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Abstract

Pain is a multidimensional experience mediated by distributed neural networks in the brain. To 

study this phenomenon, EEGs were collected from 20 subjects with chronic lumbar radiculopathy, 

20 age and gender matched healthy subjects, and 17 subjects with chronic lumbar pain 

scheduled to receive an implanted spinal cord stimulator. Analysis of power spectral density, 

coherence, and phase-amplitude coupling using conventional statistics showed that there were 

no significant differences between the radiculopathy and control groups after correcting for 

multiple comparisons. However, analysis of transient spectral events showed that there were 

differences between these two groups in terms of the number, power, and frequency-span of 

events in a low gamma band. Finally, we trained a binary support vector machine to classify 

radiculopathy versus healthy subjects, as well as a 3-way classifier for subjects in the 3 groups. 

Both classifiers performed significantly better than chance, indicating that EEG features contain 

relevant information pertaining to sensory states, and may be used to help distinguish between 

pain states when other clinical signs are inconclusive.
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1. Introduction

Pain is a multidimensional sensory, emotional and cognitive experience mediated by 

distributed neural networks in the brain (Legrain et al., 2011). Mapping these networks 

and understanding their relation to pain requires a macroscale recording technique operating 

at a fast sampling rate in complement with a high-dimensional analytical approach (Saab 

and Barrett, 2016). Electroencephalography (EEG) and advanced statistical tools such as 

machine learning meet these requirements and offer several advantages over other forms 

of neuroimaging approaches, including ease of use, efficiency, affordability, and minimal 

interruption of the standard of care in clinical studies (Levitt and Saab, 2019). In light of the 

current pain epidemic in the United States and the related opioid crisis, studying the neural 

correlates of pain is of high clinical relevance, potentially leading to more reliable diagnostic 

criteria and effective therapies (Davis et al., 2017).

Previous data suggest that resting state EEG power in the low frequency range (3–30 

Hz) localized to primary somatosensory neocortex (S1) is enhanced in patients with 

chronic pain, presumably due to dysrhythmic communication in the thalamocortical network 

(Schulman et al., 2005; Sarnthein and Jeanmonod, 2008; Walton and Llinás, 2011). In 

rodent pre-clinical models of chronic pain, theta power (4–8 Hz) in S1 is bidirectionally 

correlated with pain and analgesia (LeBlanc et al., 2016). Pain-induced theta power in S1 is 

down-regulated by optogenetic stimulation of GABA neurons in thalamic reticular nucleus, 

leading to anti-nociceptive behavioral effects (LeBlanc et al., 2017). However, with regard to 

clinical data, several caveats undermine the interpretation of these results due to the failure 

to control for variables known to bias EEG analysis including age (Hughes and Cayaffa, 

1977; Nguyen et al., 2013; Vlahou et al., 2014; Zoubi et al., 2018), gender (Hu, 2018; Malon 

et al., 2018; van Putten et al., 2018), observer-dependent identification of EEG artifacts 

(Levitt et al., 2018), and statistical multiple comparisons (Curran-Everett, 2000), which is 

often the case for high dimensional EEG data. Moreover, studies investigating the effects 

of pain on EEG power have focused on mean power in relatively long duration epochs 

(Sarnthein et al., 2006; Stern et al., 2006; Jensen et al., 2013; Misra et al., 2017). This 

conventional type of power analysis overlooks the possibility of power fluctuation within a 

band emerging as transient ‘events’ in the millisecond range. In fact, transient beta events in 

S1 have been shown to be functionally relevant for sensory detection (Shin et al., 2017).

In this study, we record EEG from human subjects and use first order statistical tests and 

machine learning methods while carefully controlling for variables listed above. First, we 

test the hypothesis that mean EEG power in multiple low frequency bands, as well as 

transient power events within these bands, are modulated in patients with chronic pain 

compared to healthy subjects. Second, we test the hypothesis that information represented 

by EEG data is sufficient for training a support vector machine (SVM) algorithm to predict 

‘no-pain’ versus ‘high-pain’ states, and to distinguish between different ‘high-pain’ states. 

Contrary to published literature (Pinheiro et al., 2016), however, our results show that 

correcting for multiple comparisons, mean power is not statistically different between pain 

patients and healthy subjects, whereas low-gamma transients events are significantly altered. 

Moreover, an SVM classifier based on principal components generated from EEG features 

predicts healthy and pain states with high accuracy.
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2. Methods

2.1. Recruitment of subjects & experimental design

Human subjects were recruited under the supervision of the Rhode Island Hospital 

institutional review board. 20 subjects were recruited with the following inclusion criteria: 1) 

A diagnosis of chronic lumbar radiculopathy 2) age 25 years or older 3) in treatment for at 

least 3 months 4) a VAS (Visual Analog Scale) score greater than or equal to 5 on a 0–10 

scale. These subjects were then matched in gender and age with 20 healthy individuals, none 

of whom reported chronic back pain. None of the subjects in this study had been prescribed 

opioids.

After obtaining consent, a researcher then fitted the subject to the EEG headset. EEG 

recordings were performed using the Statnet headset and MicroEEG amplifier system 

(BioSignal Group, Acton, MA), an FDA-approved portable EEG platform (Ladino et al., 

2016). The StatNet has 16 recording channels, as well as a common ground and reference. 

