in (5.1), even if ψbs(v) is defined
for v < 0 and ψas(v) for v > 0. Following the steps done for ψas(v) in region 1, we
derive expressions for Du components of the velocity appearing in (5.1). Noting that
Du = Dx and Dz = −jαo, from the fourth and the eighth basic equations reported in
(2.15), we have (5.2) that substituted into ψbs(v) yields an expression in terms of T
and v components without derivatives but still defined in terms of the coordinate
system x, y, z.

Now, in order to rewrite ψs(v) =ψbs(v) =ψs(X2, Y2 = 0) only in terms of the local
continuous components TY2Y2, TY2Z2, TX2Y2, vX2, vY2, vZ2 (face b), we formulate the
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rotational problem between components along x, y, z with respect to their definition
along X2, Y2, Z2. The required rotation in figure 2a is −π + γ . Now, let us introduce also
the change of aperture angle from γ to π − γ as in figure 2b. This change of aperture
angle impacts on the definitions of Mei matrices (due to the replacement of γ with π − γ )
and then ψbs(v) that now becomes different from ψas(v). In the new region 2 (figure 2b),
the rotation relations (5.3)–(5.5) of region 1 are replaced by the relations for region
2 where we have performed the substitution γ → −π + γ (rotation) and γ → π − γ

(change of aperture angle), thus γ → −γ . It yields:

T = Rb
−1

Tb Rb, (5.14)

T =

⎛⎜⎝Txx Txy Txz

Txy Tyy Tyz

Txz Tyz Tzz

⎞⎟⎠ , Tb =

⎛⎜⎝TX2X2 TX2Y2 TX2Z2
TX2Y2 TY2Y2 TY2Z2
TX2Z2 TY2Z2 TZ2Z2

⎞⎟⎠ ,

Rb =

⎛⎜⎝cos(γ ) − sin(γ ) 0
sin(γ ) cos(γ ) 0

0 0 1

⎞⎟⎠ , (5.15)

and v = Rb
−1 vb, v =

⎛⎜⎝vx

vy

vz

⎞⎟⎠ , vb =

⎛⎜⎝vX2
vY2
vZ2

⎞⎟⎠ . (5.16)

Substituting (5.14) and (5.16) into ψbs(v) (same expression of ψas(v) (5.1)) after the
application of (5.2) and (5.8) in X2, Y2, Z2 coordinates, it yields an expression of ψbs(v)
in terms of the continuous (at face b) components TY2Y2, TY2Z2, TX2Y2, vX2, vY2, vZ2:

ψbs(v)

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

TX2Y2 sin(γ ) − TY2Y2 cos(γ )
αovX2 Zo sin(2γ )(ks

2−2kp
2)+αovY2 Zo cos(2γ )(2kp

2−ks
2)+αovY2 Zo(ks

2−2kp
2)+ηks

2
vZ2 Zo sin(γ )

ks
3 − TY2Z2

sin(γ )[4ηvY2 Zo sin(γ )(ks
2−kp

2)+ks
2(αovZ2 Zo−ksTY2Y2 )]+2ηvX2 Zo sin(2γ )(ks

2−kp
2)−ks

3TX2Y2 cos(γ )
ks

3

−vX2 cos(2γ ) − vY2 sin(2γ )
kp

2[vX2 sin(2γ )−vY2 cos(2γ )]+vY2 (kp
2−ks

2)
ks

2

−vZ2 cos(γ )

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

(5.17)

Now, the application of Laplace transform (4.22) to ψbs(v) yields the explicit expression
of the spectral functional equations (4.16) for region 2 in terms of continuous
components.

Again the property of the elastic wave motion problem to be formulated in terms of
a differential problem (4.2) with sources ψbs(v) (5.17) defined only in terms of continuous
field on the boundary represents an equivalence theorem in elasticity for region 2, as discussed
in §5a.

