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Peculiar optical properties of 
bilayer silicene under the influence 
of external electric and magnetic 
fields
Thi-Nga Do   1,6, Godfrey Gumbs2,3, Po-Hsin Shih4, Danhong Huang5, Chih-Wei Chiu6,  
Chia-Yun Chen7 & Ming-Fa Lin8,9

We conduct a comprehensive investigation of the effect of an applied electric field on the optical and 
magneto-optical absorption spectra for AB-bt (bottom-top) bilayer silicene. The generalized tight-
binding model in conjunction with the Kubo formula is efficiently employed in the numerical 
calculations. The electronic and optical properties are greatly diversified by the buckled lattice 
structure, stacking configuration, intralayer and interlayer hopping interactions, spin-orbital couplings, 
as well as the electric and magnetic fields (E ẑz  & B ẑz ). An electric field induces spin-split electronic states, 
a semiconductor-metal phase transitions and the Dirac cone formations in different valleys, leading to 
the special absorption features. The Ez-dependent low-lying Landau levels possess lower degeneracy, 
valley-created localization centers, peculiar distributions of quantum numbers, well-behaved and 
abnormal energy spectra in Bz-dependencies, and the absence of anti-crossing behavior. Consequently, 
the specific magneto-optical selection rules exist for diverse excitation categories under certain critical 
electric fields. The optical gaps are reduced as Ez is increased, but enhanced by Bz, in which the threshold 
channel might dramatically change in the former case. These characteristics are in sharp contrast with 
those for layered graphene.

Layered condensed-matter systems, with varied physical properties and many potential device applications, have 
so far attracted a great deal of experimental and theoretical attention1–23. Recently, theoreticians have developed 
reliable models in order to explore basic physical properties of newly discovered two-dimensional (2D) materi-
als, especially for their electronic and optical properties when external electric and magnetic fields are applied. 
Few-layer 2D materials are the main focus, mainly because of their eclectic lattice symmetries, their nano-scaled 
thickness, and their inherently unique interactions. Group-IV and -V 2D systems, which have been successfully 
fabricated in laboratory conditions, include graphene1–3, silicene4–13, germanene14,15, tinene16,17, phosphorene18–20, 
antimonene21, and bismuthene22,23. These systems are expected to play crucial roles in basic and applied sciences, 
in which the rich and unique properties are worthy of a systematic investigation. In the present work, we con-
centrate our efforts to achieve a full understanding of the optical absorption spectra of bilayer silicene, being 
closely related to the electronic properties in the presence/absence of electric and magnetic fields. The general-
ized tight-binding model, combined with the dynamic Kubo formula, are fostered for exploring the diversified 
essential properties thoroughly. All the intrinsic interactions and the external fields are taken into consideration 
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simultaneously. The distinct behaviors of the energy bands, density of states (DOS), quantized Landau levels 
(LLs), spatial magneto-wave functions, and absorption spectra are discussed adequately.

Previous investigations have demonstrated that 2D group-IV structures exhibit particularly exceptional prop-
erties. In this regard, graphene has an sp2-bonding planar structure, whereas silicene and germanene have buck-
led structures with a slightly mixed sp2-sp3 chemical bonding2,13,15. Additionally, the SOC is appreciable in the 
low-energy electronic properties of these two materials. The massless Dirac fermions of monolayer graphene 
primarily come from a honeycomb lattice with an underlying geometric symmetry. This yields a gapless sem-
iconductor whose DOS vanishes at the Fermi level. Silicene and germanene are semiconductors and possess a 
direct band gap, in which the Dirac cones are distorted and separated by the significant SOCs. All the group-IV 
2D systems have both valley and spin degeneracies. Central to the manipulation of energy bands is engineering an 
energy gap which yields a material for semiconductor applications. This serves to diversify tailor-made electronic 
properties which we could efficiently utilize.

As far as we are aware, layered silicene has been successfully synthesized on different substrates, such as 
Ag(111), Ag(110), CaF2, and CaSi2

4–12. Experimental measurements have provided details for the structural, 
electronic, optical, and transport properties of silicene sheets4–9. It has been noted that the influence of the sub-
strate on monolayer silicene cannot be neglected due to the strong hybridization between Si and the substrate. 
Fortunately, the strong interlayer coupling and weaker interaction with the substrate were reported in multilayer 
silicene10–12. That is, bilayer silicene can reduce the ambient effects from a substrate and enhance the stability of 
the heterostructure. Up to now, the stabilized AB-bt bilayer silicene has been successfully grown on CaF2 sub-
strate12. The AB-bt and AB-bb (bottom-bottom) configurations are verified by high-angle annular dark field scan-
ning transmission electron microscopy. The AB-bt stacking with the lowest ground state energy among bilayer 
silicene systems is herewith chosen for a detailed investigation of its optical properties. The theoretical predictions 
on crucial physical properties of this material are necessary and urgent as they will be helpful for further experi-
mental investigation.

