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Abstract

Background

Over the past recent years, Vibrio cholerae has been associated with outbreaks in sub-

Saharan Africa, notably in Democratic Republic of the Congo (DRC). This study aimed to

determine the genetic relatedness of isolates responsible for cholera outbreaks in eastern

DRC between 2014 and 2017, and their potential spread to bordering countries.

Methods/Principal findings

Phenotypic analysis and whole genome sequencing (WGS) were carried out on 78 clinical

isolates of V. cholerae associated with cholera in eastern provinces of DRC between 2014

and 2017. SNP-based phylogenomic data show that most isolates (73/78) were V. cholerae

O1 biotype El Tor with CTX-3 type prophage. They fell within the third transmission wave of

the current seventh pandemic El Tor (7PET) lineage and were contained in the introduction

event (T)10 in East Africa. These isolates clustered in two sub-clades corresponding to Mul-

tiple Locus Sequence Types (MLST) profiles ST69 and the newly assigned ST515, the latter

displaying a higher genetic diversity. Both sub-clades showed a distinct geographic cluster-

ing, with ST69 isolates mostly restricted to Lake Tanganyika basin and phylogenetically

related to V. cholerae isolates associated with cholera outbreaks in western Tanzania,

whereas ST515 isolates were disseminated along the Albertine Rift and closely related to

isolates in South Sudan, Uganda, Tanzania and Zambia. Other V. cholerae isolates (5/78)

were non-O1/non-O139 without any CTX prophage and no phylogenetic relationship with

already characterized non-O1/non-O139 isolates.

Conclusions/Significance

Current data confirm the association of both DRC O1 7PET (T)10 sub-clades ST69 and

ST515 with recurrent outbreaks in eastern DRC and at regional level over the past 10 years.
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Interestingly, while ST69 is predominantly a locally endemic sequence type, ST515 became

adaptable enough to expand across DRC neighboring countries.

Author summary

Cholera is a severe diarrheal disease caused by the Gram-negative bacterium Vibrio cho-
lerae. After originating in Asia, the disease spread across sub-Saharan Africa, notably

Democratic Republic of the Congo. The aim of our study was to assess the transmission

pattern of V. cholerae strains prevailing in eastern DRC, and determine their genetic relat-

edness to strains from other African countries and other parts of the world. Between 2014

and 2017, we isolated V. cholerae from fecal samples of patients with acute diarrhea in

eastern DRC, and subsequently examined the DNA of the bacteria. The results show that

they all clustered in two genetic groups (ST69 and ST515) falling within the third trans-

mission wave of the current seventh pandemic El Tor (7PET) lineage and T10 introduc-

tion event in East Africa. The genetic signature of ST515 may be involved in its adaptation

to environmental conditions found in eastern DRC, and contribute to its extended geo-

graphic distribution. Indeed, unlike the locally endemic ST69, ST515 is spreading exten-

sively through DRC cross-border countries such as South Sudan, Tanzania, Uganda and

Zambia. This plainly justifies a regional strategy to strengthen the fight against cholera in

eastern Africa.

Introduction

Cholera is a life-threatening diarrheal disease caused by a Gram-negative comma-shaped

bacterium called V. cholerae [1, 2]. Serogrouping based on the reactivity of antibodies with

outer membrane lipopolysaccharide O-antigen has allowed defining more than 200 V. cho-
lerae, among which only two (O1 and O139) are so far associated with epidemic or pan-

demic cholera [3]. Africa, a previously cholera-free continent [4], now bears the highest

burden of the disease. Sub Saharan countries in particular have been the most affected and

notably DRC, which now ranks in the world as one of countries most frequently reported to

be affected by serious outbreaks [4–6]. Cholera has indeed become part of the DRC clinical

landscape, with most cases reported in hot spots in the eastern provinces along the Albertine

Rift [7, 8]. In the hot spot healthcare zone of Goma (North-Kivu province), the cumulative

incidence of cholera in 2017 was estimated as 1015 cases per 100,000 inhabitants [9]. How-

ever, these figures must be interpreted with caution as current estimation is largely affected

by a lack of accurate and recently updated population records at national level. Moreover,

this limitation is further amplified, in eastern DRC, by recurrent conflicts and political insta-

bility, which have triggered large and successive population displacements. The year 2017

has even experienced a dramatic expansion of the disease to new provinces in the center and

west of the country [9], and of particular concern is the decreased susceptibility of V. cho-
lerae to antimicrobial drugs in DRC [10].