As done for region 1, in order to avoid trivial identities for αo = 0 and in order to simplify
a little the explicit form of (4.23), we redefine the reciprocal vectors as reported in (5.10). With
(5.10), (4.23) take the form (5.18)–(5.20), where the T, v quantities with lower-case subscripts on
the LHS of the equations are defined for u> 0, v = 0− and are Laplace transforms in η, while the
T, v quantities with upper-case subscripts are defined for u = 0+, v < 0 and are Laplace transforms
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in −mpb, −msb, −msb, respectively, on the RHS of (5.18), (5.19), (5.20). It yields:

Zo[2ξp(ηvx + αovz) − vy(αo
2 + η2 − ξ2

s )] − ks(Tyyξp + ηTxy + αoTyz)

= Zo[−vY2(αo
2 + kp

2 − ks
2) + vX2 sin(2γ )(η2 − ξ2

p ) + 2ξp(ηvX2 cos(2γ )

+ ηvY2 sin(2γ ) + αovZ2 cos(γ )) + vY2 cos(2γ )(ξ2
p − η2) + 2αoηvZ2 sin(γ )]

−ks[ξp(TY2Y2 cos(γ ) − TX2Y2 sin(γ )) + ηTX2Y2 cos(γ ) + ηTY2Y2 sin(γ ) + αoTY2Z2], (5.18)

ksξs(ηTxy + αoTyz) − ksTyy(αo
2 + η2)

+ Zo[ξ2
s (−(ηvx + αovz)) + 2vy(αo

2 + η2)ξs + (αo
2 + η2)(ηvx + αovz)]

= ksξs[ηTX2Y2 cos(γ ) + ηTY2Y2 sin(γ ) + αoTY2Z2]

−ks(αo
2 + η2)[TY2Y2 cos(γ ) − TX2Y2 sin(γ )]

+ Zo{ξs[−ξs(ηvX2 cos(2γ ) + ηvY2 sin(2γ ) + αovZ2 cos(γ )) − vX2(αo
2 + 2η2) sin(2γ )

+ vY2(αo
2 + 2η2) cos(2γ ) + αo

2vY2 − 2 sin(γ )αoηvZ2]

+ (αo
2 + η2)[ηvX2 cos(2γ ) + ηvY2 sin(2γ ) + αovZ2 cos(γ )]} (5.19)

and − ks
3Tyz + ξs{Zo[ks

2vz − 2αovyξs − 2αo(ηvx + αovz)] + αoksTyy}
+ αoks(ηTxy + αoTyz) = Zo{αo sin(2γ )[vX2(−αo

2 − 2η2 + ks
2) − 2αoηvY2ξs]

+ αo cos(2γ )[vY2(αo
2 + 2η2 − ks

2) + −2ηvX2ξs]

+ vZ2 cos(γ )(ks
2 − 2αo

2)ξs + ηvZ2 sin(γ )(ks
2 − 2αo

2) + αovY2(αo
2 − ks

2)}
+ ks{TY2Z2(αo

2 − ks
2) + αoξs[TY2Y2 cos(γ ) − TX2Y2 sin(γ )]

+ αoη[TX2Y2 cos(γ ) + TY2Y2 sin(γ )]}. (5.20)

We remark that (5.18)–(5.20) are the spectral functional equations of region 2 for an elastic
wave motion problem in an isotropic medium at skew (non-planar) incidence (αo �= 0). As cross-
validation, we note that (5.18)–(5.20) of region 2 are equivalent to (5.11)–(5.13) of region 1,
according to the following replacements dictated by means of symmetry (figure 2):

{vx, vy, vz, Tyy, Txy, Tyz} → {vx, −vy, vz, Tyy, −Txy, −Tyz},
{vX2, vY2, vZ2, TY2Y2, TX2Y2, TY2Z2} → {vX, −vY, vZ, TYY, −TXY, −TYZ}.

}
(5.21)

The procedure reported in this section can be repeated to get the functional equations for
regions 3 and 4 following also the explicit mathematical steps described in [1] for em applications.

6. Validation of functional equations for an isotropic angular region with
traction-free boundary conditions in the two-dimensional case

The functional equations for the two-dimensional (planar and anti-planar) problems (αo = 0) are
a particular case of the ones obtained for the general three-dimensional problem (5.11)–(5.13) and
(5.18)–(5.20), respectively, for region 1 and region 2 with reference to figure 2b.