Examination of the fundamental physical properties of 2D materials, including their electronic, optical, 
transport, and Coulomb excitations, is very helpful in justifying their importance in the field of nanotechnol-
ogy applications, such as the novel designs of nano-electronics, nano-optics, and energy storage24–30. The main 
characteristics of the electronic properties and optical spectra are reflected in the polarized and hyperspectral 
imaging for target identification, as well as in the ultrafast light-intensity modulations of space-laser transmission. 
In particular, unique optical excitations can be employed in the design of an electro-optic sensor system which 
is easy to transport and assemble. Additionally, the valley-, orbital-, and spin-dependent LLs under a magnetic 
field provide effective approaches for controlling angular momenta and spin projections of Fermion electrons. 
The spatial distribution of two electron spins when being transported by either spin-orbital coupling (SOC) or 
random impurity scattering constitutes a basis for modern spintronics and valleytronics. Such characteristics 
are taken into account in the design of next-generation ultrafast transistors for on-chip image processing in 
photo-detection. Novel phenomena in Coulomb excitations are utilized to design easily transportable, compact, 
low-power and reconfigurable devices in security and wideband optical communications.

An important component in our calculations is the method for diagonalizing the Hamiltonians of emergent 
layered materials. We have adapted the generalized tight-binding model and employed the dynamic Kubo for-
mula from linear response theory in our numerical calculations. This method has certain advantages over other 
techniques which have been widely used by many researchers in the study of magnetic properties in condensed 
matter systems. Understandably, the huge magnetic Hamiltonian (e.g., more than 104 × 104 matrix for AB-bt 
bilayer silicene under B0 = 40 T) cannot be solved using Density Functional Theory. Moreover, the low-energy 
effective mass approximation usually ignores the interlayer hopping integrals of layered systems, leading to uncer-
tainty in calculated critical results. For AB-bt bilayer silicene, this method is impossible to extend to include 
low-energy electronic states from the K and T points simultaneously. It is also noticed that the tight-binding 
method developed using the 

→
−k  scheme cannot provide reliable results for several important features of quan-

tized LLs, such as the spatial distribution and localization behavior31,32. The above mentioned difficulties can be 
overcome within the tight-binding model used in this work for which the calculations are based on the sublattices 
in an enlarged unit cell in real space. This procedure is capable of including all critical ingredients simultaneously, 
including the single- or multi-orbital chemical bondings, SOCs, magnetic and electric fields, uniform or modu-
lated external fields, intralayer and interlayer hopping integrals, arbitrary numbers of layers, various stacking 
configurations, planar or curved surfaces, and hybridized structures33,34. It can considerably diversify the elec-
tronic and optical properties in calculating the band structures, valley and spin degeneracies, energy gap or band 
overlap, Van Hove singularities of the DOS, LL crossings and anti-crossings, magneto-optical selection rules, and 
various absorption structures.

The atomic structure with intra- and inter-layer atomic interactions and buckling order are depicted in Fig. 1, 
for which the first Brillouin zone is the same as that of layered graphene. With the significant SOCs, an electric 
field can destroy the (x, y)-plane mirror symmetry and thus lead to valley- and spin-split states in the AB-bt 
configuration. These critical factors dominate the low-energy physical properties. It is well known that a uni-
form perpendicular magnetic field creates highly degenerate LLs by quantization of the neighboring electronic 
states. The well-behaved LLs possess symmetric/antisymmetric spatial distributions in a localized range and their 
energy spectra display band-induced field dependencies. There also exist some perturbed/undefined LLs with 
frequent anti-crossing behaviors. Specifically, the generalized tight-binding model can be used in conjunction 
with many-body and single-particle theories when the eigenstates are represented in terms of sublattice envelope 
functions. The unified models are appropriate for investigating a variety of properties including electronic prop-
erties, optical conductivities, quantum Hall effect, and Coulomb excitations.
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Method
The generalized tight-binding model used in our calculations includes all the critical factors simultaneously, the 
intra- and inter-layer atomic interactions, layer-dependent traditional and Bychkov-Rashba SOCs, and external 
electric and magnetic fields. Regarding the bottom-top configuration, the first and second layers present opposite 
buckled ordering, as shown in Fig. 1(b). Consequently, the significant vertical interlayer atomic interaction and 
SOCs dominate the low-lying electronic properties and absorption spectra.

The tight-binding Hamiltonian may be written as27
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In this notation, αcm
l  ( α

†cm
l ) is the anihilation (creation) operator, which destroys (creates) an electronic state at 

the m-th site of the l-th layer with spin polarization α. The site energy, ε A B( , )m
l l l , arising from the chemical envi-

ronment difference between the Al and Bl sublattices, are defined as ε A( )m
l l  = 0 and ε = − .B( ) 0 12m

l l  eV. The 
height-induced Coulomb potential energy, U A B( , )m

l l l , comes from the applied electric field. The intra- and 
inter-layer hopping integrals, 

′
tmj

ll , are related to the neighboring atomic interactions. The former (t0 = 1.13 eV) and 
the latter (t1 = −2.2 eV, t2 = 0.1 eV; t3 = 0.54 eV) are clearly illustrated in Fig. 1(b). AB-bt bilayer silicene possesses 
significant layer-dependent SOCs (the third and fourth terms), mainly owing to the very strong orbital hybridi-
zations induced by the large inter-layer vertical hopping integral. They are optimized (λ = .0 06SOC

1  eV, 
λ = .0 046SOC

2  eV, λ = − .0 054R
1  eV; λ = − .0 043R

2  eV) in order to reproduce the low-lying energy bands cal-
culated by the first-principles method34–36.