A sample rate of 250 Hz was used for this portion of the study. Once the EEG system was 

properly fitted, subjects were asked to sit, facing a blank wall, with their hands on their 

thighs. Subjects were prompted by the researcher to remain in this position and to alternate 

between eyes-open and eyes-closed every 60 s for 5 min. In addition to these 40 subjects, 17 

more were recruited with a history of chronic pain (pre-SCS group) who were scheduled to 

receive treatment with an implanted thoracic spinal cord stimulator (SCS) for lumbar pain, 

with or without radiculopathy, recalcitrant to more conservative measures. Demographic 

information is summarized in table 1.

2.2. EEG preprocessing

All preprocessing, feature extraction, statistics, and machine learning were done using 

MatLab (MathWorks, Natick, MA). EEGs from the pre-SCS group were collected at a 

sample rate of 500 Hz, while the EEGs from the healthy and radiculopathy groups were 

collected at 250 Hz. In order to eliminate data collection bias, a low pass filter with a 

passband frequency of 120 Hz was applied to all recordings, then the pre-SCS recordings 

were downsampled to 250 Hz. A high-pass filter with a passband frequency of 1.5 Hz and a 

notch filter with a stopband of 57–63 Hz were then applied to all recordings. Next, all EEGs 

were visually inspected using Spike2 (Cambridge Electronic Design, Cambridge, UK) to 

ascertain if individual channels were of insufficient quality to be included in further analysis. 

All channels that were not considered to be of high quality were removed, and not included 

in the following methods and results. 11% of all channels were excluded in this manner. 

Moreover, every remaining channel was divided into 1-second epochs, and each epoch was 

tested for the presence of artifacts using a previously validated method based on automated 

detection of artifacts by a SVM (Levitt et al., 2018). Epochs not containing artifacts which 

were collected from eyes-open portions of the recordings were included in further analysis; 

all other epochs were excluded (Supplementary Table 1).
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2.3. Feature extraction

From the remaining epochs of each recording, the following features were calculated: 1) 

bandwise PSD (Power Spectral Density) for all channels, 2) bandwise coherence for all 

channel pairs, and 3) bandwise PAC (Phase-Amplitude Coupling) for all channels.

To create the bandwise PSD for each channel, a periodogram was gathered from every 

eyes-open, artifact-free epoch, and then these periodograms were averaged together for each 

channel within each subject. These averaged periodograms were normalized by dividing 

each frequency bin by the sum of all bins from 3 to 30 Hz. The normalized PSD was used 

to calculate the bandwise PSD by taking the average of all bins within each of the following 

four frequency bands: Theta (4–8 Hz), Alpha (9–12 Hz), Beta (13–30 Hz), and Low Gamma 

(31–50 Hz). This yielded 4 PSD features for every channel included, and a maximum of 64 

PSD features per subject (4 bands × 16 channels).

Bandwise coherence was calculated from each of 120 unique channel pairs, by averaging 

the coherence (MatLab function mscohere ) from each epoch that was artifact-free during 

eyes-open recordings for both of the channels in a given pair. This average coherence was 

divided into four bands in the same manner as PSDs. This yielded 4 coherence features for 

each channel pair, and a maximum of 480 coherence features per subject (4 bands × 120 

channel pairs, coherence values were not computed from channel pairs for which one or 

both of the channels included artifacts).

PAC was calculated using the Modulation Index (MI) method (Tort et al., 2010). The 

center frequencies used for phase included all the even numbers from 2 to 20. The center 

frequencies used for amplitude included all multiples of 3 from 30 to 54. MI was measured 

for each pair of phase and amplitude frequencies (90 total pairs) for each channel, including 

only those timepoints for which there were 5 or more consecutive artifact-free eyes-open 

epochs. This yielded a 9 × 10 MI matrix, for every channel of every subject, with each 

row corresponding to one phase center frequency, and each column corresponding to 

one amplitude center frequency. This MI matrix was converted to bandwise PAC for the 

following 3 pairs of bands: Theta—Low Gamma, Alpha—Low Gamma, and Beta—Low 

Gamma. For these purposes, we defined Theta and Alpha as before, Beta as 14–20 Hz, 

and Gamma as 30–54 Hz. This conversion was accomplished by averaging across the 

appropriate regions of the MI matrix. This yielded 3 PAC features for each channel, and a 

maximum of 48 PAC features per subject (3 band-pairs × 16 channels).

2.4. Statistical analyses

We used unpaired two-tailed T-tests to compare the bandwise PSDs from the healthy and 

radiculopathy groups, for each of the 4 bands and 16 channels (64 tests in total). We then 

used Bonferroni’s correction for multiple comparisons with a family size of 64 to compute 

corrected P-values for each of these tests. We used two-tailed Wilcoxon rank-sum tests to 

compare the bandwise coherence from the two groups for each of the 4 bands and 120 

channel pairs (480 tests in total), then applying Bonferroni’s correction as above with a 

family size of 480. Finally, we used two-tailed Wilcoxon rank-sum tests to compare the 

bandwise PAC from the two groups for each of 3 band pairs and 16 channels (48 tests in 
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total), finally applying Bonferroni’s correction as above with a family size of 48. We chose 

to use nonparametric statistical tests for both the coherence and PAC because these values 

are constrained between 0 and 1, and are therefore less likely to follow a normal distribution, 

as required by Student’s T-test (Seymour et al., 2017). To test for equivalence between PSD, 

coherence, and PAC features of the healthy and radiculopathy groups, and to set an upper 

limit on any observed effects, we used the Two One-Sided t-test (TOST) procedure, with an 

equivalence interval of +/− one standard deviation of the healthy distribution for each feature 

(Rogers et al., 1993; Anisha, 2020)

2.5. Spectral event analysis

Building our spectral events analysis approach from the methods of Shin et al. (Shin et 

al., 2017), spectral events were defined as the maximum power within each closed region 

of supra-threshold time-frequency space confined to a frequency band-of-interest (BOI). 