Taking into consideration region 1, in the following, we demonstrate that the GWHEs
obtained from the proposed functional equations while enforcing the traction-free face boundary
conditions in the planar angular problem (αo = 0) and the functional equations obtained in [14] by
Gautesen’s group are identical, although the applied notations are very different from each other
and cumbersome to be compared. Moreover, the functional equation for the anti-planar problem
are checked with an independent method, too.

We recall that the explicit functional equations for region 1 reported in (5.11)-(5.13) are
derived from (4.16). Since functional equations can be written up to multiplicative constant as
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eigenvectors, to perform the comparison with compact expressions and to avoid the lack of
definition of some eigenvectors/reciprocal vectors for αo = 0, we redefine the reciprocal vectors
(2.33) as in the following scaling:

ν1 = 2ξpk2
s V(1, :)
αo

, ν2 = 2ξsk2
s V(2, :)
η

;

ν3 = 2V(3, :), ν4 = 2ξpk2
s V(4, :)
αo

,

ν5 = 2ξsk2
s V(5, :)
η

, ν6 = 2V(6, :).

(6.1)

For readability, we report (6.1) in explicit form for αo = 0 in terms of rows of the following matrix:

Vo =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

− ksξp

Zo
0 − ηks

Zo
2ηξp ξ2

s − η2 0

− ηks
Zo

0 ksξs
Zo

η2 − ξ2
s 2ηξs 0

0 − ks
Zoξs

0 0 0 1

− ksξp

Zo
0 ηks

Zo
2ηξp η2 − ξ2

s 0
ηks
Zo

0 ksξs
Zo

ξ2
s − η2 2ηξs 0

0 ks
Zoξs

0 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (6.2)

For αo = 0, we obtain a simplified version of (5.6)

ψas(v)

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

TXY sin(γ ) + TYY cos(γ )
ηvZ sin(γ )Zo

ks
+ TYZ

4ηZo sin(γ )(kp
2−ks

2)(vY sin(γ )−vX cos(γ ))
ks

3 + TXY cos(γ ) − TYY sin(γ )

vX cos(2γ ) − vY sin(2γ )
vY(kp

2 cos(2γ )−kp
2+ks

2)+kp
2
vX sin(2γ )

ks
2

vZ cos(γ )

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (6.3)

With reference to figure 1, we now obtain the explicit functional equations (4.16) of an angular
region filled by isotropic elastic medium before imposing face boundary conditions in the two-
dimensional case.

With αo = 0, the re-scaled reciprocal vectors (6.2), the Laplace transform ψ̃ t(η, v = 0) (4.1) of

the continuous field (2.17) at face o and the Laplace transform
�

ψas(χ ) (4.15) of the quantity (6.3)
expressed in terms of the continuous field at face a, we obtain the following explicit form of the
functional equations (4.16):

ks(ηTxy − Tyyξp)
Zo

+ 2ηvxξp + vy(η2 − ξ2
s )

= sin(2γ )[−2ηξpvY − vXξp
2 + η2vX] + vY(kp

2 − ks
2)

+ cos(2γ )[−ξp
2vY + 2ηξpvX + η2vY]

− ksξp[TXY sin(γ ) + TYY cos(γ )] + ηks[TXY cos(γ ) − TYY sin(γ )]
Zo

, (6.4)
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ks(Txyξs + ηTyy)
Zo

− vx(η2 − ξ2
s ) + 2ηvyξs

= sin(2γ )[2ηvXξs − vYξ
2
s + η2vY] + cos(2γ )[vXξ

2
s + 2ηvYξs − η2vX]

+ ksξs[TXY cos(γ ) − TYY sin(γ )] + ksη[TXY sin(γ ) + TYY cos(γ )]
Zo

, (6.5)

ksTyz

Zoξs
+ vz = ksTYZ

Zoξs
+ ηvZ

ξs
sin(γ ) + vZ cos(γ ). (6.6)