If AB-bt bilayer silicene is subjected to a uniform perpendicular magnetic field, the Hamiltonian becomes 
a huge Hermitian matrix. The enlarged unit cell due the vector potential (details in ref.34) is demonstrated in 
Fig. 1(a), e.g., 104 silicon atoms under Bz = 40 T. For such a complex system, solving the eigenvalues and eigen-
states is difficult. We need to employ the band-like method and the spatial localizations of the magnetic wavefunc-
tions to efficiently solve the LL eigenvalues and eigenfunctions. Moreover, based on the Bz-dependent evolution 
of LL energies, we can predict the main characteristics of LLs in a laboratory-produced field from those at higher 
field. Each LL wavefunction, with the quantum number n, is given by
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Figure 1.  The geometric structure of AB-bt bilayer silicene with the top view (a) and side view (b). The 
enlarged unit cell under a uniform perpendicular magnetic field is marked by the purple rectangular in (a). 
The intra- and inter-layer atomic interactions are presented in (b). The first Brillouin zone with the highly 
symmetric K (K′) and Γ points and an extreme one, T, is shown in (c).
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distribution. They are strongly dependent on the lattice sites.
When AB-bt bilayer silicene is present in an electromagnetic field, electrons are vertically excited from occu-

pied states to unoccupied ones with the same wave vectors. The generalized tight-binding model combined with 
the dynamic Kubo formula is suitable for thoroughly exploring the optical excitations in the presence/absence 
of external fields. The zero-temperature spectral function related to the optical conductivity (A(ω) ∝ ωσ(ω)) is
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The absorption function is associated with the velocity matrix element (the first term in Eq. (3)) and the joint 
density of states (JDOS; the second term). The former, which is evaluated from the gradient approximation, as 
successfully utilized in layered graphene systems36, can determine the existence of vertical excitations/inter-LL 
transitions. That is, this dipole moment dominates the magneto-optical selection rules from the symmetries of 
the spatial distributions in the initial and final states. The latter reveals the van Hove singularities as the spe-
cial absorption structures. The generalized tight-binding model, combined with the Kubo formula, is useful for 
the thorough investigation of essential physical properties in many 2D materials, such as graphene33, silicene34, 
tinene17, phosphorene20, bismuthene23, and others.

Results and Discussion
AB-bt bilayer silicene exhibits a unusual electronic structure, being characterized by the silicon 3pz orbitals for the 
low-lying bands, as shown in Fig. 2. It covers the extremal band-edge states (black arrows), the partially flat 
energy dispersions along the specific direction (red arrows), the constant-energy loops (blue arrows), and the 
linear Dirac-cone structures (green arrows). The second and third types could be regarded as 1D parabolic dis-
persions, revealing similar peak structures in the DOS, which we discuss below. The zero-field energy band is in 
agreement with that obtained from the first-principles method31. Interestingly, the valence and conduction bands 
are sensitive to an external electric field. They are split into two pairs of spin-up- and spin-down-dominated 
energy subbands (S c

1,2, S v
1,2), as clearly indicated in Fig. 2(b,e,h,k). In the presence of Ez, spin degeneracy is absent 

due to the elimination of mirror symmetry. With increasing electric field strength, the low-lying pair of energy 
subbands (S c

1 , S v
1 ) gradually approach each other until the band gap is completely closed at the first critical field of 

Ez ≈ 106 meV/Å, as is evident in Fig. 2(d–e), where the highest occupied valence state and the lowest unoccupied 
one have different wave vectors. On the other hand, the outer pair of (S c

2 , S v
2 ) energy subbands monotonically 

moves away from the Fermi level. Beyond the critical electric field, the valence and conduction bands exhibit a 
slight overlap, and the linear Dirac cone structures are formed at the K (K′) point for the second critical electric 
field of Ez = 124 meV/Å (Fig. 2(g,h)) and at the T point for the third one of Ez = 153 meV/Å (2(k) − 2(l))). The 
Dirac points change from the occupied valence states into the unoccupied conduction states with the further 
increase of Ez.

The density-of-states directly reflects the main features of the unusual energy bands, as shown in Fig. 2(c,f,i 
and m). At zero field, the large band gap is clearly revealed in the zero-field DOS in 2 (c). The low-frequency 
DOS presents prominent asymmetric peaks, respectively, corresponding to the extremal band-edge states and 
the partially flat bands along the specific direction in the energy-wave-vector space. In the presence of an electric 
field, the splitting of energy bands gives rise to more shoulder-like and peak structures, as illustrated in Fig. 2(f,i 
and m). Additionally, the Ez-induced constant-energy loops and Dirac cones, respectively, create the asymmetric 
peaks and valley-like structures, in which the latter appear near the Fermi level. The Ez-dependent energy gap 
and three kinds of Van Hove singularities could be directly identified from experimental measurements using 
scanning tunneling spectroscopy (STS)37,38. Also, STS is the most powerful tool relating the measured tunneling 
current to the DOS.