Furthermore, the event features, including event counts/epoch, event power maximum, event 

duration, and event frequency span (F-span) were defined in the same way as by Shin et al. 

and were found on an epoch-by-epoch basis. Prior to identifying individual spectral events, 

however, we sought to empirically define frequency BOIs that might contain differing event 

probabilities for each feature between the radiculopathy and healthy control groups. BOIs 

were determined separately for each age-matched pair of radiculopathy/healthy subjects on 

the complement set of subjects (i.e., on all subjects except for the subjects of the specified 

pair). This allowed us to determine a BOI for spectral event analysis of each age-matched 

pair that was independent of the spectral event data contained in a specific pair. For BOI 

selection, we first calculated the spontaneous time-frequency response (sTFR) at 6–50 Hz by 

convolving each single-epoch time-series with a Morlet wavelet (width = 5) and normalized 

each spectrogram by the median PSD for each frequency bin. Note that the median PSD 

was calculated across the aggregate of time samples (i.e., including all epochs) of a subject 

for a given channel. Averaging the sTFR for each subject, separately, over epochs and time, 

we computed the spontaneous PSD (sPSD, i.e., the median-normalized PSD) and compared 

the radiculopathy to the healthy normal group in a two-tailed Wilcoxon rank-sum test at 

each frequency bin (with Bonferroni correction for multiple comparisons at a family-wise 

error rate of 0.05). Frequency values deemed significant and that formed a continuous BOI 

with greater than two bins were passed into the spectral event-finding algorithm in the 

SpectralEvents toolbox (https://github.com/jonescompneurolab/SpectralEvents, findMethod 

= 3) as the BOI. Two-tailed Wilcoxon signed-rank test was performed on the pairwise 

differences between mean spectral event features across age-matched radiculopathy/healthy 

subject pairs.

Note that while the search for a frequency BOI was conducted for 5 of the 16 EEG channels 

(C3, CZ, F8, FP1, and FP2), significant positive results for a BOI in more than 50% of 

the age-matched radiculopathy/healthy subject pairs only occured at C3 and CZ. The five 

aforementioned channels were selected because they passed visual inspection of the raw 

time-series for all 40 subjects. Following rejection of all 1-second time bins containing 

artifacts (identified upon visual inspection and the use of an automated SVM algorithm 

described above), and all single, isolated, artifact-free epochs, 4 of the 20 radiculopathy 

subjects, along with their age/gender-matched counterparts, were also discarded from 
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spectral event analysis in channels FP1 and FP2 because they contained fewer than 10 

artifact-free epochs.

2.6. Classification and prediction

The features described above (bandwise PSDs, bandwise coherence and PAC— note that 

for purposes of this portion of the analysis, we used the full MI matrices instead of 

bandwise PAC) from the radiculopathy and healthy groups were used to create a feature-set 

for training a classification SVM. However, since this dataset had far more features than 

samples, as well as highly unequal numbers of features within each of the three categories 

(64 for PSD, 480 for coherence, and 1440 for PAC), and some missing features due to 

channels being rejected by visual inspection, additional preprocessing was required. First, 

to appropriately replace each missing feature, hot deck imputation was used (Joenssen 

and Bankhofer, 2012) whereby missing values are filled in with ‘donor’ values from 

other samples within the dataset selected by identifying the donor sample that is closest 

to the original sample in feature space (MatLab function knnimpute ). Next, principal 

component analysis (PCA) was performed to reduce the number of features from each of 

the 3 categories, and the 11 features which explained the greatest variance were used. This 

number was chosen using a grid search with optimization metric being the accuracy score 

of the final classifier. PCA was conducted separately on each of the 3 feature sets (PSDs, 

coherence, and PAC) so that each feature set yielded exactly 11 PCA features, which were 

independent of the other 2 feature sets. This ensured both that each feature set had the same 

contribution to the classification feature set, and that we had fewer features than samples (33 

features; 40 samples), which helps reduce the risk of over-fitting.

These resulting 33 PCA features from 40 samples were combined with the following 4 

observations from the spectral event analysis of electrode C3: mean event power, mean event 

F-span, mean event duration, and mean events per epoch, in order to form the final feature 

set for training and testing our binary classification SVM. We validated the classifier using 

k-folds cross validation using k = 10. Classification accuracy was calculated within the k-

folds cross validation by counting the number of out-of-sample predicted labels that matched 

the true label of the sample, and dividing this total by the number of samples (40, in this 

case). Receiver Operating Characteristic (ROC) Area Under Curve (AUC) was calculated 

using the MatLab function perfcurve. The SVM hyperparameters box constraint and kernel 

scale were selected using a grid search. A Gaussian kernel was used. Additionally, 500 

iterations of a random permutation procedure were performed, whereby the sample labels 

were randomly permuted, and then the training and testing process, including the grid 

search and cross-validation, were repeated using the randomized labels. This process yields 

a distribution of accuracy and AUC scores, representing the classification performance that 

could be expected by chance, against which we can evaluate the statistical significance of 

the classification performance prior to permutation (Ojala and Garriga, 2009; Combrisson 

and Jerbi, 2015).