We recall the T, v quantities with lower-case subscripts on the LHS of the equations are defined
for u> 0, v = 0+ and are Laplace transforms in η of ψ̃ t(η, v = 0), while the T, v quantities with
upper-case subscripts are defined for u = 0+, v > 0 and are Laplace transforms in −mp, −ms, −ms

of ψas(v), respectively, on the RHS of (6.4), (6.5), (6.6).
We note that (6.4) is related to the complex propagation constant −mp of the principal wave

while (6.5), (6.6) are related to −ms, i.e. the one of the secondary waves.
We note also some sort of symmetry between (6.4) and (6.5) except for the additional term

vY(kp
2 − ks

2) in (6.4).
Equations (6.4), (6.5) and (6.6) are functional equations for the general two-dimensional wave

motion angular problem in elasticity before imposing boundary conditions, i.e. they represent the
planar and anti-planar problems.

To complete the validation with the equations proposed at (4.1) of [14], with reference to region
1 of figure 1, we impose traction-free face boundary conditions at faces o and a, i.e. the traction
t = T · n = 0 where n is the unit normal to the face

Tyy, Tyz, Tyx = 0 at face o (u> 0, v= 0+)

TYY, TYZ, TYX = 0 at face a (u = 0+, v > 0).
(6.7)

It yields the following GWHEs:

2ηvxξp + vy(η2 − ξ2
s )

= sin(2γ )[−2ηξpvY + vX(η2 − ξp
2)]

+ cos(2γ )[vY(η2 − ξp
2) + 2ηξpvX] + vY(kp

2 − ks
2), (6.8)

− vx(η2 − ξ2
s ) + 2ηvyξs = sin(2γ )[2ηvXξs − vYξ

2
s + η2vY]

+ cos(2γ )[vXξ
2
s + 2ηvYξs − η2vX] (6.9)

and vz = ηvZ

ξs
sin(γ ) + vZ cos(γ ). (6.10)

where the v quantities with lower-case subscripts on the LHS of (6.8), (6.9) and (6.10) are plus
functions in η and v quantities with upper-case subscripts on the RHS are minus functions (plus
functions) in mp, ms, ms (−mp, −ms, −ms). Both minus and plus functions are Laplace transforms.
Standard plus(minus) functions are analytic in the upper(lower) half-plane. We extend the theory
to non-standard functions when they have isolated poles due to plane wave sources located in
the standard regularity half-plane.

Note that (6.10) is independent from (6.8), (6.9). In fact, (6.10) is associated with the SH wave
in the wave motion problem (anti-planar problem), while (6.8), (6.9) model the coupled problem
between P and SV waves (planar problem).

Equation (6.10) can be checked and validated after imposing the traction-free face boundary
conditions with (3.15.5) of [4], where a completely different method specialized on anti-planar
problems has been used. Now, let us compare (6.8), (6.9) with (4.1) of [14], reported in original
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Table 1. Translation of definitions between this work and [14]

[14] ξ κ1,2 α û1,2(ξ ) γ 2
1,2 = κ 21,2 − ξ 2 a(ξ )= κ 21 − 2ξ 2 b1,2(ξ )= 2ξγ1,2(ξ )

this paper η ks,p γ vx,y(η) ξ 2s,p = k2s,p − η2 ξ 2s − η2 2ηξs,p
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

form at (6.11) with (6.12)–(6.13).

a(ξ )̂u1(ξ ) − b1(ξ )̂u2(ξ ) + Û1(ξ ) = f1(ξ )

b2(ξ )̂u1(ξ ) + a(ξ )̂u2(ξ ) + Û2(ξ ) = f2(ξ ),

}
(6.11)

Û1(ξ ) = (−1)�[−a(ζ1)û1(ζ1) + b̄1(ξ )û2(ζ1)], �= 1, 2, (antisym, sym)

Û2(ξ ) = (−1)�[b̄2(ξ )û1(ζ2) + a(ζ2)û2(ζ2)], �= 1, 2 (antisym, sym)

⎫⎬⎭ (6.12)

and

ζ1,2 = ξ cosα + γ1,2(ξ ) sinα,

η1,2 = ξ sinα − γ1,2(ξ ) cosα

b̄1,2(ξ ) = 2ζ1,2η1,2.