The optical transitions of AB-bt bilayer silicene present a feature-rich absorption spectra, in sharp contrast 
with those of the monolayer system5. There are three special structures in optical excitations, as clearly shown 
when Ez = 0 by the black curve in Fig. 3(a). The first two belong to the shoulder structures, in which the first and 
second ones arise from the band-edge states at the K and T points (purple and red arrows in Fig. 3 and (b)), 
respectively. The third structure, the antisymmetric peak (yellow arrow), is due to the weak energy dispersion 
close to the K point. All of them are dominated by Van Hove singularities in the JDOS under vertical excitations. 
An electric field makes the low-lying optical excitations become more complicated in the presence of the 
spin-split energy bands. There are two absorption regions, since vertical transitions are allowed only for the same 
pair of valence and conduction bands ( →S Sv c

1 1  and →S Sv c
2 2 ). The lower- and higher-frequency absorption 

regions have similar structures, i.e., the shoulder and peak, when the electric filed is not too strong (e.g., red curve 
in Fig. 3(c) for Ez ≤ 106 meV/Å). The former and the latter come from the optical transitions of the band-edge 
states near the T point and the electronic states from the flat bands near the K (Fig. 3(d)), respectively. The 
lowest-frequency threshold shoulder disappears for the higher electric field, e.g, Ez = 124 meV/Å and 
Ez = 153 meV/Å, because the band-edge states of the first valence/conduction band are also unoccupied/occupied 
near the T/K point (Fig. 3(e–h)). The above electric-field-enriched optical structures could be examined by infra-
red reflection spectroscopy and absorption spectroscopy39,40.

This material shows rich magneto-electronic properties, being thoroughly different from bilayer graphene. 
The buckled structure, complex inter-layer atomic interactions, and significant SOCs remarkably enrich the main 
features of LLs. The low-lying conduction and valence LLs are quantized from the electronic states near the K and 
T points, respectively. They are doubly degenerate under the interplay of nonequivalent sublattices and SOCs, 
while there exist the eight-fold degeneracy in bilayer graphene. The conduction LL wavefunctions are centered at 
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1/6 (4/6) and 2/6 (5/6) of the expanded unit cell while the valence ones are localized at 1/4 (3/4) center. Such 
wavefunctions are the well-behaved spatial distributions characterized by the 3pz− and spin-dependent 
sub-envelope functions on the eight sublattices, as demonstrated in Fig. 4. Their quantum numbers are defined by 
the number of zero points of the spatial probability distributions in the dominated sublattices. Furthermore, they 
are very useful in understanding the magneto-optical selection rules of the inter-LL transitions. In principle, LLs 
can be classified as four distinct subgroups ( ↑n c

1, ↓n c
1, ↑n c

2 and ↓n c
2) based on the sublattice- and spin-dominated 

wavefunctions (blue, red, purple, and green lines in Fig. 4(a,d)). Four LL subgroups possess the usual orderings of 
state energy and energy spacing; that is, such properties, respectively, grow and decline with the increase/decrease 
of Ec/Ev. The LL energy splitting is induced by both SOCs and stacking configuration/interlayer atomic interac-
tions, in which the former is much larger than the later. The split energy is strongly dependent on the magnetic 
field strength (discussed later).

Since the low-lying valence and conduction LLs have different localization centers, the vertical 
magneto-optical transitions between them are forbidden. The higher conduction and deeper valence LLs, with 

Figure 2.  The 3D band structures, 2D energy bands along the high symmetry points and density of states (a–c) 
for Ez = 0, (d–f) Ez = 106 meV/Å, (g–i) Ez = 124 meV/Å, and (k–m) Ez = 153 meV/Å.
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many oscillation modes, are critical in understanding the magneto-optical excitations; therefore, they deserve 
closer observation. They are, respectively, quantized from the electronic states near T and K valleys, correspond-
ing to the shoulder-like energy bands (Fig. 2(b)). This is thoroughly different from the magnetic quantization in 
bilayer graphene systems3. The energy spectrum and spatial distributions of the higher conduction LLs are clearly 
illustrated in Fig. 5(a–c)). They clearly exhibit the non-symmetric and non-well-behaved spatial distributions; 
that is, they belong to the perturbed LLs with main and side modes3. For the higher conduction/deeper valence 
LLs, their contribution widths are wide and the effective width covers two localization centers of (1/6, 1/4) & (2/6, 

Figure 3.  The optical-absorption spectra of bilayer silicene in the absence of Ez (a) and the corresponding 
optical channels (b). Similar figures are shown for (c,d) Ez = 106 meV/Å, (e,f) Ez = 124 meV/Å, and (g,h) 
Ez = 153 meV/Å.
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1/4). As a result, the low-lying conduction/valence and the deeper valence/higher conduction LLs will have a sig-
nificant overlap in the spatial distributions, becoming very important in the magneto-optical threshold excitation.

The magneto-electronic properties can be greatly diversified by an external electric field. For the zero-gap 
band structure under a critical electric field, Ez = 106 meV/Å, the magnetic quantization is initiated from the 
valence and conduction states near the K and T valleys (Fig. 6). There exist the low-lying valence and conduction 
LLs with the same localization center simultaneously, instead of only conduction or valence ones as for Ez = 0. In 
particular, the well-behaved valence LLs at 1/6 and 2/6 centers (the conduction ones at 1/4 center) come into 
existence, as marked by the arrows in Fig. 6(a). Such LLs come from the rather pronounced oscillating band struc-
ture in the presence of an electric field (Fig. 2(e)). The LL energy spectrum and spatial distributions for this criti-
cal electric field are clearly illustrated in Fig. 6(a–c). Four subgroups of LLs do not appear together, but are 
separated into two lower- and higher/deeper-energy ones. This means that, the splitting related to the 
non-equivalence of sublattices is greatly enhanced by the electric field because of the distinct Coulomb site ener-
gies. We only focus on the former associated with the lower-frequency magneto-optical excitations. For each 
valley, the two subgroups of low-lying conduction and valence LLs correspond to ( ↑n c

2, ↓n c
2) and ( ↑n v

1, ↓n v
1), respec-

tively. It should be noticed that they are dominated by the different sublattices. The vertical transitions, valence to 
conduction LLs, from the different valleys provide a major contribution to the magneto-optical spectra.