During the current seventh cholera pandemic El Tor (7PET), at least three independent

but temporally overlapping waves of global transmission have been identified by phylogenetic

analyses in Africa [11–14], at least 13 re-introduction events (T1-13) have caused epidemics,

each genetic lineage probably representing an independent introduction event to that location

[4, 15]. Recent phylogenetic analysis of isolates associated with cholera outbreaks in DRC
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between 2006 and 2014 showed that all of them belonged to the 7PET, wave 3, T10 east African

sub-lineage [4].

Understanding the dynamics of V. cholerae associated with recent cholera outbreaks in

DRC is paramount in order to get insight into the mechanisms associated with the endemicity

of the disease in the country, the epidemicity at local and regional level and the trace-back of

infection sources. This study provides genomic information of V. cholerae isolates associated

with cholera outbreaks, which occurred in eastern DRC between 2014 and 2017.

Methods

Ethical considerations

Given the low level of literacy of the patients, rectal swabs were sampled with their oral

informed consent. For children, the informed consent was obtained from their parent or

guardian. This verbal consent was recorded, prior to sampling, by local first-line responders.

Healthcare workers and physicians signed the following statement: “We have explained the

study to the patient in the areas under investigation and are satisfied that he/she understands

and consents to sampling”. Ethical approval to conduct the study was obtained from the Pro-

vincial Ministers of healthcare of North and South Kivu provinces (DRC192/CAB/MP-SA-

SAFPP/NK/2018). The use of oral consent was approved by the Institutional Review Board of

Université catholique de Louvain/ Saint-Luc academic Hospital.

Study design

The study sample consisted of 78 non-repetitive V. cholerae isolates which come from a collec-

tion of 97 isolates shipped to Belgium for whole genome sequencing. Upon arrival in Belgium,

19/97 isolates could not be resuscitated. The 97 isolates of the collection were cultured at the

AMI-LABO (Goma, North-Kivu) and at the Centre de Diagnostic et de Recherche en Maladies

(Bukavu, South-Kivu). They were recovered from rectal swabs specimens from patients

(n = 321) admitted in cholera treatment centers (CTC) of the provinces of Maniema, North-

Kivu and South-Kivu, and meeting the clinical case definition of cholera, i.e. an acute watery

diarrhea with or without vomiting in a patient with more than one year of age. Cases belonged

to a cohort of approximatively 52.400 suspected cholera patients registered in these provinces

between January 2014 and December 2017. Personal identifiers were removed so that analyses

of stored isolates were not traceable to individual patients. Each sample was labeled using a

code referring to the date and location of sample collection.

Phenotype of V. cholerae clinical isolates

Samples were incubated in saline and alkaline peptone water broth during 6 hours and subse-

quently streaked onto thiosulfate-citrate-bile salts (TCBS) agar at 37˚C for 16–24 hours. Large

and flattened yellow colonies with opaque centers and translucent peripheries were sub-cul-

tured on Luria-Bertani agar and subsequently characterized by phenotypic tests, i.e. micro-

scopic examination, oxidase assay, and Kligler’s iron agar for fermentation of carbon hydrates.