Next, we performed these same preprocessing steps (hot deck imputation, PCA) on the 17 

pre-SCS samples, using the same PCA coefficients from the radiculopathy/healthy dataset. 

Note that spectral event features were not included in this dataset, as spectral event analysis 
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was not performed for the SCS group. We then trained and tested a 3-way classification 

SVM using data from the healthy, radiculopathy and pre-SCS groups. As above, a Gaussian 

kernel, grid search, and 10-fold cross-validation were used, and accuracy was calculated 

in the same manner. ROC-AUC was calculated with respect to each of the three groups, 

yielding 3 AUCs, one with respect to each class. 500 iterations of random shuffling were 

performed.

3. Results

3.1. Statistical analysis

Unpaired T-tests comparing bandwise power at each of the 16 channels and 4 bands between 

the radiculopathy and healthy groups showed significant ( P < 0.05) differences in power 

with the beta band at channel A1, and within low gamma at F7 and FP2 (Fig. 1A). However, 

each of these differences was found to fail Bonferroni’s correction for multiple comparisons 

(Fig. 1D). A similar trend was observed both for coherence (Fig. 1B, E) and PAC (Fig. 

1C, F), in which significant differences were observed at the P < 0.05 level; however, 

all differences failed Bonferroni’s correction for multiple comparisons. Additionally, no 

significant differences were found using the Benjamini-Hochberg procedure with a false 

discovery rate of 0.05. Results from all features for which there were significant differences 

before correction are summarized in Table 2.

The results of the TOST equivalence tests showed that 48.4% of all PSD features, 67.9% of 

all coherence features, and 54.2% of all PAC features were found to have means that were 

significantly equivalent between the radiculopathy and healthy groups to within one standard 

deviation (Supplementary Figure 1). This shows that for most features, the largest possible 

effect of group that went unobserved is one standard deviation of the control group

3.2. Spectral event analysis

BOIs were found for subjects at channel C3 with a lower frequency bound of 40 (40–42) 

Hz (median and range) and a constant upper frequency bound of 50 Hz in 19 age-matched 

radiculopathy/healthy subject pairs. BOIs were found for subjects at channel CZ with a 

lower frequency bound of 46 (43–47) Hz and an upper frequency bound of 48 (44–50) Hz in 

16 age-matched radiculopathy/healthy subject pairs. Given that spectral events define sparse 

topographic regions in the time-frequency domain of high factors-of-the-median (FOM) 

power, our search for a frequency BOI demonstrated that only one primary frequency band 

in the 40–50 Hz range differs significantly in high-power spectral fluctuation between the 

radiculopathy and healthy subjects (Fig. 2A, E). Such activity emerged only from the C3 

and CZ electrodes over somatosensory cortex. Furthermore, separation in the 40–50 Hz 

band between sPSD (spontaneous Power Spectral Density) of the two groups corresponded 

to a statistically significant difference in spectral event features (Fig. 2B–D, 2F–H). For 

C3, the pairwise difference between spectral event counts/epoch, power, and F-span in 

radiculopathy versus healthy subjects deviated significantly from zero, while event duration 

did not (Fig. 2C). For CZ, the pairwise difference between spectral event counts/epoch 

and power in radiculopathy versus healthy subjects deviated significantly from zero, while 

event F-span and duration did not (Fig. 2G). By inspection, it is clear that the radiculopathy 
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subjects demonstrated increased mean spectral event features (i.e., more events, higher 

power events, and for channel C3, events with a broader spectrum) than their healthy 

age-matched controls.

3.3. Machine learning

The binary SVM trained to classify between radiculopathy and healthy subjects was shown 

to have a cross-validation accuracy of 82.5%, and an ROC-AUC of 0.8225. Random 

permutation testing found that this accuracy was higher than that of 500 out of 500 

iterations, indicating a P of < 0.002, and that this ROC-AUC was higher than that of 499 out 

of 500 iterations, indicating a P of 0.002 (Fig. 3). The 3-way classifier had a cross-validation 

accuracy of 71.9%, an AUC-radiculopathy of 0.828, an AUC–Healthy of 0.842, and an 

AUC-pre-SCS of 0.962. Random permutation testing of the 3-way classifier showed that the 

accuracy, AUC–Healthy and AUC-Pre-SCS were greater than the corresponding values of 

all 500 shuffled iterations, indicating P < 0.002 in each case, and the AUC-Radiculopathy 

was greater than the corresponding value from 499 out of 500 iterations, indicating P = 

0.002 (Fig. 4). We therefore conclude that the performance of both classifiers is significantly 

higher than would be expected by chance alone.

4. Discussion

Our results demonstrate that after carefully accounting for variables including automated 

detection of EEG artifacts, age and gender bias, and correction methods for multiple 

comparisons, no statistically significant difference was found in the mean resting state 

EEG power between healthy subjects and pain patients within common frequency bands. 

