
Frontiers in Immunology | www.frontiersin.

Edited by:
Shyamasree Ghosh,

National Institute of Science Education
and Research (NISER), India

Reviewed by:
Krishna Prahlad Maremanda,

Texas A&M University, United States
Venkataramana Sidhaye,
Johns Hopkins University,

United States

*Correspondence:
Elisabeth Taucher

elisabeth.taucher@medunigraz.at

Specialty section:
This article was submitted to

Cancer Immunity
and Immunotherapy,

a section of the journal
Frontiers in Immunology

Received: 31 December 2021
Accepted: 28 February 2022
Published: 21 March 2022

Citation:
Taucher E, Mykoliuk I, Lindenmann J

and Smolle-Juettner F-M (2022)
Implications of the Immune Landscape

in COPD and Lung Cancer:
Smoking Versus Other Causes.

Front. Immunol. 13:846605.
doi: 10.3389/fimmu.2022.846605

REVIEW
published: 21 March 2022

doi: 10.3389/fimmu.2022.846605
Implications of the Immune
Landscape in COPD and
Lung Cancer: Smoking
Versus Other Causes
Elisabeth Taucher1*, Iurii Mykoliuk2, Joerg Lindenmann2 and Freyja-Maria Smolle-Juettner2

1 Division of Pulmonology, Department of Internal Medicine, Medical University Graz, Graz, Austria, 2 Division of Thoracic
Surgery, Department of Surgery, Medical University Graz, Graz, Austria

Cigarette smoking is reported in about one third of adults worldwide. A strong relationship
between cigarette smoke exposure and chronic obstructive pulmonary disease (COPD)
as well as lung cancer has been proven. However, about 15% of lung cancer cases, and
between one fourth and one third of COPD cases, occur in never-smokers. The effects of
cigarette smoke on the innate as well as the adaptive immune system have been widely
investigated. It is assumed that certain immunologic features contribute to lung cancer
and COPD development in the absence of smoking as the major risk factor. In this article,
we review different immunological aspects of lung cancer and COPD with a special focus
on non-smoking related risk factors.
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1 INTRODUCTION

Tobacco smoking is reported in about one third of the adult population worldwide (1, 2). Smoke from
tobacco is made up of various toxic and carcinogenic compounds, as for instance nicotine, nitrogen
oxides and cadmium or carbon monoxide (3, 4). A relation of cigarette smoke exposure to cancers,
respiratory-, cardiovascular-, infectious- and neurologic diseases has been proven (5–8). Immune
function is considerably altered by smoking, which promotes the secretion of inflammatory mediators,
comprising pro-, but also antiinflammatory cytokines (2, 9–12). Chronic inflammation and
autoimmunity are two among many systemic effects of smoking (2, 3, 11, 13).

Lung cancer, as the number one cause of cancer-related deaths worldwide, is mainly a
consequence of tobacco smoking (14–16). Still, there is a subgroup of lung cancer patients who
have never smoked, and they differ from lung cancer patients who have smoked with respect to
molecular markers and prognosis (15, 17, 18). About 10-15% of lung cancer cases occur in the
never-smoking population (19–21). Known risk factors for lung cancer in never-smokers include
second-hand smoking, indoor air pollution, occupational exposure to certain chemicals and a
genetic predisposition (22, 23). However, certain immunological aspects may contribute to the
susceptibility of never-smokers who develop lung cancer as well.

Chronic obstructive pulmonary disease (COPD) counts among the leading causes of morbidity
and mortality worldwide, with the worldwide incidence still increasing (24, 25). Apart from tobacco
exposure, which constitutes a major risk factor, other risk factors have also been outlined, including
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exposure to smoke from biomass fuel, occupational exposure to
gases and dusts, a history of respiratory-tract infections in the
early childhood or history of tuberculosis as well as air pollution
(25, 26). Cigarette smoking is acknowledged as the single most
important risk factor for COPD, yet, between one fourth and one
third of COPD cases are attributed to lifetime never-smokers
(27–30). Like in lung cancer, it remains unclear why certain non-
smoking individuals develop COPD.

In this article, we review possible immunological mechanisms
leading to lung cancer or COPD in the never-smoking population.

1.1 The Immune System in Elderly Patients
Lung cancer and COPD affect manly the elderly population (31, 32).
In the elderly, the propensity for aberrant immune function
increases significantly (33). The aging process goes along with
changes of the innate, as well as the adaptive immune function
(34, 35). Cancer and autoimmune disorders are encountered in
elderly patients more frequently, which is partly due to age-related
immunological changes, termed immunosenescence (36). Changes
of the innate immunity include dendritic cell function, natural killer
cells, neutrophil function and macrophages (37). Dendritic cells
generally decrease in quantity during the aging process, like for
example Langerhans cells in the skin or plasmocytes (38). Aged
dendritic cells are characterized by dysfunction of their
mitochondria, leading to a reduced ATP turnover and coupling
efficiency as well as greater reactive oxygen species (ROS)
production (39). Immunosenescene also leads to a dysfunctional
maturation and function of natural killer cells (40). Changes in
natural killer cell properties that are aging-related comprise a slower
response to inflammatory conditions and a general increase of
bacterial and fungal infections in the elderly population, which is
due to the decline in natural killer cell quantity (41). During aging,
spontaneous neutrophil apoptosis, mediated by the increased
secretion of proinflammatory cytokines such as INK-1, occurs less
frequently (42). Immunosenescence also impairs neutrophil
migration to the lung tissue, as demonstrated in a mouse model
(43). Insufficient neutrophil migration in elderly patients is most
probably due to an increased constitutive PI3K activation, since
lower rates of PI3K activation are normally observed in young
individuals (44). Macrophages, like other cell types in aging persons,
feature telomere shortening, which leads to a decreased GM-CSF-
dependent proliferation of these cells, resulting from a decreased
phosphorylation of STAT5. In aged mice, it was demonstrated that
macrophages became increasingly susceptible to oxidative stress,
explaining why DNA damage is caused by ROS to a much greater
extent in old people, paving the way for malignant transformation
(45). In elderly people, macrophages produce considerably lower
amounts of cytokines such as TNF-a and IL-6, and show a reduced
expression of the B7 receptor, resulting in a reduced activation of T-
cells (46).