Isolates were further characterized by additional phenotype testing including Voges Proskauer

assay (VP), hemolysis of sheep erythrocytes (HSE), chicken red cells agglutination (CCA) and

susceptibility to polymyxin B (PXB). Enterobacter aerogenes (ATCC13048) and V. cholerae
O395 were used as positive and negative control for the VP assay respectively. Serotyping was

carried out using the Polyvalent O1, Ogawa and Inaba antisera (Becton Dickinson, Erembode-

gem, Belgium) following the manufacturer’s recommendations.
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Antimicrobial susceptibility testing

The susceptibility to antimicrobial agents (i.e., ampicillin, doxycycline, erythromycin, nalidixic

acid, chloramphenicol, ciprofloxacin, sulfamethoxazole-trimethoprim and tetracycline) was

performed by the disk diffusion method. Susceptibility tests were interpreted using European

Committee on Antimicrobial Susceptibility Testing (EUCAST) guidelines. Escherichia coli
ATCC 35218 was used as a control for bacterial growth and susceptibility to antibiotic disks.

Next-generation sequencing

Isolates were shipped to Belgium for whole genome sequencing and subsequent genomic

analysis. V. cholerae isolates were cultured overnight in 10 ml Luria-Bertani broth. DNA

was isolated using the phenol chloroform protocol [16]. DNA was quantified using the

Nanodrop and the Qubit fluorometric quantitation (Thermo Fisher Scientific, Asse, Bel-

gium) and normalized to 0.2 ng/μl. Genomic DNA was simultaneously fragmented and

tagged with sequencing adapters in a single step using Nextera transposome (Nextera XT

DNA Library Preparation Kit, Illumina, San Diego, CA, USA). DNA was then amplified

with a 12-cycle PCR, cleaned up with AMPure beads, and subsequently loaded on a MiSeq

paired-end 2 x 150 (reagent kit V2 (300 cycles) or 2 x 300 bp (MiSeq reagent kit V3 (600

cycles) sequence run.

Genomic analysis: Genetic relatedness, toxin phage, drug resistance and

virulence

Raw genomic data from each V. cholerae isolates were submitted to the European Nucleotide

Archive (ENA, http://www.ebi.ac.uk/ena), and are available under accession number

(ERP114722). In order to assess the genetic relatedness of DRC isolates with those from other

African countries (e.g. Cameroon, Central African Republic, Kenya, Tanzania, Uganda, Zam-

bia), Asia and South America, a large set of genomes, including the O1 El Tor N16961 and the

pre-7th pandemic O1 M66 isolates was downloaded from the European Nucleotide Archive

(ENA), Genbank and Ensembl databases. Paired-end reads from each V. cholerae isolate were

assembled de novo to construct a draft genome using the SPADES v.3.11.1 software [17]. The

quality of de novo assemblies was assessed using the Quast software (version 4.5) [18]. Each

draft genome was analyzed to identify the V. cholerae species-specific ompW [19], the O1 rfbV

and O139 wbfZ serogroup-specific [20] as well as classical and El Tor biotype-specific (ctxB,

rstR and tcpA) genes [21]. In addition, genomes were screened for the presence of the 7PET-

specific gene VC2346 [22]. A SNP-based phylogenomic analysis was conducted using kSNP

3.0 for SNP identification and parsimony tree construction based on the core genome. A first

tree included all DRC O1 7PET isolates and representative of 7PET isolates from all regions of

the world. The Dendroscope v.3.5.9 was used to root the tree with the N16961 strain [23] as an

outgroup. The next tree included non-O1/non-O139 isolates form DRC (n = 5) and from

other countries (n = 11), as well as O1 representatives from 6th pandemic (n = 2), Gulf Coast

(n = 4), pre-7th pandemic (n = 4) and 7PET isolates (n = 2), along with the outgroup Vibrio
metoecus (isolate 07 2435) used to root the tree. The MLST analysis was performed on each iso-

late by using the MLST scheme developed by Octavia et al [24]. The nucleotide sequences of a

new allele of the metE gene, and new allelic combinations creating a novel sequence type (ST)

were sent to the MLST database curator for allele and ST assignment. The CTX prophage har-

bored by O1 DRC isolates was compared to representatives of known CTX prophages [25–26].