On the other hand, a perpendicular electric field may lead to the formation of Dirac cones at the K or T val-
leys, giving rise to special LL quantization. For the second critical electric field, Ez = 124 meV/Å, the conduction 
and valence LLs which are initiated from the K and T valleys, respectively, correspond to ( ↓n c

2, ↑n v
2) and ( ↓n c

1, ↑n v
1), 

in which all the LL wavefunctions are well-behaved in the spatial distribution, as clearly shown in Fig. 7. The 
former is similar to those from the linear Dirac cone26, their energies are characterized by E c v

2(1)
( ) ∝ ↓ ↑n n( )c v

2 1 . A 
simple relation is absent for the latter. Specifically, the energy spacing of ↓n c

2 = 0 and ↑n v
1 = 0 is finite and gradually 

grows with the magnetic field strength, having a magnitude of 25 meV at Bz = 40 T. The opposite is true for the 
third critical electric field, Ez = 153 meV/Å. That is, the Dirac cone-like LLs are created by the electronic states 

Figure 4.  The (a) LL spectrum and (b,c) conduction LL wavefunctions on eight spin-split distinct sublattices 
for Bz = 40 T in the absence of electric field. Similar plots for the valence LL spectrum (d and e) wavefunctions 
are also presented.
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near the T valley. The sharp contrast between the K and T valleys will be directly reflected in the magneto-optical 
excitations. Moreover, there exist certain important differences compared to monolayer graphene with a zero 
energy spacing between the nc = 0 and nv = 0 LLs, eight-fold degenerate LLs, and the same dominating sublattices 
for the valence and conduction LLs33.

The Bz-dependent LL energy spectrum is very useful for the comprehension of magnetic quantization. 
Without an electric field, the conduction/valence LL energies are generally increased/decreased with the growth 
of magnetic field strength, as clearly shown in Fig. 8(a,b) by the dashed and solid curves (initiated from the K and 

Figure 5.  The (a) higher conduction LL spectrum and (b,c) LL wavefunctions on eight distinct sublattices for 
Bz = 40 T in the absence of electric field.

Figure 6.  The (a) LL spectrum and (b–d) LL wavefunctions on eight distinct sublattices for Bz = 40 T under 
Ez = 106 meV/Å.
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T valleys). As an exception, the initial valence ↓n v
1 = 0 LL energy slowly grows with Bz. The energy gap, which is 

determined by the ↓n c
2 = 0 and ↓n v

1 = 0 LLs, remains almost the same (Eg(Bz) ≈ 340 meV). The valence and conduc-
tion LL energy spectrum is asymmetric about the Fermi level, mainly owing to the important interlayer hopping 
integrals and layer-dependent SOCs. Four subgroups of LLs behave similarly during the variation of Bz, in which 
the low-lying spectrum presents an almost linear Bz-dependence, except for the initial valence ↓n v

1 = 0 LL near the 
T valley. This reflects the low-lying parabolic dispersions near the K and T valleys (Fig. 2(b)).

It should be noticed that the onset energies of LL subgroups are strongly dependent on the strength of the 
electric field. The effects of composite fields are clearly illustrated by the Bz-dependent LL energy spectra at the 
critical electric field strengths, as shown in Fig. 8(c,d). The asymmetry of the LL energy spectrum is enhanced 
under the first critical electric field, Ez = 106 meV/Å (Fig. 8(c)). There are four initial LLs of ( =↑n 0v

1  & =↓n 0c
2 ) 

from the K valley and ( =↓n 0v
1  & =↑n 0c

2 ) from the T valley which present the weak Bz-dependence, as demon-
strated in Fig. 8(c). Specifically, the above-mentioned ↓n c

2 = 0 and =↓n 0v
1  LLs determine the Fermi level, being the 

middle of the nearest occupied and unoccupied LLs. The energy gap between these LLs becomes very narrow and 
grows with the magnetic field. It almost vanishes at sufficiently low Bz. According to numerical examinations, the 
energy spacing and magnetic field strength present a neither simple linear nor square-root relationship. In addi-
tion, there are only a few well-behaved conduction LLs near the T valley ( ↑n c

2 & ↓n c
2) (the ↑n c

2 = 0 LL is observed for 
Bz ≥ 20 T) and they are located at relatively high energy compared with those initiated from the K valley. LLs near 
the K valley will dominate the threshold magneto-optical excitations.