The adaptive immune system is also affected by
immunosenescence, altering the function of B- and T-lymphocytes.
Humoral immunity is impaired inagingpatients, becauseof a relative
increase of the memory B cells (IgG(+)IgD(-)CD27(-), double
negative, DN) population, leading to a classical low-level chronic
inflammatorymicroenvironment.Naïve/memoryB-cell populations
in older adults feature a different receptor expression, which has been
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discussed using the term “inflamm-aging” (47). Interestingly, naïve
B-lymphocytes fromyoung persons need very strong signals in order
to be activated in vitro, whereas B-cells from elderly patients can be
activated when only physiologically stimulated (48). The plasma cell
count in the bloodstream of elderly patients was also observed to
decline, as compared to young individuals (49). T-lymphocytes
feature an altered functionality and distribution in old patients,
which is why the susceptibility for infections and other diseases
increases with age (50). A decline in naïve T-lymphocyte output is
due to an age-related regression of the thymus (51). Another effect of
thymus regression in the elderly is a reduced T-lymphocyte
diversity (52).

Taken together, the above listed data shows distinct
immunological differences in elderly, as compared to young
patients. The increased prevalence of lung cancer and COPD
in old subjects, smokers and non-smokers alike, is probably a
synergistic event of cumulative noxa and immunosenescence.
2 THE EFFECT OF SMOKING ON THE
IMMUNE LANDSCAPE

Smoking alters the immune response in different ways, paving
the way for chronic bronchial inflammation and consecutively,
lung cancer and COPD. In this chapter, we give an overview on
the impacts of chronic cigarette smoke exposure on the
immune system.

T-lymphocytes form one major subset of immune cells who
mediate the adaptive immune response (2). Naïve T-
lymphocytes may be activated and differentiated into effector
T-cells, memory- and regulatory T-cells (53). The profound
effect of tobacco smoking on T-cell function, including their
secretion of proinflammatory mediators, has been shown by
various studies (54, 55). One study was performed to analyze
the occurrence of T-cells in bronchoalveolar lavage (BAL) fluid
and in peripheral blood from non-smokers (n=40) and
smokers (n=40) who had a normal lung function, compared
with the result in COPD patients (n=38). CD8+ BAL cells were
more abundant in smokers than in non-smokers (56).
Meanwhile, CD4+ T-cells were found to be lower in the
blood as well as the BAL fluid in the smoking group (56).
Another study demonstrated a disruption of T-helper cell
homeostasis in smokers who developed COPD when
compared with healthy non-smokers (57). Second-hand
smoking also affects the prevalence of T-cells, leading to an
increase of CD3+ T-cells while active smoking increases CD8+
T-cells and lowers CD4+ T-cells (58). Moreover, in circulating
T-cell subpopulations, the percentage of Th17 cells is increased
in COPD patients, and the percentage of Th1 cells is also
increased in COPD patients, and in current smokers without
COPD as well (59). In a mouse model where mice were
exposed to tobacco smoke for a minimum of six months, a
significant elevation of Th1 and Th17 cells was observed (54).
Taken together, murine as well as human studies indicate an
increase of Th1 and Th17 cell subsets to result from chronic
tobacco smoke exposure (2).
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Cytotoxic T-lymphocytes (CD8+ cells) exert a main function
in host immune defense, killing infected or otherwise impaired
cells. In CD8 knockout mice, exposure to chronic cigarette
smoke did not lead to an immune response, inflammation or
emphysema (60). Furthermore, it was shown that IP-10 from
CD8+ cells promoted elastase production from macrophages,
consecutively resulting in elastin fragmentation and lung injury
(60). Based on this result, it is assumed that CD8+ cells play a
major role in the development of COPD. Another study
demonstrated human CD8+ cells from COPD patients or from
smokers without COPD to express more toll like receptor (TLR)4
and TLR9 proteins than controls. An enhancement in cytokine
expression and general activation of circulating CD8+ T cells was
also a direct effect of cigarette smoke exposure (61). A study on
mice with pulmonary emphysema showed cigarette smoke to
increase the percentage of IL-21+ Th17 and IL-21R+ CD8+ T-
cells in peripheral blood, and to upregulate their expression of
IL-17 and IL-21. Consecutively, perforin and granzyme B were
upregulated in the CD8+ cells as well, showing a regulation of
CD8+ T-cell function by Th17 cells in lung emphysema (62).

Also, regulatory T-cell function is disrupted by cigarette smoke
exposure, as it was demonstrated in a study on BAL fluid from
COPD patients or healthy smokers (63). An analysis of women
smoking actively or passively during pregnancy showed a reduced
regulatory T-cell count in the umbilical cord blood, leading to a
higher amount of atopic dermatitis or food allergies in infancy (64).

According to epidemiologic studies, a higher prevalence of
memory B-cells in the peripheral blood and memory IgG+ B-
cells in the lung results from chronic smoking, when compared
to non-smokers (65, 66). Cigarette smoke exposure
downregulated B220+CD34− pre-B-cells and/or B220+CD34+
pro-B-cells in the bone marrow of mice (67, 68).

Memory T-cells (CD3+CD45RO+, CD4+CD45RO+) and class-
switched memory B-cells are elevated as a consequence of chronic
cigarette smoke exposure (65, 69–71). Interestingly, other data
suggests the opposite effect of cigarette smoking on memory T-
cells, namely a significant reduction of CD3+CD45RO+ and CD4
+CD45RO+ memory T-cells in the blood of children exposed to
second-hand smoke, accompanying with augmented percentages of
CD3+ and CD4+CD45RA+ naive T-cells (58).