Raw data from each V. cholerae DRC isolate were aligned to the complete genome of the

O1 El Tor reference N16961. Each file was screened for the presence of large deletions. The
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Freebayes v1.0.2 software [27] was used to call variants from the reference genome. The com-

plete list of mutations was filtered using vcffilter in order to select high quality (QUAL > 20)

variants associated with a minimum depth of 20, and then annotated using the SNPeff v.4.3

software [28]. Only mutations with a high or moderate impact (i.e. frameshift deletion, non-

sense point mutation, missense, and inframe deletion) were selected.

Each draft genome was then screened for the presence of virulence genes from the Viru-

lence Factors Database (VFDB, http://www.mgc.ac.cn/VFs/), selecting those which were

experimentally tested, and for the presence of pathogenic islands (PAI) previously associ-

ated with various sub-lineages within the 7th pandemic, namely virulence factors including

Vibrio pathogenicity islands (VPI-1, VPI-2, VSP-I, VSP-II, a novel variant of VSP-II (the

VSP-II WASA (West African-South America) and WASA-I, as well as other virulence

genes [7, 29, 30]. A gene was deemed present if it matched the reference sequence, i.e. mini-

mal identity match of 95% with a minimal coverage of 80% of the gene sequence, as previ-

ously described [31]. Each draft genome was also screened for the presence of antimicrobial

resistance (AMR) genes. The complete list of screened genes was drawn up from the MEGA-

Res database (https://megares.meglab.org). In order to selectively identify AMR genes

acquired through horizontal gene transfer, the list based on MEGARes data was restricted

to genes that were also found in the ResFinder database (https://cge.cbs.dtu.dk/services/

ResFinder/), using BLASTn. In addition SNP-based AMR determinants were identified

using ARIBA v.2.12.0 [32] with a home-made database including the parC, gyrA, gyrB, parE
and qnr genes. A map of DRC was created using the Raster package [33], implemented in R

statistical software version 3.6.1. The size of spots is somewhat correlated with the number

of isolates from patients at the location.

Results

Phenotypic results

Antimicrobial susceptibility patterns of V. cholerae isolates (n = 78) are shown in Table 1. Irre-

spective of their biotype, all V. cholerae isolates displayed resistance to co-trimoxazole and

nalidixic acid, whilst retaining susceptibility to tetracycline and chloramphenicol. Nine V. cho-
lerae O1 isolates displayed decreased susceptibility to ciprofloxacin, whereas 9 O1 and 2 non-

O1 isolates were resistant to ampicillin.

Genomic results

The average size of draft genome assemblies was 4.06 and 3.83 for O1 and non-O1/non-O139

isolates, respectively, with all N50 values larger than 50.000 (see supplementary file S1 Appen-

dix). The average G+C content was determined to be 47.5%. All DRC O1 isolates (n = 73)

were ompW+, RfbV+, wbfZ-, tcpA El Tor, rstR El Tor, rtxC and VC2346+, which characterize

7PET O1 V. cholerae [12]. Five isolates were ompW+, RfbV-, wbfZ-, tcpA-, rstR-, rstxC-, corre-

sponding to V. cholerae non-O1/non-O139. The SNP-based phylogeny unambiguously con-

firmed that all current O1 isolates were associated with the sub-lineage T10 (7PET wave 3

clade) recovered in East Africa (Fig 1) [26, 27]. This was further strengthened by the observa-

tion that they all carried the CTX-3 type of phage associated with this sub-lineage [27]. In line

with these findings, V. cholerae O1 eastern DRC isolates clustered closely in 2 distinct sub-

clades containing two MLST profiles, i.e. ST69 (39 isolates), and a newly assigned ST515 (34

isolates) (Fig 1).