Under the second critical electric field of Ez = 124 meV/Å, the conduction and valence LL subgroups initiated 
from the K valley approach each other, as shown in Fig. 8(d). This directly reflects the linear and isotropic 
Dirac-cone structures near the K point (Fig. 2(h)). As for the LLs quantized from the T valley, only the valence 
ones come to exist near the Fermi level, in which the =↓n 0v

1  LL (the red solid curve) is higher than the few ↓n c
2 

conduction LLs from the K valley. Regarding the K valley, the zero-quantum-number LLs of ↓n c
2 and ↑n v

1 reach the 
minimum energy spacing. Furthermore, the LL energies and the magnetic field strength possess a specific rela-
tionship of ∝E Bc v

z2(1)
( ) , similar to that in monolayer graphene26. Generally, the initial LLs of ( =↑n 0v

1  & ↓n c
2 = 0) 

and =↓n 0v
1  from the K and T valleys, respectively, are hardly affected by the magnetic field strength. The Fermi 

level is determined by the ( =↓n 0c
2  & =↓n 0v

1 ) LLs at sufficiently high magnetic field strength (greater and approx-
imately equal to 40 T) and ( =↑n 0c

2  & =↓n 1v
1 ) for smaller Bz. However, the value of EF is almost independent of 

Bz. An electric field can alter certain LLs nearest to the Fermi level, leading to dramatic changes in the 
magneto-optical threshold channels. For example, the valence ↓n v

1 = 0 LL from the T valley and conduction ↑n c
2 = 0 

Figure 7.  The (a) LL spectrum and (b–d) LL wavefunctions on eight distinct sublattices for Bz = 40 T under 
Ez = 124 meV/Å.
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LL from the K valley become unoccupied and occupied, as illustrated in Fig. 8(d). The above-mentioned features 
are also revealed in the Bz-dependent LL energy spectra for the third critical field of Ez = 153 meV/Å by means of 
the interchange of the K and T valleys. In general, an electric field creates more low-lying well-behaved conduc-
tion and valence LLs and thus is expected to induce very complicated magneto-optical absorption spectra.

AB-bt bilayer silicene presents the feature-rich magneto-absorption spectra, reflecting unusual LLs and band 
structures. The vertical transitions among four subgroups of LLs lead to many single, double and twin 
delta-function-like peaks with non-uniform intensities, as shown in Fig. 9(a–c). There are 4 × 4 categories of 
inter-LL optical transitions, covering 4 intra-subgroup (part of peaks are marked by the arrows with distinct 
colors) and 12 inter-subgroup ones. According to the magneto-optical absorption functions33, the inter-LL tran-
sition is available whenever the initial and final states related to the two sublattices in the large (t0, t1) hopping 
integrals possess the same quantization mode. As a result of an indirect energy gap, in each category, absorption 
peaks correspond to the optical transitions associated with the multi-mode LLs in the absence of a specific selec-
tion rule. This results in a lot of magneto-absorption peaks within a very narrow-range frequency of ∼30 meV, 
never observed in other condensed-matter systems33,39–49. For a LL with sufficiently large quantum number, the 
extended oscillation wavefunctions localized at (1/4)/(1/6 and 2/6) along the x-axis will overlap with that of 
another LL at the neighboring localization centers of (1/6 and 2/6)/(1/4). For example, the spatial distributions of 
the =↓n 0v

1  and =↓n 12c
1  LLs are illustrated in the inset of Fig. 9(a). The former and the latter are localized at 1/4 

and 1/6 centers which are very close to each other, leading to an obvious overlapping phenomenon between them. 
This enables vertical optical transitions between the initial- and final-state LLs near the T (K) valley, in which the 
magneto-absorption peaks have different intensities and frequencies, e.g., the 16 absorption structures due to the 
( =↓n 0v

1 , =↑n 0v
1 , =↑n 0v

2 , =↓n 0v
2 ) and ( =↓n 12c

1 , =↑n 12c
1 , =↑n 12c

2 , =↓n 12c
2 ) LLs. This very special 

magneto-optical property is absent in other well-known 2D systems, e.g., graphene26 and phosphorene20. The 
threshold absorption peak, the optical gap, belongs to the intra-subgroup =↓n 0v

1  →  =↓n 12c
1  transition (red 

arrow in Fig. 9(a)). Its frequency is expected to be dependent on both magnetic and electric fields. The optical gap 
(≈0.39 eV for Bz = 40 T) is larger than the energy gap (≈0.3 eV), since the vertical transitions between the 
low-lying conduction and valence LLs at different centers are forbidden. In addition, there also exist 16 excitation 
categories related to the initial conduction LLs from the K valley, such as, those associated with the ( =↓n 12v

1 , 
=↑n 12v

1 , =↑n 12v
2 , =↓n 12v

2 ) and ( =↓n 0c
1 , =↑n 0c

1 , =↑n 0c
2 , =↓n 0c

2 ) LLs. However, they do not contribute to 
the threshold magneto-optical excitation.

Figure 8.  The Bz-dependent LL energy spectra in the absence of electric field (a) and under (b) Ez = 106 meV/Å 
and (c) Ez = 124 meV/Å. The LLs near the K and T valleys are presented by the dashed and solid curves, 
respectively.
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The magneto-optical spectra are diversified under the interplay of electric field, magnetic field, significant SOCs 
and interlayer atomic interactions. An applied electric field can create the inter-LL optical transitions at lower fre-
quency, and they satisfy specific selection rules. There exist optical excitations related to LLs from the same localiza-
tion center (type I) and neighboring ones (1/4 and 1/6 (2/6) centers) (type II). The type-I absorption peaks are 
associated with the Ez-induced new low-lying well-behaved valence LLs at the K valley. They are only characterized 
by LLs with the same spin configuration ( ↑n v

1 →  ↑n c
2 and ↓n v

1 →  ↓n c
2). The threshold peak, which is determined by the 

=↑n 0v
1  →  =↑n 0c

2  transition, is located at much lower frequency (ωth ≈ 120 meV) compared with that at zero elec-
tric field. It should be noticed that, type-I magneto-optical excitations obey the optical selection rules of Δn = 0 and 
±1, as demonstrated in Fig. 10 for the first critical electric field (Ez = 106 meV/Å) under Bz = 40 T. This is because 
each LL possesses a main mode and a few side modes, referring to Fig. 6. For example, the ↑n v