Not surprisingly, cigarette smoking has been linked to
aberrations in the innate immune system as well (72–74). One
study showed that exposure to cigarette smoke led to an elevation of
IL-33 secretion from epithelial cells and changed the expression
profile of IL-33 cognate receptor ST2 in various immune cells (75).
In the same study, an enhanced proinflammatory response of
macrophages and natural killer (NK) cells in case of inflammation,
due to an augmented expression of ST2 was shown (75). Cigarette
smoking caused inflammatory responses mediated by neutrophils
and monocytes in a murine model, despite activated CD4+ T-cells
being present in the murine lungs (76). This finding indicates that
the innate immunity alone may cause acute inflammation as a
response to smoke stimulation (76). It has been shown that TLRs are
significantly involved in inflammatory responsemechanisms caused
by smoking (77). For instance, an analysis of patients suffering from
periodontitis showed smoking to upregulate mRNA expression of
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TLR2 and TLR4 in the gingival tissue (78, 79). The results of studies
investigating the effect of cigarette smoking on dendritic cells,
however, are contradictory, because it has been found that
cigarette smoke can suppress as well as promote dendritic cell
development both in humans and mice (2, 80, 81). The differences
in the immune response of smokers and non-smokers were
illustrated by a study on the response of primary bronchial
epithelial cells to pseudomonas aeruginosa lipopolysaccharide (82).
Primary bronchial epithelial cells from smokers and non-smokers
were compared in vitro. Bronchial epithelial cells from 16 patients
with COPD, 10 healthy smokers and 9 non-smokers were cultured
and exposed to cigarette smoke, prior to stimulation with
pseudomonas aeruginosa lipopolysaccharide. It was found that
more IL-8 and IL-6 was released from the COPD cultures than
from cells of healthy smokers or non-smokers. Interestingly, pre-
treatment with cigarette smoke reduced the release of IL-8 from the
COPD patients’ bronchial epithelial cells, however, led to an increase
of IL-8 release in the cells of smokers without airway obstruction and
of non-smokers. After cigarette smoke treatment, TLR4 expression,
mitogen activated protein kinase (MAPK) and NF-kB activation
went down inCOPDcultures, but not in the other two groups (82). It
is therefore concluded that exposure to tobacco smoke decreases the
inflammatory response to pseudomonas aeruginosa
lipopolysaccharide in patients with COPD, but not in non-
smokers or smokers without airflow limitation (82).

Mounting evidence suggests that the MAPK signaling pathway
is strongly involved in COPD pathogenesis, contributing to a
chronic inflammatory state by cell chemotaxis, remodeling of the
bronchi and alveoli, insensitivity to corticosteroid treatment and
airflow limitation (83, 84). The knowledge about dysfunctional
MAPK signaling in vivo in COPD led to the investigation of
MAPK inhibitors as possible COPD therapeutics, aiming to
resolve in particular the aberrant neutrophil apoptosis observed in
COPD (85, 86). Also for NF-kB, an involvement in COPD/chronic
airway inflammation has been demonstrated in vivo (87). Therefore,
NF-kB has increasingly become the focus of interest, outlining it as a
potential therapeutic target in COPD treatment, and moreover, in
the context of COVID-19 pneumonia (88).

The above listed data shows the profound impact cigarette
smoking has on the immune function, affecting the innate as well
as the adaptive immune response. Certain immunological
properties, resulting from risk factors of pulmonary
inflammation other than cigarette smoke, may specifically
contribute to COPD and lung cancer in lifetime non-smokers.
3 NON-SMOKING RELATED RISK
FACTORS AND THEIR IMPACT ON THE
IMMUNE RESPONSE

3.1 Air Pollution and Oxidative Stress
3.1.1 The Impact of Air Pollution and Oxidative
Stress on COPD Development
Air pollution is one of the main causes of COPD in lifetime non-
smokers. Acute airway obstruction, exacerbations of asthma and
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COPD and a general increase in emergency department visits
have been reported as a consequence of exposure to particulate
air pollution (89, 90). Rudell et al. published a study where the
adverse effect of diesel exhaust on the airways was investigated
(90). 10 healthy and never-smoking individuals were exposed to
diluted diesel exhaust without a ceramic particle trap for one
hour, three times, with several weeks between exposures. 24
hours after the exposures, bronchoalveolar lavage was
performed. The particle trap reduced the number of particles
found in the BAL fluid. However, diesel exhaust caused a
significant increase in neutrophil count in the lavage fluid. In
vitro, diesel exhaust led to a reduction of phagocytosis by alveolar
macrophages after diesel exhaust exposure with or without
particle trap. In the absence of the particle trap, phagocytosis
was reduced to a greater extent. Diesel exhaust also led to a
migration of alveolar macrophages into the airspace, and a
reduction in CD3+ CD25+ cells was observed (90). These
immunologic events may contribute considerably to chronic
airway inflammation in non-smokers upon chronic exposure
to outdoor air pollution.