⎫⎪⎪⎬⎪⎪⎭ (6.13)

In (6.11), û1(ξ ), û2(ξ ) are one-sided Fourier transforms of unknown displacements on face o
(figure 1), respectively, in x, y, ξ is the spectral variable, a(ξ ), b1(ξ ), b2(ξ ) are spectral functions
and Û1(ξ ), Û2(ξ ) are one-sided Fourier transforms of quantities defined in terms of unknown
displacements on face a (figure 1), respectively, in X, −Y. f1(ξ ), f2(ξ ) model the source of the wave
motion problem. In order to compare (6.11) with (6.8), (6.9), we scale all the displacements by
jω to get the velocities, thus (6.11) hold in homogeneous form (f1(ξ ), f2(ξ ) = 0) also interpreting
ûi(ξ ), Ûi(ξ ) in terms of velocities. Moreover, we observe that i = 1, 2 waves in [14] are respectively
associated with SV, P waves, thus we need to compare (6.8), (6.9), respectively, with the 2nd and
the first equation of (6.11). With the help of the definitions given in [14], let us interpret (6.11) in
our formalism. Table 1 reports the correspondences for the definition of some quantities in the
two works. With table 1, it is easy to show the equivalence between the LHS of (6.8), (6.9) and the
terms in ûi(ξ ) in (6.11).

To complete the comparison we need to check the first equation of (6.11) and (6.9) focusing
attention on Û1(ξ ) (6.12) and then check the second equation of (6.11) and (6.8) focusing attention
on Û2(ξ ) (6.12). Starting from (6.13), ζ1,2 play the roles of −ms,p (4.17) and η1,2 play the role of ns,p.
In particular, we note that, in our notation,

ζ1,2 → η cos γ + ξs,p sin γ and η1,2 → η sin γ − ξs,p cos γ , (6.14)

that apart from a sign in the combination of the two terms are, respectively, −ms,p (4.17) and ns,p:

ms,p = −η cos γ + ξs,p sin γ and ns,p = η sin γ + ξs,p cos γ . (6.15)

Further sign differences appear also in the combination of the quantities between (6.8)–(6.9) and
(6.11). We are convinced that these differences are due to different notations in Fourier transforms
between engineering (ours, [7] p. XV) and applied mathematics (as in [14]) and, to the different
orientation of local coordinate system on face a between our work and [14] where (X, −Y) are
selected (figure 1). We note that û1,2(ζ1) in Û1(ξ ) (6.12) for equation (6.11) play the roles of
vX,Y(−ms) for equation (6.9). Let us compare the functional coefficient of û1,2(ζ1) with the ones of
vX,Y(−ms). With the help of table 1 and (6.14)–(6.15), for û1(ζ1) and vX(−ms), we have respectively,

− a(ζ1) = κ2
1 − 2ζ 2

1 → k2
s − 2m2

s (6.16)

and
sin(2γ )2ηξs + cos(2γ )[ξ2

s − η2] = k2
s − 2m2

s (6.17)

after some trigonometric manipulation. Again for û2(ζ1) and vY(−ms), we have, respectively,

b̄1(ξ ) = 2ζ1η1 → 2msns (6.18)
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and
sin(2γ )[−ξ2

s + η2] + cos(2γ )[2ηξs] = 2msns. (6.19)

Now let us complete the comparison between the second equation of (6.11) and (6.8), focusing
the attention on Û2(ξ ) (6.12) and comparing the functional coefficient of û1,2(ζ1) in Û2(ξ ) with the
ones of vX,Y(−mp). With the help of table 1 and (6.14)–(6.15), for û1(ζ2) and vX(−mp), we have,
respectively

b̄2(ξ ) = 2ζ2η2 → 2mpnp (6.20)

and
sin(2γ )[−ξp

2 + η2] + cos(2γ )[2ηξp] = 2mpnp (6.21)

with the same calculus as done in (6.18)–(6.19). On the contrary, we note that û2(ζ2) and vY(−mp)
show different properties with respect to (6.16)–(6.17). Their respective functional coefficients are

a(ζ2) = κ2
1 − 2ζ 2

2 → k2
s − 2m2

p (6.22)

and
sin(2γ )[−2ηξp] + cos(2γ )[−ξp

2 + η2] + (kp
2 − ks

2) = k2
s − 2m2

p (6.23)

that are equivalent after some trigonometric manipulation. Note in (6.22)–(6.23), we have the
simultaneous presence of SV and P spectral variables and propagation constants, and the presence
of additional term (kp