1 = 1 LL contains a main 
mode of 1 on the dominating ↑B 1 sublattice and the side modes of 0 and 2 on the other sublattices (Fig. 6(b)). As a 
result, there are available inter-LL optical transitions of =↑n 1v

1  →  =↑n 0c
2 , =↑n 1v

1  →  =↑n 1c
2 , and 

=↑n 1v
1  →  =↑n 2c

2  = 2, as marked by the red arrows in Fig. 10(b,c). As for type-II absorption peaks, there are excita-
tion channels between n = 0 and 12 LLs, similarly to those in the absence of an electric field; that is, they are associ-
ated with the low-lying well-behave valence LLs from the T valley. The above-mentioned absorption peaks, including 
both type-I and type-II ones, belong to 4 excitation categories, but not 16 ones as in the absence of Ez. They cover the 

↑n v
1 →  ↑n c

2, ↑n v
1 →  ↓n c

2, ↓n v
1 →  ↑n c

2, and ↓n v
1 →  ↓n c

2 magneto-optical transitions.
It is worth considering the magneto-optical spectra at the second critical electric field (Ez = 124 meV/Å) when 

a Dirac cone is formed at the K valley. Both type-I and type-II magneto-optical excitations come to exist in the 
absorption spectra. The former satisfy the optical selection rules of Δn = 0 and ±1 while the later do not. 
Especially, the formation of a Dirac cone induces extraordinary phenomena. Since the Dirac cone lies below the 
Fermi level (Fig. 2(h)), the occupation of some LLs near the Dirac point is altered, which directly affects the 
threshold magneto-optical excitation (Fig. 11). The intra-subgroup excitation channels of =↓n 0c

2  →  =↓n 1c
2  (red 

arrow) and =↓n 1v
1  →  =↓n 0v

1  (green arrow) comes into existence because the conduction =↓n 0c
2  LL near the K 

valley and =↓n 0v
1  one near the T valley become occupied and unoccupied, respectively. The threshold absorption 

peak, which is determined by the former, is present at rather low frequency (ωth ∼ 50 meV). Furthermore, there 
exists a double peak due to the two peaks of ( =↑n 0v

1  →  =↑n 0c
2  and =↓n 0v

1  →  =↓n 0c
2 ) merging together in the 

absorption spectrum, as indicated by the blue arrow in Fig. 11(a). The crossing behavior between LLs is responsi-
ble for this double peak. In general, type-I magneto-optical excitations are mainly revealed near the K valley, 
except for =↓n 1v

1  →  =↓n 0v
1  (green arrow) near the T valley. Similar magneto-optical properties can also be 

observed for the third critical electric field (Ez = 153 meV/Å) when the Dirac cone at the T valley is located above 
the Fermi level.

The optical gap strongly depends on the strength of the electric and magnetic fields, as demonstrated in 
Fig. 12(a–c). With the increase of the electric field up to the first critical field (Ez = 106 meV/Å), the threshold 
frequency, which is determined by the first shoulder-like absorption structure (Fig. 3(a)), gradually decreases 
from around 0.4 eV, as clearly illustrated in Fig. 12(a). Right after this field, such structure is absent since the con-
duction/valence band-edge state near the Fermi level becomes occupied/unoccupied for the K/T valley. As a 
result, the threshold frequency, being associated with the excitation of electronic states near the K valley, contin-
ues to decrease. The further increase of Ez changes the threshold excitation to be near the T valley and slightly 

Figure 9.  The spectral intensities of AB-bt bilayer silicene at Bz = 40 T in the absence of electric field.
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Figure 10.  The spectral intensities of AB-bt bilayer silicene for Bz = 40 T under Ez = 106 meV/Å.

Figure 11.  The spectral intensities of AB-bt bilayer silicene for Bz = 40 T under Ez = 124 meV/Å.
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lowers the optical gap. Regarding the magneto-optical threshold peak in the absence of an electric field, its fre-
quency is characterized by the type-II absorption peak of =↓n 0v

1  →  =↓n 12c
1  (red arrow in Fig. 9(a)). The optical gap 

monotonically grows with the increment of magnetic field, as clearly shown in Fig. 12(b). This is consistent with 
the Bz evolution of LL energies, in which the conduction/valence LL energies gradually rise/fall with increasing Bz 
(Fig. 8(a)). Under the composite fields, the threshold frequency has an inverse relation with the electric field for a 
fixed magnetic field, as demonstrated in Fig. 12(c) for Bz = 40 T. With increasing Ez from zero up to 153 meV/Å, 
the optical gap in general decreases. For Ez < 106 meV/Å where the band gap is nonzero, the threshold peak is 
determined by the type-II =↓n 0v

1  →  =↓n 12c
1  excitation channel; the optical gap monotonically decreases with Ez. 

After that, the threshold peak relates to the type-I excitation channel of =↓n 0c
2  →  =↓n 1c

2  at the K valley (red 
arrow in Fig. 11(a)); the optical gap decreases more quickly (from the green arrow to the purple one). As for even 
greater Ez, the threshold peak corresponds to the type-I excitation channels at the T point and its frequency 
decreases slowly.