Oxidative stress is a main predisposing factor for the
development of COPD (91). In smokers, antioxidant capacity is
obviously reduced due to cigarette smoking, but also in non-
smokers ROS from outdoor air pollution can lead to
immunological changes that endorse COPD development. In
COPD patients, alveolar macrophages are highly activated when
compared to healthy subjects. These macrophages release increased
amounts of ROS in the form of superoxide radical and hydrogen
peroxide (92). Activated neutrophils from the peripheral blood from
patients with COPD exert similar effects, releasing increased
quantities of ROS as well, especially during COPD exacerbations.
Markers of oxidative stress, like hydrogen peroxide, carbon
monoxide and myeloperoxidase, as well as markers of oxidative
tissue damage such as 8-isoprostane and carbonyl stress were shown
to be upregulated in the exhaled breath from COPD patients (93–
96). More than 50 cytokines and chemokines were demonstrated to
be associated with COPD. Intracellular signaling pathways which
are triggered by – or themselves drive – the release of inflammatory
mediators, are susceptible to oxidative stress (91). Continuous
inflammation in the lung tissue contributes considerably to
COPD progression, and therefore a resolution of the
inflammatory response is equally as important in COPD
treatment as its induction. In this context, the clearance of
apoptotic cells by phagocytosis plays a key role. However, in
COPD patients, phagocytosis is impaired, which contributes to
ongoing chronic lung inflammation (97, 98). Oxidative stress by
ambient air pollution or other sources impacts the phagocytosis
capacity, either intracellularly through changes in cytoskeletal
organization (99), or extracellularly by the carbonylation of tissue
proteins, leading to a competition for the same pattern recognition
receptors (PRRs) expressed on alveolar macrophage surfaces that
normally recognize and clear carbonyl-modified proteins and
apoptotic cell detritus (100). Carbonylation caused by ROS was
shown to modify and impair the function of PRRs as well, further
impeding phagocytosis (101). Moreover, oxidative stress is
responsible for the suppression of proinflammatory genes by
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corticosteroids in COPD patients (102). Carbonylation and
nitration caused by air pollution leads to a reduced activity and
expression of histone deacetylase 2 (HDAC2), a prime
transcriptional corepressor of activated inflammatory genes and
the antiinflammatory properties of corticosteroids (103, 104).
According to these data, oxidative stress from air pollution can
cause an increase in the expression of inflammatory genes, a failure
to resolve the inflammatory response, insensitivity to corticosteroids
and a diminished ability to induce endogenous antioxidant defense
mechanisms. All these factors contribute to a more rapid aging of
the lung (105), and may ultimately cause COPD in never-smoking
subjects exposed to constant air pollution.

A study by Wooding et al. was conducted to show the
immunologic mechanisms of COPD caused by outdoor air
pollution in non-smokers (106). It has been shown previously
that neutrophils are recruited to the lung as a consequence of
diesel exhaust exposure. 18 individuals, amongst them never-
smokers (n=7), ex-smokers (n=4) and patients with mild to
moderate COPD (n=7), were included into this analysis.
Following two hours exposure to diesel exhaust and two hours
exposure of filtered air on separate occasions, neutrophil
function in the blood was measured. The amount of circulating
neutrophils was reduced after diesel exhaust exposure as
compared to filtered air (106). The proportion of neutrophil
extracellular traps in the lung was increased in all participants of
this study. The authors confirmed these findings with in vitro
experiments, showing that diesel exhaust particles led to an
increase of neutrophil extracellular traps in isolated
neutrophils. These data indicate the formation of neutrophil
extracellular traps as a distinct mechanism contributing to
airway obstruction and COPD formation in non-smokers.

3.1.2 Air Pollution and Lung Cancer
Apart from COPD and chronic respiratory inflammation, a high
risk of lung carcinogenesis has been attributed to the exposure to
airborne particulate matter (PM) and ozone. PM are a group of
different compounds, where the particle core is variable and there is
a vast array of surface-related features, like heavy metals (107, 108).
Ambient air pollution with PM under the size of 2.5 mm in diameter
has been found to be a causative factor for lung tumors (108–110).
Particles from air pollution can penetrate into the airways and
persist there as particle deposits. PM from combustion sources
cause the generation of ROS, leading to DNA damage. Most
notably in this context are transition metals with redox capacity,
persistent free radicals and redox-cycling of quinones, which may
be activated to ROS, causing bulky adducts or strand breaks of the
cellular DNA (111, 112). The effects of diesel exhaust particles have
been investigated in numerous studies, showing that chronic
exposure results in oxidative stress and radical-induced oxidative
lesions. 8-Oxo-7,8-dihydroguanine (8-oxoGua) can be used as a
biomarker for oxidative stress, measured by high-performance
liquid chromatography (HPLC) and gas chromatography–mass
spectrometry (GC-MS) in biomonitoring studies (108, 113–115).

Ozone has been reported as a pulmonary irritant, causing redox
effects and leading to chronic oxidative stress in the lung tissue
(116). Ozone exposure leads to an increased 8-hydroxy-2′-
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deoxyguanosine (8-OHdG) and heme oxygenase-1 (HO-1)
expression in alveolar macrophages (117). According to
epidemiological studies, individuals who are exposed to combined
air pollutants, e.g. ozone in addition to second-hand smoke or PM,
are at a considerably increased risk of pulmonary diseases due to
chronic oxidative stress and inflammation (118). Oxidative stress is
the key factor in PM-related airway disease, since ROS caused by
inhalation of PM are involved in lipid peroxidation, DNA damage
and oxidative damage of enzymes (119, 120). Antioxidants are
crucial to counteract damage which is – to some degree –
continuously done by ROS. Antioxidants allow for a maintenance
of the redox balance, mediating biotic and antibiotic stress response
and impact gene expression (108, 121). ROS created from airborne
PM were demonstrated to activate MAPK family members as well
as transcription factors, such as NF-kB and AP-1 (activator protein
1). By activation of these molecules, apoptosis, proliferation,
differentiation and ultimately, malignant transformation are
affected (122). Notably, ROS are not only generated as a direct
effect of airborne PM, but also by target pulmonary epithelial cells or
macrophages upon contact with PM (123). Resident macrophages
from the lungs and alveolar spaces can release ROS after
phagocytosis of inhaled PM, which leads to signal cascades
contributing to inflammation and other pathobiological damage
(124). Phagocyte-generated ROS comprise, amongst others,
superoxide anion (O2−·), nitric oxide, free radical (NO·) and
hydrogen peroxide (H2O2) (125). Macrophages are the prime
cellular source of NO· in the lungs, while neutrophils form the
second largest group. The enzyme inducible nitric oxide synthase
(iNOS) serves as an immunological defense mechanism, generating
NO· radicals from L-Arginine, NADPH and oxygen (126). ROS and
RNS are essential for host defense, yet, they can cause considerable
damage to nucleic acids, cellular lipids and proteins. A vast range of
diseases is associated with an increase in ROS, like cardiovascular
disease, neurological disorders, chronic inflammatory conditions,
pulmonary fibrosis and cancer (127). Carcinogenesis is promoted
by ROS because of DNA base modifications, rearrangement of
DNA sequences, miscoding of DNA lesions, gene duplications and
the activation of oncogenes (128). ROS also cause indirect
oncogenic effects that lead to cancer, like the upregulation of
hypoxia response genes, e.g. elevated levels of hypoxia-inducible
transcription factor (HIF-1a) (129).