Moreover, there was no statistically significant difference in paired channel coherence or 

PAC. This is further supported by the many significant results of the equivalence tests, which 

supports a hypothesis that there is not a difference between the two groups, or that the 

difference is small. Generally, there is a lack of consensus regarding the frequency band(s) 

altered during pain, the direction of the modulatory effects, and the cortical areas involved 

(Pinheiro et al., 2016). Our results stand in contrast to previous studies suggesting enhanced 

resting state EEG power in pain patients within the theta (Schulman et al., 2005; Stern et al., 

2006), alpha (van den Broeke et al., 2013), and beta (Sarnthein et al., 2006) bands. They also 

contradict previous work that showed modulation of interchannel coherence in individuals 

with migrain (Mendonça-de-Souza et al., 2012). Changes in the PAC feature of the EEG has 

not been previously investigated in pain patients. Although noxious laser stimuli have been 

shown to evoke theta-gamma coupling in rats (Wang et al., 2011), it is not clear how these 

findings relate to EEG in humans with chronic pain.

Another important factor to consider is the pain state as a variable. The effects of 

experimentally-induced tonic versus phasic pain on EEG (Hadjileontiadis, 2015; Levitt et 

al., 2017; Misra et al., 2017; Vijayakumar et al., 2017), as well as resting state versus evoked 

response potentials (ERP) (Schulz et al., 2012; Huang et al., 2013; Bai et al., 2016) further 

clouds the relationship between clinical pain and neocortical oscillations, given that phasic, 

tonic and chronic pain may have distinct physiological patterns (Apkarian et al., 2009; Guo 

et al., 2016). Other variables that should be controlled for in an EEG study are age and 
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gender. Both age (Hughes and Cayaffa, 1977; Nguyen et al., 2013; Vlahou et al., 2014; 

Zoubi et al., 2018) and gender (Hu, 2018; van Putten et al., 2018) have been found to impact 

EEG. Since chronic pain may be more prevalent in one gender, or in specific age cohorts 

(Elzahaf et al., 2016; Malon et al., 2018), there is a risk of creating a sampling bias if these 

factors are not controlled for. Ideal EEG studies for chronic pain should be conducted with 

a dataset in which chronic pain subjects are paired with age and gender matched healthy 

controls, or at least a dataset with demographics that are not significantly different between 

the two groups.

Moreover, some previous studies used a high dimensional data set, but did not correct for 

multiple comparisons, which presumably contributed to Type I errors (Bjørk et al., 2009; 

Jensen et al., 2013). This could, in turn, contribute to the diversity of results in the pain 

EEG literature (Pinheiro et al., 2016). Type 1 errors are ‘false positive’ errors, when a 

statistical test shows a significant result when in fact the null hypothesis is correct. The 

risk of encountering this type of error increases as the number of statistical tests increases. 

This is typically controlled for by using a correction for multiple comparisons, such as 

the Bonferroni test; however, these corrections come with their own risks, as they increase 

the risk of type 2 errors, making it harder to detect genuine differences. This can be a 

challenging problem to solve, especially when the number of tests is great, as is often the 

case in EEG studies. A conservative approach would be to apply the correction, and accept 

the associated risk of false negatives (Curran-Everett, 2000), as in this study. These concerns 

could be partly addressed by increasing statistical power, for example by increasing sample 

size. While the sample size of this study is comparable to that of other studies of EEG and 

pain (Pinheiro et al., 2016), future research could benefit from an increased sample size, 

perhaps by performing multi-site recruitment.

Interestingly, we report that transient low gamma events are altered in pain patients, 

specifically in a band from 42 to 43 Hz. In particular, we found that subjects with 

radiculopathy manifest more of these events per 1 second epoch compared to healthy 

subjects. Since the aggregate of radiculopathy features appeared to have greater power and 

greater F-span (but did not significantly separate the radiculopathy from healthy subjects 

with average event power or average event F-span on a subject-by-subject basis), the 

statistical significance of these two features observed in Fig. 2D, F was mostly likely 

introduced by only a few subjects (i.e., these features do not represent population-level 

differences between the two groups). Furthermore, we did not find any difference in 

the duration of events between the radiculopathy and healthy groups. This highlights the 

importance of investigating transient changes in power at the sub-second scale, whereas 

others typically study power in relatively long, averaged epochs of variable lengths 

(Sarnthein et al., 2006; Stern et al., 2006; Jensen et al., 2013; Misra et al., 2017). It has 

been demonstrated that beta (15–29 Hz) transients in S1 occurring in temporal proximity to 

a sensory stimulus are more likely to impair perception based on magnetoencephalography 

(MEG) data in humans and local field potential recordings in mice performing a detection 

task, such that increased rate of beta events predicts failure to effectively transmit 

information through specific neocortical representations (Shin et al., 2017). There is also 

evidence that gamma oscillations in S1 are linked to nociceptive pathways (Tan et al., 2019). 

The functional significance of altered gamma transients in our study remains unknown. 
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One option to elucidate this phenomenon would be to explore the behavioral consequences 

of optogenetic, time-locked modulation of gamma bursts in S1, as has been previously 

demonstrated for longer-duration theta oscillations (LeBlanc et al., 2017).