There are certain important differences between bilayer AB-bt silicene and AB-stacked graphene in 
magneto-electronic and optical properties33. For the latter, all the LLs possess eight-fold degeneracy without sublat-
tice non-equivalence and spin splitting, mainly owing to the absence of the buckled structure, very significant inter-
layer hopping integrals, and important SOCs. Their localization centers are only present at 1/6 (4/6) and 2/6 (5/6), 
but absent at 1/4 (3/4). They are not affected by an electric field. However, the state degeneracy is reduced to half in 
the presence of Ez, since the inversion symmetry/bi-sublattice equivalence is destroyed by the Coulomb potential 
site energies. The sublattice-dependent LL energy spectra exhibit diverse behaviors,i.e., anti-crossing, crossing & 
non-crossing behaviors with varied Bz/Ez. However, there are no low-lying anti-crossing spectra in silicene systems. 
Considering the first group of valence and conduction LLs, the available magneto-excitation category/categories is/
are one/two in the absence/presence of Ez. Obviously, the magneto-absorption peaks are well characterized by the 
specific selection rule of Δn = ±1 except that the extra Δn = 0 & 2 rules might appear under a perpendicular electric 
field. Their quantum numbers are much smaller than those in bilayer silicene. The threshold channel is only associ-
ated with the small quantum-number LLs; that is, it is determined by nv = 0/1/2 and nc = 1/0/1.

Absorption41,42, transmission42–45, and reflection spectroscopies42,46 are the most efficient techniques in explor-
ing the essential optical excitations of condensed-matter systems. They are employed as analytical tools for the 
characterization of optical properties, when the experimental measurements are taken on the fraction related 
to the adsorbed, transmitted, or reflected light by a sample within a desired frequency range. A broadband light 
source is utilized and done through a tungsten halogen lamp with the broad range for modulation intensity 

Figure 12.  The (a) Bz-dependent threshold frequencies at zero electric field and (b) Ez-dependent threshold 
frequencies for Bz = 40 T.
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and frequency43,46. The transmission experiments have confirmed that the absorption intensity of monolayer 
graphene is proportional to the frequency because of the linear dispersions in the isotropic Dirac cone of massless 
fermions43. Besides, massive Dirac fermions are identified in AB-stacked bilayer graphene42,45. Moreover, infrared 
reflection and absorption spectroscopies are also utilized to verify the partially flat and sombrero-shaped energy 
bands of ABC-stacked few-layer graphene41. Three kinds of optical spectroscopies are very useful to examine the 
stacking- and Ez-enriched vertical excitation spectra of AB-bt bilayer silicene, e.g., form, intensity, number and 
frequency of special absorption structures.

Magnetic quantization phenomena of low-dimensional systems could be investigated using magneto-optical 
spectroscopies43,44,47–49. The magnetic field is presented by a superconducting magnet43,44,49 and semi-destructive 
single-turn coil47,48 with the desired field strength below 80 T. The examined/verified phenomena are exclusive 
in graphene-related systems, such as dispersionless LLs in layered graphene43,44,49 and quasi-one-dimensional 
Landau subbands in bulk graphite43,44,49. A lot of pronounced delta-function-like absorption peaks are clearly 
revealed by the inter-LL excitations arising from massless and massive Dirac fermions in monolayer43 and 
AB-stacked bilayer graphene49, respectively. For absorption peak frequencies, the former and the latter obviously 
exhibit the square-root and linear Bz-dependencies. Concerning inter-Landau-subband excitations in Bernal 
graphite, one could observe a strong dependence on the wave vector kz, which characterizes both kinds of Dirac 
quasi-particles47,48. The rich and unique magneto-optical spectra in bilayer AB-bt silicene are worthy of fur-
ther experimental examinations, covering diverse absorption structures, Bz- and Ez-created excitation channels/
threshold frequency, many absorption peaks within a very narrow frequency range, and the absence/presence of 
specific selection rules. They could provide the rather useful information about the buckled structure, stacking 
configuration/interlayer hopping integrals, and significant layer-dependent SOCs.

Conclusion
In summary, we have investigated the electric field enriched optical properties of AB-bt bilayer silicene in the 
absence and presence of a perpendicular magnetic field. An applied electric field creates spin-split states, pro-
duces a semiconductor-metal phase transition and forms Dirac cones in different valleys. As a result, some unex-
pected optical features are detected in the absorption spectra. The external field also leads to drastic changes in 
the LLs, and thus more complex magneto-absorption spectra. Since the oscillating band structure becomes pro-
nounced, both well-behaved conduction and valence LLs come to exist at each valley. The splitting of sublattice- 
and localization-dominated LLs become more distinctive. Accordingly, the inter-LL optical transitions at lower 
frequency with specific selection rules are revealed in the absorption spectra. The threshold frequency gradually 
declines with increasing Ez. The electric field-controlled optical properties open a new opportunity in the applica-
tion of novel designs of Si-based nano-electronics and optical devices with enhanced mobilities.

We combined the generalized tight-binding model with Kubo formula for an efficient scheme to do numer-
ical calculations. This theoretical framework is suitable for full exploration of essential properties of many other 
emergent 2D materials. The rich and unique critical properties are identified from the special buckled struc-
ture, symmetric stacking configuration, complicated intralayer and interlayer atomic interactions, and significant 
layer-dependent SOCs. They are in sharp contrast with those in layered graphene. Our theoretical predictions 
could be verified by various optical spectroscopies.
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