Oxidative stress results from constant exposure to ambient air
pollution, and can be a causative factor for lung carcinogenesis in
never-smokers. A study by Ito et al. was specifically designed to
evaluate, why the prevalence of primary lung cancer has been
increasing in never-smokers despite the decrease in smokers in the
developed world (130). They investigated the impact of oxidative
stress, possibly caused by outdoor air pollution, in never-smoking
individuals with primary lung cancer. Never-smokers, smokers
with more than 20 pack years and patients with benign lung
diseases were included into the analysis. Serum oxidative stress
and antioxidant capacity (AOC) were examined, and the oxidative
damage on DNA in the lung tissue was examined. AOCwas found
to be significantly lower in never-smokers than in smokers. DNA
damage was most often found in smokers, and also never-smokers
with lung cancer were found to have significantly more DNA
Frontiers in Immunology | www.frontiersin.org 5
damage than subjects with benign lung tumors (130). The authors
conclude that a low AOC in never-smokers with lung cancer
might explain why some individuals are especially susceptible for
lung cancer due to air pollution, even in the absence of smoking as
a prime risk factor. The relation of long-term exposure to air
pollution with lung cancer has been widely acknowledged. Yet,
there is also a short-term association between air pollution and
lung cancer mortality, which was examined in a Chinese study
(131). Data on the daily prevalence of PMwith a diameter <2.5 mm
(PM2.5), and PM with a diameter <10 mm (PM10), sulfur dioxide
(SO2), and ozone (O3), was assessed. These data were correlated
to lung cancer mortality by time-series generalized linear models,
correcting for meteorological factors as a possible confounder.
According to this study, there is a positive association of the
concentrations of PM2.5 and PM10, as well as SO2 with lung
cancer mortality on a given day (131). Moreover, daily ozone
exposure correlated with short-term lung cancer mortality as well.
It was found that each 10 mg/m3 increase of any pollutant was
linked to an excess risk of mortality, with a 7.16% increased risk of
mortality at the highest concentrations. This study also highlights
the important role of oxidative stress caused by air pollution in
lung cancer, not only promoting carcinogenesis but also mortality
from preexisting lung cancer. Another analysis from China was
conducted to investigate the association between spatial air
pollution and lung cancer incidence (132). SO2 had the greatest
effect on lung cancer incidence in the north of China. In the south,
all investigated pollutants (PM2.5, PM10, SO2, NO2, CO and O3)
were significantly linked to an increased lung cancer incidence
(132). The authors of this study also point out that smoking has a
significant synergistic negative effect together with air pollution
(132). Air pollution and the consecutive oxidative stress and
associated immunological changes should therefore be seen as
important contributing factors to lung cancer particularly in
never-smokers, while increasing the lung cancer risk even
further in the smoking population.

Oxidative stress from ambient air pollution or smoking seems
to be the most widely investigated form in the context of lung
cancer and COPD. Still, other sources of free radicals, like for
instance, nutrition- or exercise-related ones, may alter the
immune landscape and contribute to lung disease (133).
Moderate exercise seems to be beneficial in the treatment of
lung cancer and COPD (134), however, it must be kept in mind
that strenuous activity as such leads to increments in ROS (135)
and may actually be harmful. Inadequate or excessive nutrient
intake also promotes or causes oxidative stress, disrupts oxidative
homeostasis and activates molecular pathways that alter the
immune landscape in a pro-carcinogenic fashion (136).
Nutritional oxidative imbalance has been outlined as a risk
factor for cancer, however, the exact immunological aspects in
this context remain to be elucidated in further detail.

3.2 Occupational Exposure to Chemicals
3.2.1 COPD as a Result of Exposure to Occupational
Lung Irritants
Chronic pulmonary inflammation and COPD may also occur as
a response to inhaled toxins, like mycotoxins and airborne
March 2022 | Volume 13 | Article 846605
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particles of asbestos, silica and heavy metals (137). These toxins
cause cell injury, which, as mentioned previously, poses a risk for
lung carcinogenesis. In addition, cellular response to toxic
particles leads to the initiation of immune-mediated repair
processes. Consecutively, sustained inflammation and lung
tissue remodeling leads to COPD. Especially in developing
nations, burn biomass fuels, domestic fires and toxic particles
from occupational exposure are a major risk factor for COPD
(138). Lung inflammation as a response to toxins is a complex
process, involving epithelial cells lining the airways and alveoli
and immune cells from the bloodstream (137). Immune cells also
secrete cytokines and chemokines, as well as growth factors, that
endorse tissue restructuring and fibrosis (139, 140). During the
acute inflammatory phase, neutrophils migrate to the lungs as
first-line response, producing ROS, secreting serine proteases,
matrix metalloproteinases and other proinflammatory enzymes.
Theses secondary molecules lead to alveolar destruction which
may result in COPD (141).

3.2.2 Occupational Lung Carcinogens
In subjects with a history of silica and asbestos exposure, follow-
up studies have suggested an increased risk of lung cancer later in
life (142, 143). As early as the 1960s it was shown that workers
from the textile industry exposed to high amounts of asbestos
dust carried a 10-fold increased risk of lung cancer compared to
the general population (144). In a European multi-center study,
it was confirmed that exposure to silica dust leads to a two-fold
increased lung cancer risk (145).