Lastly, we demonstrate that machine learning using principal components is a valid 

approach for developing ‘classifier’ algorithms that accurately distinguish between healthy 

‘no-pain’ subjects and those with ‘high-pain.’ Moreover, we show that a 3-way classifier 

accurately distinguishes between different ‘high-pain’ states in patients. This demonstrates 

that, despite the lack of significant differences between the healthy and radiculopathy 

groups based on conventional analysis of EEG data, principal components derived from this 

dataset contain physiologically relevant information pertaining to sensory states, and that 

this information may be used to help distinguish between patient populations when other 

clinical signs are inconclusive or ambiguous. It should be noted, however, that a different 

amplifier from the same manufacturer with a higher sample rate was used to collect the 

Pre-SCS EEGs. This was corrected for using filtering and downsampling. Communication 

with the manufacturer indicated that the two devices were essentially identical, except for 

their sampling rate. Additionally, the EEG data for the statistical analysis, spectral event 

analysis, and the two-way classifier were all collected using only one amplifier.

Of note, pain intensity scores in both pain groups were similar, but the clinical diagnosis 

of subjects in either group was distinct. Patients in the treatment-resistant chronic back pain 

group (the Pre-SCS group), but not those in the radiculopathy pain group, were diagnosed 

by a board-certified pain physician to be clinically appropriate for pain management by SCS. 

This is a critical point because the go/no-go decision to implant SCS leads is based mostly 

on subjective criteria, in addition to being time consuming, costly and emotionally onerous 

for the patient (Campbell et al., 2013)

Determining the contribution or importance of each feature to the performance of the 

classifiers is made intractable by two processes: 1) Conversion from the original feature 

space into principal component space. This means that each individual original feature 

contributes, to some extent, to each PC feature; 2) nonlinearity of a gaussian SVM. This 

means that individual features are not assigned a simple weight, as they would be for a linear 

SVM. Furthermore, the decision regions created by a gaussian SVM may be discontinuous, 

tortuous, or both. Thus, interpretation of the impact of individual features on classification is 

difficult to discern without further investigation.

High dimensional data representing hundreds of power, coherence, and PAC features 

generated by multi-channel EEG systems require advanced statistical tools beyond 

conventional first order statistics. Machine learning methods can help detect patterns that 

may otherwise go undetected, and improve performance in predictive tasks (Bzdok et al., 

2018). These algorithms have already been applied in similar contexts, such as detecting 

traumatic brain injury (Prichep et al., 2014), estimating depth of anesthesia (Saadeh et 

al., 2019), studying Alzheimer’s disease (Simpraga et al., 2017), and studying seizure 

activity (Elahian et al., 2017). There is also evidence for using EEG data and an SVM 

method to predict the diagnosis of complex and variable neurodevelopmental conditions, 

such as autism spectrum disorder (Bosl, 2018; Bosl et al., 2018). Recently, machine learning 
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methods have produced valid and reliable algorithms for predicting pain intensity using high 

dimensional EEG features. For example, Misra et al. developed a classifier for high/low 

experimentally-induced pain using theta, beta, and gamma mean power (Misra et al., 2017), 

and Vuckovic et al. did the same for a subacute pain model (Vuckovic et al., 2018), 

whereas Vanneste et al. distinguished between pain and other neurological conditions using 

standardized low-resolution brain electromagnetic tomography (Vanneste et al., 2018). Shen 

et al., 2019 also used an SVM model to analyze BOLD fMRI data and distinguish between 

patients with chronic low back pain and controls (Shen et al., 2019). At the time of 

submission of our manuscript, Dinh et al. published a study similar to ours using resting 

state EEG features to classify chronic pain patients and healthy controls with 57% accuracy; 

albeit with broader inclusion criteria. Additionally, they also did not identify significant 

differences between healthy and pain groups using first-order EEG features, which concurs 

with our results. (Dinh et al., 2019). Additional layers of complexity or nonlinearity could 

be introduced in various ways, for example by using a nonlinear dimensionality reduction 

technique, such as minimum curvilinear embedding (Cannistraci et al., 2013). These efforts 

are important steps, both broadly toward a better understanding of the physiology of pain 

and sensory perception, and toward the specific goal of developing objective biosignatures 

for pain, according to guidelines that have been recently reviewed by Davis et al., press).

Phenotypic categorization of pain according to distinct disease classifications, based on a 

relatively inexpensive, rapid and objective EEG ‘screen,’ is highly relevant and urgently 

needed in clinical settings. Further refinement, testing and validation of our SVM algorithms 

in a larger sample size would be required to reach this goal. EEG analysis is high 

dimensional, and the applicable types of analyses are myriad, which can make determining 

the best way forward challenging, but nonetheless feasible and clinically valuable.
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Fig. 1. 
A comparison of EEG bandwise Power Spectral Density (PSD), interchannel coherence, and 

Phase Amplitude Coupling (PAC) collected from 20 subjects with lumbar radiculopathy, and 

20 age and gender matched healthy controls. A) The results of T-Tests comparing the PSDs 

from the two groups at 16 channels (y-axis) and 4 frequency bands (x-axis). Color represents 

the significance level of each test, with red cells indicating that the P value for that channel 

and band was < 0.05, and grayscale indicating the opposite, per the color bar. B) The results 

of rank-sum tests comparing the coherence from the two groups at all unique channel pairs 

and 4 frequency bands. The color of each line represents the significance level of the test 

for the two channels connected by the line, with red lines indicating that the P value for that 

channel pair and band was < 0.05, and grayscale indicating the opposite, per the color bar. 