Both sub-clades showed a distinct geographic pattern with ST69 sub-clade being found in

the Lake Tanganyika basin (South-Kivu) and in Maniema provinces, and clustering together

with 7PET V. cholerae isolates collected in Western Tanzania in 2015. While ST69 and ST515
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were both identified in the Tanganyika basin, ST515 was the only sub-clade found in the Lakes

Kivu and Edward basins and expanding northward (Fig 2), hence covering a large area includ-

ing three lake basins (Tanganyika, Kivu and Edward) and five bordering countries (DRC, Cen-

tral African Republic, South-Sudan, Tanzania, Uganda and Zambia).

Fig 1. Phylogeny of seventh pandemic (7PET) V. cholerae O1 isolates associated with cholera outbreaks in DR

Congo between 2014 and 2017. The 7PET V. cholerae O1 biotype El Tor N19691 belonging to wave 1 was used as

outgroup. The scale bar represents substitutions per variable site in the core genome. Green, blue, yellow, purple and

red isolates represent 7PET wave 3 clades from Central Africa, East Africa, West Africa, Haiti and Asia regions.

https://doi.org/10.1371/journal.pntd.0007642.g001
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Compared to closely-related DRC ST69 isolates ST515 isolates displayed a higher genetic

diversity with core genomes separated by 0–25 and 0–77 SNPs (median: 6 and 14), respectively

whereas the distance separating ST69 and ST515 core genomes from V. cholerae N16961 were

127–142 (median = 130) and 141–170 (median = 148) SNPs, respectively. There were major

genetic differences between ST69 and ST515 sub-clades among which the ST515-specific

5-nucleotide (nt 24–28, TGTAC) frameshift deletion in the webT gene, not found in ST69

and creating a premature termination codon (Table 2).

Other major discriminating genetic changes between the two sub-clades included (i) a

variation of the 9-nt repeat AATCCAGAT corresponding to a DNP amino acid motif in the

VC_1650 (chromosome I) of V. cholerae O1 isolates, with 6 versus 7 repeats for ST69 and

ST515 sub-clades; respectively, (ii) the insertion of the AAACGTACA motif corresponding to

KRT amino acids in the VC_A0372 (chromosome II), and (iii) the 721G!T transversion in

the VC_1798 (chromosome I) leading to the apparition of a premature stop codon in the gene.

The 5 V. cholerae non-O1/non-O139 eastern DRC isolates did not cluster with representa-

tives of V. cholerae O1 (Classical O1, Gulf Stream, pre-7th and 7PET) (Fig 3). These non-O1/

Fig 2. Geographical location of the sequenced V. cholerae isolates.

https://doi.org/10.1371/journal.pntd.0007642.g002
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non-O139 isolates, which are the first to be reported in DRC, did not carry any prophage asso-

ciated with V. cholerae. They were assigned to two novel sequence types, i.e. ST 612 and ST

613, by the curator of the V. cholerae MLST database (https://pubmlst.org/vcholerae/).

Whereas ST612 isolates (n = 4) were closely related between them and to some extent to iso-

lates characterized in Mozambique [34] and Haiti [35], the ST613 DRC isolate could not be

related to any characterized V. cholerae isolate.

With respect to the virulence genes, DRC O1 isolates harbored several virulence genes.

Besides those associated with the CTX-3 prophage (ctxA, ctxBClass, zot, ace and cep), they all

carried the following pathogenicity islands (PAIs): (i) the Vibrio pathogenicity island-1 (VPI-

1) which harbors the genes encoding the toxin co-regulated pilus (TCP) and a cluster of four

accessory colonization factor (acfA, acfB, acfC and acfD) genes [36], (ii) the Vibrio Seventh

Pandemic Island-I (VSP-I), a 16-kb region which spans ORFs VC_0175 to VC_0185 [37], and

(iii) the Vibrio Seventh Pandemic Island (VSP-II) with a large deletion spanning from ORF