Generally, chronic exposure to silica and asbestos causes
pneumoconiosis, also known as silicosis and asbestosis, ultimately
leading to progressive lung fibrosis (146, 147). Silica and asbestos
particles, after inhalation, are taken up by alveolar macrophages,
resulting in an increase in the amount of collagenic fibroblasts and
fibrous tissue remodeling surrounding the inhaled particles (148–
150). The impact of silica dust leads to aberrations in antitumor
immunity, contributing to the increased lung cancer risk in subjects
with chronic silica dust exposure. The most critical change happens
on the level of the macrophage, as shown for example by
Rakhmilevich et al. (151, 152). In this study it was demonstrated
that macrophages can be activated by CD40 ligation, consecutively
exerting direct cytotoxicity against cancer cells. Anti-CD40
monoclonal antibody treatment could block tumor growth
effectively, however, this effect was annihilated by silica exposure
(151, 152). The reduction in macrophage count by silica could
therefore promote lung carcinogenesis in non-smokers. Another
effect leading to reduced antitumor immunity in non-smokers
exposed to silica dust is the induction of macrophage and
neutrophil infiltration into lung tissue, resulting in an enhanced
secretion of cytokines, chemokines and ROS (150). In a murine
model, injected silica led to a variety of immunologic changes,
including the recruitment of splenic macrophages and neutrophils,
reductions in B-lymphocyte levels as well as alterations in T-
lymphocyte abundance (153). Silica also caused a five-fold
increase in IL-12 release, and antigen presentation to T-cells in
vitro, as well as the priming of antigen-specific T- and B-
lymphocytes, was largely inhibited. Therefore, despite an
Frontiers in Immunology | www.frontiersin.org 6
abundance of IL-12, macrophage functions which are mandatory
for antitumor immune response are blocked due to silica (154, 155).
It has been acknowledged that silica dust exposure causes FasL
overexpression in lung tissue (156, 157). Therefore, it is assumed
that FasL leads to an increase of macrophage apoptosis in subjects
who are exposed to silica dust, allowing for an unimpeded
proliferation of cells transformed by silica (150). Fas/FasL affects
macrophage function, rendering them unable to activate neither
themselves, nor other cells that are critical to recognize and remove
malignant cells. The interference with normal macrophage function
is one key mechanism by which lung carcinogenesis is endorsed in
non-smokers exposed to silica dust. According to the current
literature, FasL overexpression due to silica leads to an increased
release of TNF-a and other proinflammatory cytokines. However,
despite newly-recruited immune cells due to cytokine release, no
effective defense against already transformed cells is possible. This
can be explained by an increased presence of transforming growth
factor-b (TGF-b), resulting in a shift of FasL from an inflammatory
function to a suppressive one, as shown by Chen et al. (158). In this
study it was demonstrated that an increment in TGF-b blocked
neutrophil activation by FasL and led to a reduced recognition of
tumor cells by immune cells (158). Silica dust leads to an increased
TGF-b expression, as shown by several studies (159, 160). It is thus
assumed that the tumor-promoting effect of silica dust is mediated
by TGF-b, mitigating the function of FasL towards a decreased
release of cytokines or chemokines that are crucial for antitumor
immunity, and causing a shift in FasL-associated activities from an
inflammatory to a suppressive function, so that the removal of
silica-induced transformed cells is largely impeded (150).

Chronic occupational exposure to asbestos and log-term
inhalation of asbestos fibers has been linked to lung-, and
specifically pleural carcinogenesis (161). The function of NK-
cells and CD8+ cytotoxic T-lymphocytes is altered by asbestos
fibers (162, 163), and since these cell types constitute the first-
line anticarcinogenic defense mechanism, directly killing
malignant cells (164, 165), antitumor immune response of
asbestos-exposed individuals is impaired, rendering them
especially at risk for lung and pleural carcinogenesis after a
latency period of 30-40 years (162, 166). A study on the human
NK-cell line YT-A1 showed a significantly reduced expression of
two NK-cell specific activating receptors and of the serine
protease granzyme A usually secreted by NK-cells to directly
kill cancer cells, after continuous exposure to asbestos (150, 167).
Asbestos also reduced the expression of the activating NK-cell
receptor NKp46 in NK-cells stemming from mesothelioma
patients (150, 167). A study on the effect of asbestos fibers on
T-lymphocyte function, where a T-lymphocyte cell line was
exposed to high asbestos dosages, showed a progressive time-
and dose-dependent apoptosis of the T-cells in culture (150).
Moreover, an activation of the mitochondrial apoptosis pathway
was demonstrated, in conjunction with ROS production and
proapoptotic signaling via p38 and c-Jun N-terminal kinase, as
well as the activation of caspases-9 and -3 (150). In line with this
observations, similar effects on alveolar epithelial cells as well as
pleural mesothelial cells were seen upon exposure to asbestos in
vitro (168–171). Maeda et al. also examined the long-term effect
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of asbestos exposure on T-cells in vitro. They found that after one
year of chronic exposure to the asbestos agent chrysotile, the cells
acquired resistance to asbestos-induced apoptosis. In addition,
an increased expression and secretion of IL-10 and of the anti-
apoptotic molecule Bcl-2 was observed (150). The T-lymphocyte
cell line with acquired asbestos resistance also featured an
enhanced TGF-b production along with a reduced production
of IFN-g, TNF-a, and IL-6.

Aside from silica and asbestos, several other occupational
agents have been classified as group 1 carcinogenic agents for
lung cancer by the International Agency for Research on Cancer
(172, 173). Table 1 summarizes these carcinogens as well as the
respective pathomechanisms in relation to lung cancer (adapted
from Algranti et al. and Siemiatyck et al.) (173, 174).