C) The results of rank-sum tests comparing the PAC from the two groups at 16 channels, 

as indicated by the subplot titles, between three low frequency bands (Theta, Alpha, and 

Beta; x-axes) and one high frequency band (Gamma; y-axes). As before, color represents 

the significance level of each test. D), E), F) These figures represent the same data and 

results as A), B), and C), respectively, after applying Bonferroni’s correction for multiple 

comparisons. Additionally, the EEG montage with channel names and locations is shown in 

subplot E, upper left panel.
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Fig. 2. 
Spectral event analysis in subjects with lumbar radiculopathy, and age and gender matched 

healthy controls. A-D show analysis of the C3 electrode channel whereas E-F show 

analysis of the CZ electrode channel. A) Median-normalized power spectral density for 

radiculopathy subjects (red) was compared to that of healthy subjects (blue) in order to 

select a unique frequency BOI for each radiculopathy/healthy subject pair. This panel shows 

results corresponding to a representative example for a pair. Lines show the median +/− 

bootstrapped 95% confidence interval across the complement set of subjects and the yellow-

highlighted frequency band denotes the region of statistically significant difference between 
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the radiculopathy and healthy sets via Wilcoxon rank-sum test (p < 0.05, Bonferroni 

corrected) B) Representative example demonstrating event detection in a single epoch. 

Shaded area indicates the band of interest, and the asterisk and white rectangle indicate the 

location of the event found in this epoch within the band of interest. The white waveform is 

the EEG signal and the heatmap shows the wavelet transform of the signal. C) Comparison 

of the pairwise difference between radiculopathy and healthy spectral event features to zero 

(Wilcoxon signed-rank test). The features are as follows: event counts per epoch (green), 

event power maximum (red), event frequency span (blue), and event duration (yellow). D) 

Average spontaneous time-frequency response of the radiculopathy group. Note that large 

amounts of non-time-locked, high amplitude activity occur near the BOI. E-H are similar to 

A-D except that they represent results from the CZ electrode channel.
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Fig. 3. 
Evaluation of a binary classification support vector machine (SVM) trained to classify 

between EEGs from subjects with lumbar radiculopathy ( N = 20) and aged and gender 

matched healthy controls ( N = 20). A) The Receiver Operating Characteristic (ROC) of 

the SVM, cross validated using 10-fold cross-validation. The Area Under Curve (AUC) 

was 0.8225, and the classification accuracy was 82.5%. B) A confusion matrix describing 

the cross-validation predictions of the trained SVM. 33 out of 40 samples were classified 

correctly (green squares) and 7 out of 40 were classified incorrectly (red squares). C) The 

results of 500 iterations of a random shuffling procedure, whereby the labels of the EEGs 

were randomly reassigned, and the SVM was retrained and retested using the randomized 

labels. The upper plot shows the histogram of classification accuracy amongst the 500 

shuffled iteration in blue, and the true accuracy observed in our classifier in orange (82.5%, 

as stated above). The observed accuracy was greater than the accuracy all of 500 shuffled 

iterations, indicating the odds of observing an accuracy of 82.5% given the null hypothesis 

that the classifier predictions are no better than chance is P < 0.002. The bottom shows the 

same results, except for ROC-AUC. The observed AUC was greater than that of 499 out of 

500 shuffled iterations, indicating that P = 0.002.
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Fig. 4. 
Evaluation of a 3-way classification support vector machine (SVM) trained to classify 

between EEGs from subjects with lumbar radiculopathy ( N = 20), aged and gender matched 

healthy controls (pre-SCS, N = 20), and subjects with chronic back pain who are candidates 

for spinal cord stimulation ( N = 17). A) The Receiver Operating Characteristic (ROC) 

of the SVM with respect to each of the 3 classes, cross validated using leave-one-out 

cross-validation. The Area Under Curve (AUC) with respect to the radiculopathy group was 

0.828, the AUC with respect to the healthy group was 0.842, the AUC with respect to the 

chronic pain group was 0.959, and the classification accuracy was 71.9%. B) A confusion 

matrix describing the cross-validation predictions of the trained SVM. 41 out of 57 samples 

were classified correctly (green squares) and 16 out of 57 were classified incorrectly (red 

squares). C) The results of 500 iterations of a random shuffling procedure, whereby the 

labels of the EEGs were randomly reassigned, and the SVM was retrained and retested 

using the randomized labels. The upper plot shows the histogram of classification accuracy 

amongst the 500 shuffled iteration in blue, and the true accuracy observed in our classifier 

in black (75.4%, as stated above). The observed accuracy was greater than that of all 500 

shuffled iterations, indicating the odds of observing an accuracy of 75.4% given the null 

hypothesis that the classifier predictions are no better than chance is P < 0.002. The bottom 

shows the same results, except for AUC with respect to each class. For the healthy and 

Pre-SCS class, the observed AUC was greater than that of all of 500 shuffled iterations, 

indicating that P < 0.002. For the radiculopathy class, the observed AUC was greater than 

that of 499 out of 500 shuffled iterations, indicating that P = 0.002.
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Table 2

EEG Features for which there was a significant difference.