VC_0495 to VC_0512 [12]. In addition, DRC O1 isolates from this study harbored other viru-

lence genes, among which the hemolysin A (hlyA), the rtx (repeats in toxin) cluster (rtxA,

rtxB, rtxC, rtxD genes), the virulence-associated (vas) operon, the toxR and toxT, as well as

several genes of the type VI secretion system (T6SS), namely hcp, VCA0109, VCA0122, vgrG.2,

vgrG.3, vipA and vipB genes [38]. However, these isolates lacked several virulence genes such

Table 2. Major genetic differences between seven pandemic V. cholerae O1 sub-clades ST69 vs ST515 from eastern DRC. Only genetic changes impacting proteins

are listed in the table.

Position in the genome Gene Nucleic acid change Sub-

lineage

Type Amino acid change

I:53510_G/A VC_0059 (Hypothetical protein) c.14G>A 515 missense_variant p.Gly5Asp

I:83048_C/T VC_0084 (Conserved hypothetical protein) c.595C>T 515 missense_variant p.Arg199Cys

I:242838_C/T VC_0238 (Transferase, heptapeptide family) c.367G>A 69 missense_variant p.Ala123Thr

I:262120_ATGTACA/AA VC_0255 (WebT gene) c.24_28del TGTAC 515 frameshift_variant p.Tyr8fs1

I:893310_G/A VC_0831 (Toxin-coregulated pilus

biosynthesis outer membrane protein C)

c.361G>A 69 missense_variant p.Ala121Thr

I:952978_G/T VC_0894 (Thiamin biosynthesis protein) c.133G>T 69 missense_variant p.Val45Leu

I:1382170_G/A VC_1301 (Serine transporter) c.566C>T 69 missense_variant p.Ser189Phe

I:1489511_T/C VC_1398 (Chemotaxis protein CheY) c.204A>G 515 missense_variant p.Ile68Met

I:1712368_A/G VC_t060 (tRNA-Val) c.4T>C 515 missense_variant p.Ser2Pro

I:1778509_variation of number of repeats

of AATCCAGAT motif

VC_1650 (Collagenase) c.1750_1758del

AATCCAGAT

69 disruptive_inframe

deletion

p.Asp583_Pro585del

I:1943737_C/A VC_1798 (eha protein) c.721G>T 515 stop_gained p.Glu2412

I:2127275_A/G VC_1975 (2-succinyl-6-hydroxy-2,

4-cyclohexadiene-1-carboxylate synthase/

2-oxoglutarate decarboxylase)

c.457T>C 69 missense_variant p.Ser153Pro

I:2249832_C/T VC_2088 (Succinate dehydrogenase, iron-

sulfur protein)

c.428G>A 69 missense_variant p.Gly143Asp

I:2431057_A/G VC_2276 (Conserved hypothetical protein) c.229T>C 515 missense_variant p.Ser77Pro

I:2433926_A/G VC_2279 (Aminoacyl-histidine Dipeptidase) c.4A>G 69 missense_variant p.Thr2Ala

II:189289_C/A VC_A0172 (Conserved hypothetical protein) c.894G>T 69 missense_variant p.Trp298Cys

II:193789_T/G VC_A0176 (Methyl accepting chemotaxis

protein)

c.956T>G 69 missense_variant p.Ile319Ser

II:358345_CTTGTACGTTT/

CTTGTACGTTTTGTACGTTT

VC_A0372 (Transposase OrfAB, subunit A) c.42_43insAAACGTACA 515 conservative_inframe

insertion

p.