3.3 Pulmonary Fibrosis as a Predisposing
Factor for Lung Cancer
Mounting evidence suggests that fibrotic lung conditions also
predispose individuals to lung carcinogenesis. This was first
assumed based on autopsy studies, where coexisting interstitial
lung disease and lung cancer have been found (175). Idiopathic
pulmonary fibrosis is the most common form of fibrotic lung
disease (176). Many patients with pulmonary fibrosis also have a
history of smoking, rendering them especially susceptible for lung
cancer. Still, non-smokers with fibrotic lung disease seem to have a
higher lung cancer risk as well, as idiopathic pulmonary fibrosis
increases lung cancer risk by 7-20%, regardless of other risk factors
(177). Fibrosis of the lung originates from perpetuated and
excessive connective tissue remodeling in response to recurring
alveolar microinjuries. Excessive deposition of components of the
extracellular matrix leads to an irreversible remodeling of lung
tissue (178, 179). Fibroblasts, during excessive and aberrant wound
healing, respond by hyperproliferation and change to a pro-fibrotic
phenotype resistant to apoptosis (178, 179). Activated fibroblasts
are highly responsive to growth factors and cytokines, e.g. TGF-b,
connective tissue growth factor, platelet-derived growth factor and
IL-6 (179, 180). This chronic low-level inflammatory process leads
to an increased risk of lung carcinogenesis in patients with
pulmonary fibrosis. T helper cells type 1 and 2 (Th1/Th2) play
an important role in the inflammatory phase of pulmonary fibrosis
(181). It was demonstrated in a mouse model that depletion of T-
lymphocytes by means of an anti-CD3 monoclonal antibody
impeded the fibrotic lung remodeling (182). The role of
regulatory T-cells in fibrotic lung disease has not been
completely clarified. A reduction of regulatory T-cells in the
peripheral blood and BAL of pulmonary fibrosis patients was
shown in on study, while other data showed an increase of
regulatory T-cells (183). A pro-fibrotic impact of regulatory T-
cells was shown in one study, increasing TGF-b1 release and
collagen deposit (184). However, in late stages of lung fibrosis,
regulatory T-cells acted anti-fibrotic (184). It may be that
regulatory T-cell dysfunction contributes not only to pulmonary
fibrosis but also to lung carcinogenesis. Particularly in the early
stages of tumor development regulatory T-cells play a crucial role.
A mouse model of mutant Kras-driven lung adenocarcinoma
showed that Kras transgenic mice who lacked FoxP3+ regulatory
Frontiers in Immunology | www.frontiersin.org 7
T-cells were 75% less likely to develop lung tumors (185). Tobacco
smoke led to an increase in FoxP3+ lymphocytes, according to the
mouse study, which poses one among many factors contributing to
smoking-related lung cancer. The depletion of regulatory T-cells
led to tumor cell death at early stages of lung carcinogenesis
according to another mouse study (186), resulting in elevated
levels of granzyme A and B, perforin and IFN-g in infiltrating
CD8+ T-cells. Correspondingly, Xiong et al. demonstrated that
regulatory T-cell depletion was a protective factor in radiation-
induced lung fibrosis (187). Viewing the data on regulatory T-cells
and lung fibrosis, it is evident that they can exert pro- as well as
anti-fibrotic roles, dependent on the stage of pulmonary fibrosis
and the mutual interaction with other T-cells. Th9 and Th22 T-
cells, producing IL-9 and IL-22 were also involved in fibrotic
remodeling of the lung, exerting pro- and anti-fibrotic properties
similarly to regulatory T-cells (188–190). Macrophages, as a source
of proinflammatory and pro-fibrotic cytokines, have been linked to
lung fibrogenesis as well (191). The role of macrophages in lung
carcinogenesis has been widely investigated, showing the
important role macrophages play in this context. Macrophages
make up the majority of tumor-infiltrating immune cells and are a
key link from inflammation to lung cancer (192). Two hypotheses
on the effect of macrophages and lung carcinogenesis have
emerged: An extrinsic pathway driven by inflammatory
conditions increasing the risk for lung cancer, as well as an
intrinsic one driven by genetic changes (192). Tumors triggered
by chronic inflammation at distinct tissue sites are characterized by
infiltrating leukocytes, predominantly macrophages, cytokines,
chemokines and growth factors. Tumor-infiltrating macrophages
secrete ROS and nitrogen intermediates, inducing DNA damage.
In response to tissue damage at sites of chronic inflammation,
inflammatory cytokines are released to recruit cells that initiate
tissues repair. However, the cytokines endorse tumorigenesis
themselves by inhibiting key enzymes (193). Two types of
tumor-associated macrophages are known today: canonically
activated M1 and alternatively activated M2 macrophages. Both
in lung cancer and in lung fibrosis, these two subtypes contribute
considerably to disease progression, exerting beneficial as well as
harmful functions (194, 195). M2 macrophages have been known
to accumulate in fibrotic lungs and have been linked to pro-fibrotic
activities (194). Conversely, anti-fibrotic roles have been reported
for macrophages as well, mediated by diverse mechanisms such as
scavenging of proinflammatory cellular debris, digestion of
extracellular matrix components and by secretion of mediators
inducing myofibroblast apoptosis (196). The effects of
macrophages both in fibrotic lung disease and in lung cancer
may explain why lung fibrosis is linked to lung cancer, and why
changes in the lung microenvironment associated with lung
fibrosis render the patients more susceptible for lung cancer as well.