Channel Frequency Band Rad. Average Healthy Average P-value

Power Spectral Density

A1 Beta 0.0145 0.0118 0.0494

F7 Low Gamma 0.0127 0.0067 0.0235

FP2 Low Gamma 0.0137 0.0088 0.0401

Coherence

A2-CZ Beta 0.247 0.209 0.0443

FZ-F7 Beta 0.244 0.290 0.0332

C3-C4 Gamma 0.3265 0.4091 0.0290

C3-A1 Gamma 0.2758 0.3534 0.0210

C3–O1 Gamma 0.3253 0.4114 0.0180

C3–O2 Gamma 0.2662 0.3147 0.0420

C3-FZ Gamma 0.2046 0.2451 0.0110

C4-C3 Gamma 0.3265 0.4091 0.0290

C4-A1 Gamma 0.2629 0.3299 0.0210

C4-FZ Gamma 0.2125 0.2472 0.0180

A1-O1 Gamma 0.3069 0.3856 0.0140

A1-CZ Gamma 0.2415 0.2851 0.0270

A1-FZ Gamma 0.1972 0.2359 0.0010

O1-A1 Gamma 0.3069 0.3856 0.0140

O1-FZ Gamma 0.1985 0.2323 0.0140

O2-FZ Gamma 0.1913 0.2236 0.0060

CZ-FZ Gamma 0.1905 0.2197 0.0170

F8-FP1 Gamma 0.4033 0.3579 0.0440

FZ-F7 Gamma 0.2111 0.2354 0.0120

A2-FZ Theta 0.2208 0.2429 0.0540

A2-F7 Theta 0.2777 0.3270 0.0390

A2-FP2 Theta 0.2526 0.3106 0.0440

A1-CZ Theta 0.2771 0.3287 0.0500

T3-FP2 Theta 0.2765 0.3338 0.0310

O2-F8 Theta 0.2375 0.2749 0.0320

O2-FP1 Theta 0.2085 0.2555 0.0100

O2-F7 Theta 0.2236 0.2625 0.0280

O2-FP2 Theta 0.2031 0.2427 0.0160

F8-T6 Theta 0.2927 0.3534 0.0460

F8-F7 Theta 0.3289 0.3651 0.0390

T6-FZ Theta 0.2055 0.2248 0.0340

T6-FP1 Theta 0.2297 0.3030 0.0100

T6-F7 Theta 0.2350 0.2881 0.0210

T6-FP2 Theta 0.2143 0.2741 0.0140
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Channel Frequency Band Rad. Average Healthy Average P-value

T4-F8 Alpha 0.4071 0.4930 0.0340

T4-FZ Alpha 0.2024 0.2372 0.0120

T4-FP1 Alpha 0.2874 0.3606 0.0070

A2-F8 Alpha 0.3767 0.4474 0.0400

A2-FZ Alpha 0.2007 0.2318 0.0360

A2-FP1 Alpha 0.2812 0.3524 0.0290

A2-FP2 Alpha 0.2435 0.3063 0.0490

A1-FP1 Alpha 0.2243 0.2586 0.0500

T3-F7 Alpha 0.3858 0.4882 0.0050

T3-FP2 Alpha 0.2627 0.3447 0.0050

TS-FP1 Alpha 0.1954 0.2470 0.0350

T5-FP2 Alpha 0.2100 0.2783 0.0240

O2-FP1 Alpha 0.2012 0.2347 0.0320

O2-FP2 Alpha 0.1970 0.2311 0.0370

F8-T6 Alpha 0.2887 0.3506 0.0400

T6-FZ Alpha 0.1880 0.2179 0.0120

T6-FP1 Alpha 0.2206 0.2911 0.0140

T6-F7 Alpha 0.2173 0.2647 0.0530

T6-FP2 Alpha 0.2019 0.2669 0.0050

Phase-Amplitude Coupling

T4 Gamma vs. Theta 2.44e-04 1.46e-04 0.0141

Gamma vs. Alpha l.22e-04 9.22e-05 0.0541

Gamma vs. Beta 9.20e-05 6.85e-05 0.0541

C3 Gamma vs. Beta 8.34e-05 6.20e-05 0.0565

O2 Gamma vs. Theta 3.91e-04 2.44e-04 0.0634

Gamma vs. Alpha 1.98e-04 1.19e-04 0.0317

Gamma vs. Beta 1.38e-04 8.66e-05 0.0452

T6 Gamma vs. Theta 3.33e-04 2.20e-04 0.0167

Gamma vs. Alpha 1.58e-04 1.21e-04 0.0493

Gamma vs. Beta 1.16e-04 7.65e-05 0.0182

Each row of the table contains the feature name, group averages, and P value, for each statistical test which had a P < 0.05 before applying 
Bonfcrroni’s correction for multiple comparisons. No features had P < 0.05 after applying Bonfcrroni’s correction. T-tests were used for power 
spectral density features, and rank-sum tests were used for coherence and phase-amplitude coupling features.

Neuroimage. Author manuscript; available in PMC 2022 May 09.


	Abstract
	Introduction
	Methods
	Recruitment of subjects & experimental design
	EEG preprocessing
	Feature extraction
	Statistical analyses
	Spectral event analysis
	Classification and prediction

	Results
	Statistical analysis
	Spectral event analysis
	Machine learning

	Discussion
	References
	Fig. 1.
	Fig. 2.
	Fig. 3.
	Fig. 4.
	Table 1
	Table 2