Thr14_Lys15insLysArgThr

II:819243_C/T VC_A0866 (Hypothetical protein) c.70C>T 69 missense_variant p.Pro24Ser

II:1021534_G/A VC_A1071 (Sodium/proline symporter) c.1237C>T 515 missense_variant p.Pro413Ser

1. Tyr8fs: frameshift after the 8th amino acid (tyrosine) in the webT protein;
2. Stop codon after the 241st amino acid (glutamate) in the VC_1798 (eha protein).

https://doi.org/10.1371/journal.pntd.0007642.t002
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as the WASA-1 [14, 39], stn and NAG-S. Whereas non-O1/non-O139 V. cholerae isolates from

DRC lacked most of PAIs found in 7PET, they still harbored several virulence genes, namely

members of the T6SS (VCA0109, VCA0122, vgrG.3), the rtx cluster (rtxA, rtxB, rtxC, rtxD

genes), and the virulence-associated (vas) operon. The unique V. cholerae non-O1/non-O139

ST613 isolate lacked the toxR and vgrG.2 genes which were present in other four non-O1/non-

O139 ST612 isolates.

Regarding the identification of antimicrobial resistance genes, all DRC O1 isolates (n = 73)

harbored the integrase gene of the SXT element (IntSXT) and the SXT/R391 integrative conju-

gative element (ICE) ICEVchBan5 [40, 41]. It is of note that ICEVchBan5 was lacking in non-

O1/non-O139 isolates. In addition, all DRC O1 isolates harbored the APH3-DPRIME, APH6,

drfA, dhfr, floR and SulI antimicrobial resistance genes. They also harbored the 248 G!A SNP

in the quinolone-resistance determining region (QRDR) of the gyrA gene (VC_1258), resulting

in the S83I substitution in the gyrA protein. All ST69 plus two DRC O1 ST515 (CTMA-1453

and CTMA-1454) isolates displayed the 254 G!A SNP in parC gene (VC_2430), resulting in

the S85L substitution in that gene. It should be noted that both substitutions were reliably

detected in genomic regions associated with a high sequencing depth ranging from 14 to 499

(average of 75) for S83I, and from 27 to 256 (average of 101) for S85L.No additional SNPs were

found in the QRDRs of gyrA, gyrB, parC, and parE genes, nor were genetic determinants of

beta-lactam resistance identified in these isolates. Among non-O1/non-O139 isolates, only

ST612 harbored qnrVC and SulII genes. Conversely, ST613 was the only V. cholerae isolate to

harbor the beta-lactamase carB gene.

Discussion

In line with the phenotypic features [42], the WGS-based analysis of 78 V. cholerae isolates

from eastern DR Congo (2014–2017) confirmed that all O1 (n = 73) were 7PET variants (3rd

wave and T10 transmission event) genetically linked to an eastern African clade [5]. O1

Fig 3. Phylogeny of the five V. cholerae non-O1/non-O139 from eastern DRC and their potential relationship

with V. cholerae O1 and V. cholerae non-O1/non-O139 from other regions of the world.

https://doi.org/10.1371/journal.pntd.0007642.g003
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isolates clustered closely in 2 distinct sub-clades consisting of ST69 and the newly assigned

ST515. It is worth noting that the complete and/or draft genomes of ST515 were already avail-

able in public database but not assigned as ST515. The relatedness of O1 isolates within sub-

lineage T10 was supported by SNP-based phylogeny and common genetic features, among

which, the presence of CTX-3 prophage, the VSP-II with the characteristic deletion previously

reported in several East African V. cholerae isolates [12], several AMR genes, and a lack of

WASA-1 in line with previous characterization of V. cholerae isolates from DRC collected dur-

ing the period 2006–2014 [4, 43]. In all O1 eastern DRC isolates, a consistent low susceptibility

to nalidixic acid without resistance to ciprofloxacin was correlated with the presence of the

S83I substitution in gyrA. Moreover, a S85L substitution in parC was found in all ST69 isolates

and two ST515. Interestingly, a recent study on V. cholerae isolates associated with cholera out-

breaks in Yemen linked the presence of gyrA (S83I) and parC (S85L) substitutions with a

decreased susceptibility to ciprofloxacin [44]. However, current V. cholerae isolates from east-

ern DRC differed from those from Yemen as only 6 out of 39 ST69 eastern DRC isolates carry-

ing both gyrA (S83I) and ParC (S85L) substitutions actually showed a reduced susceptibility to

ciprofloxacin, and this observation was in agreement with previous data [45].