2 − ks
2) on the LHS of (6.23) with respect to the LHS of (6.17). This property

denotes coupling between SV and P waves.
We conclude by affirming that (6.8), (6.9), (6.10) are the GWHEs for the elastic wave motion

angular problem in two dimensions (αo = 0) with traction-free face boundary conditions that
model the planar (6.8), (6.9) and anti-planar (6.10) problems in the presence of plane-wave sources
or sources located at infinity with the help of the concept of non-standard Laplace transforms (see
§1.4 of [5]).

See the electronic supplementary material for a report of the validation of functional equations
by evaluating the characteristic impedances of half spaces in planar problems.

7. Remarks and conclusion
In this work, we have introduced a general method for the deduction of spectral
functional equations and thus GWHEs in angular regions filled by arbitrary linear isotropic
homogeneous media in elasticity. The importance to formulate wedge problems with GWHEs
in electromagnetism has been shown in [4,5]. We remark that these equations are important also
for elastic wedge problems. In particular, the functional equations obtained and solved in [14] by
Gautesen’s group for the planar elastic wedge are GWHEs, although not defined in this way.

The method is based on the original solution of vector differential equations of first order via
dyadic Green’s function method and on the projection of this solution along the boundaries of
the angular region using reciprocal vectors of the pertinent algebraic matrix related to the matrix
differential operator. The application of the boundary conditions to the functional equations
yields GWHEs for practical problems. We observe that the functional equations are the starting
point to develop solutions using the WH technique for complex scattering problems.

Using the concept of non-standard Laplace transforms (see §1.4 of [5]), the validity of the
functional equations and of the GWHEs obtained in the absence of sources is extended to the total
fields in the presence of plane-wave sources or in general of sources located at infinity. We observe
that the GWHEs in elasticity contain unknowns defined in multiple complex planes η, −mp, −ms

related to P and S waves and this property recalls electromagnetic applications (and related
solution methods) in media with multiple propagation constants as reported in [25–28]. In fact, in
this case, the reduction of GWHEs to classical WH equations is not possible. Explicit expressions
of spectral functional equations in algebraic form are provided in the text in the general case
of non-planar elastic problems in angular regions with isotropic media and arbitrary boundary
conditions and, we remark that, according to our opinion, this is the first time in the literature.



27

royalsocietypublishing.org/journal/rspa
Proc.R.Soc.A477:20210624

..........................................................

Validation of the GWHE formulation has been demonstrated by comparison with prestigious
literature references reporting special simplified cases in anti-planar and planar problems. The
paper demonstrates the flexibility and the advantages of the proposed method, based on first-
order differential formulation, that is useful for the analysis of complex scattering problems
containing angular regions in arbitrarily linear media by changing the matrix operator defined
through the fundamental matrices Mo, M1, M2. The paper shows systematic procedural steps that
can be used for arbitrary wave motion problems in different physics.
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Glossary

Table 2. Symbols introduced in the paper

notation description

(x, y, z), (r,ϕ, z), (u, v, z), (X , Y , Z) Cartesian, cylindrical, oblique Cartesian, local to face Cartesian coordinates
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

A, A, A,A,A(·, ·) scalar, column vector, dyadic, matrix, matrix differential operator
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

kp, ks propagation constants of P and S waves
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

T (T), S (S) stress tensor (Voigt notation), strain tensor (Voigt notation)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

p, v vector momentum density, vector particle velocity
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

ρ ,λ,μ material density and Lame’s constants
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