Unlike other African countries where further introduction events (i.e. T11, T12 and T13)

within the 3rd wave of the 7PET have been reported [15], it is noteworthy that isolates from

eastern DRC all belonged only to the T10 introduction event. These results suggest that these

T10 isolates have firmly established themselves in the Congolese Albertine rift, becoming an

autonomous source of endemic, sporadic and epidemic cholera in the eastern DRC sub-region.

Several genetic features differentiated V. cholerae O1 ST69 and ST515 sub-clades from east-

ern DRC (Table 2), highlighting the continuous local evolution and adaptation of O1 isolates

and supposedly determining their particular geographical distribution pattern. This adaptive

potential might indeed be triggered by changing environmental conditions, e.g. altitude, tem-

perature, humidity and anthropogenic impacts, which, in turn, could potentially affect the

interaction between the bacterium and its host. For instance, a variation in the number of

ATAATCCAG motif repeat can affect V. cholerae growth depending on the range of incuba-

tion temperature [46]. Likewise, the serotype switch from Ogawa to Inaba in all ST515 isolates

probably results from the webT gene inactivation consecutive to the 5-nt frameshift deletion as

suggested earlier [47, 48]. This serotype switch could affect patient’s immune response to chol-

era in regions where O1 serotype Ogawa was predominant [47].

The V. cholerae O1 global phylogeny including data from Uganda [16], Tanzania [49],

DRC, Central African Republic, and Zambia [4] confirms that the ST515 sub-clade has now

spread to several regions of Central and Eastern Africa, including western provinces of DRC

up to the Atlantic coast. Whereas the reason why only the ST515 expands so widely, and not

the ST69 sub-clade, remains unknown, the hypothesis is that the higher genetic diversity

among ST515 isolates results from a high mutation frequency, which could favor their adapta-

tion to changing environmental conditions.

Conversely, or synergistically, such increased genetic variation could also result from a

rapid regional expansion of ST515 strains, a phenomenon known as a founder flush [50].

However, further work is needed to identify the respective contribution of lateral gene trans-

fer and SNPs in this high genetic diversity. As recently suggested [51], extraction of Variable

Number of Tandem Repeats (VNTRs) and Single Nucleotide Variants (SNVs) from WGS

data would certainly help clarify the genetic relatedness within this sub-clade. These investi-

gations, which are beyond the scope of this work, are currently ongoing.

As also reported in other countries [34–35,52,53], two V. cholerae non-O1/non-O139 line-

ages were identified and characterized from cholera-like diarrhea cases in eastern DRC, and

were assigned to two novel sequence types, ST612 and ST613. Recent cholera outbreaks
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affecting the Kasai provinces highlight the urgent need to better understand the factors favor-

ing the endemicity and epidemicity of cholera among the exposed populations. As illustrated

with ST69 and ST515 in this study, phylogenetic changes may be associated with local adapta-

tion to eastern DR Congo, clonal expansion of V. cholerae sub-lineages and consecutive spread

in neighboring DRC provinces and bordering countries. However, it is noteworthy that,

despite the fact that past and current records from healthcare structures keep highlighting the

persistence of cholera in the eastern provinces, there are too few reliable and updated data con-

firming cholera cases in patients with watery diarrhea syndrome. Consequently, genetic data

based on in-depth characterization of isolated V. cholerae strains are also too scarce, which sig-

nificantly hampers our understanding of the local biological mechanisms underlying the asso-

ciation of cholera endemicity and cross-border epidemic outbreaks. While current genetic

data fill part of this major gap, they now need to be strengthened by complementary data,

especially those from new follow-up studies carried out through regional cross-border

cooperation.
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