Neutrophils play a role in chronic inflammation in general, and
their role in lung carcinogenesis as well as in lung fibrosis has been
commonly acknowledged (197, 198). Levels of IL-8/CXCL8, which
is a key chemotactic factor for neutrophil function, are increased in
patients with pulmonary fibrosis (199), and the number of
neutrophils in the BAL fluid correlated well with G-CSF levels, an
important neutrophil growth factor (200). Airway neutrophils are
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generally activated at a higher level in idiopathic pulmonary fibrosis,
compared with healthy individuals, which is demonstrated by
increased levels of their main proteolytic product, neutrophil
elastase (201). Neutrophil elastase is a protease of neutrophil
extracellular traps which are formed as a response to chronic lung
inflammation. One mouse study showed that neutrophil elastase
proteolytically remodeled laminin in lung tissue, leading to the
proliferation of dormant lung cancer cells via the activation of
integrin a3b1 signaling (202). Tissue remodeling processes in lung
fibrosis, mediated by neutrophils, could therefore facilitate
concomitant lung carcinogenesis. Summing up all the above-
mentioned data, a great variety of immunological changes can be
Frontiers in Immunology | www.frontiersin.org 8
linked to fibrotic lung disease. Many of these changes are generally
associated with chronic inflammation or tissue remodeling, paving
the way for malignant transformation of cells. The correlation of
lung fibrosis with an increased risk of lung cancer – particularly in
never-smokers – can partly be explained by these distinct
immunological changes.

Mycotoxins and fungal spores are especially prevalent in damp
buildings or at farms, in the malt and wood industry, i.e. all
occupations that involve handling moldy materials (203). Different
fungi are sources of mycotoxins as secondary metabolites,
including trichothecenes synthesized by the genera Fusarium,
Myrothecium, Trichoderma, Trichothecium, Cephalosporium,
TABLE 1 | Group 1 occupational carcinogens for lung cancer.

Occupational agents or
circumstances of
exposure

Main activities related to exposure Consequence of exposure

Tars, pitch, soot, schist
and bitumen

Dusts stemming from these compounds, such as from street
paving, waterproofing of roofs, oil extraction and charcoal
production

These agents comprise a mixture of potentially carcinogenic
polycyclic aromatic hydrocarbons

Arsenic Respiratory exposure during work with arsenic pesticides, smelting
of copper ore or other ores with arsenic contamination (e.g.
bronze)

Asbestos Manufacture of artifacts of asbestos cement, mining, working with
asbestos compounds like the installation of tiles and water tanks or
the manufacture and installation of brakes and brake pads

Asbestos not only causes lung cancer but also pleural mesothelioma

Beryllium Production of beryllium, manufacture and use of high-hardness
grinding wheels, beryllium salts

Beryllium is also the cause for the chronic lung condition berylliosis

Bis(chloromethyl) ether;
chloromethyl methyl ether

Chemical synthesis in general, intermediate substrate in pesticide-
and resin manufacture

Cadmium Inhalative exposure during cadmium mining, production of nickel-
cadmium batteries and pigments for paints

The chronic respiratory exposure to cadmium dust also causes
pulmonary emphysema

Hexavalent chromium Exposure to stainless steel welding fumes, exposure to chromic
acid mists during electroplating, zinc manufacture

Occupational exposure to
mists and vapors from
acids containing sulfuric
acid

Vapors of sulfuric acids stemming from battery charging, metal
cleansing, manufacture of chemicals/petrochemicals

Occupation of painter House painting, vehicle painting The occupation of painter is associated with a variety of risk factors
including dusts and fumes in surface preparation, exposure to metals
used in paint pigments, anti-rust agents, resins and asbestos

Manufacture and repair of
footwear, occupation in the
leather industry

A statistical association between these professions and cancer of
lung, larynx and nasal cavity has been observed

The cause/pathophysiology remain unknown; it is speculated that
dusts from leather and chemicals used during leather tanning act as
carcinogens

Coke manufacture The preparation of coal coke for steel production is associated with
lung cancer

Coke manufacture leads to a large quantity of fumes rich in polycyclic
aromatic hydrocarbons

Aluminum manufacture The industrial aluminum production exposes workers to tar fumes Polycyclic aromatic hydrocarbons generated in primary aluminum
production

Iron and steel production The industrial iron and steel production leads to tar fume exposure Exposure to iron-production associated metals and polycyclic
aromatic hydrocarbons that evolve during smelting is carcinogenic

Mustard gas A carcinogenic gas used as chemical weapon; extremely irritating
and toxic

Coal gasification The production of gas from charcoal leads to tar fume exposure
Nickel Nickel particles from the nickel refining process; compounds

stemming from stainless steel welding process
Radon Gold mining, iron (hematite) and uranium mining Radon is a radioactive gas that stems from the isotopic decay of

uranium and radium
Free crystal silica All types of exposure that can lead to chronic silicosis The chronic inflammatory process during silicosis is associated with

lung carcinogenesis
Passive smoking Several occupations; for example, barkeeper, working in offices

with smoking exposure, etc.
Talc with asbestiform fibers Industrial handling or mining of silicate, talc and soapstone

geologically contaminated with asbestos
Talc dust (silicate), contaminated with asbestos, has the same effect
as exposure to asbestos
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Verticimonosporium, and Stachybotrys (204). Trichothecenes lead
to a suppression of lymphocyte-related immune response and
stimulate the production of IL-1b by macrophages (205).
Additionally, these toxins inhibit protein synthesis by targeting the
ribosome, impairment of themitochondria and activationofMAPKs
(206). Trichothecenes also upregulate gene expression related to the
inflammatory response, which leads to further ribosome damage
through inflammatory cytokines (207, 208). Deoxynivalenol is a
trichothecene which is found in contaminated cereal grains. It may
exert cytotoxic effects and inflammation synergistically with
particulate matter, inducing the inflammatory response (209).
Animal studies have demonstrated that upon exposure,
mycotoxins not only damage the lung but are distributed to the
liver, kidney and spleen (210). Consecutively, alveolar macrophages
and neutrophils are recruited, promoting pulmonary hemorrhage,
cytokine secretion and ultimately, damage to various organs (211).
Notable, even after ingestion ofmycotoxins, the lung tissue is injured
in response (212).

Ricin is a ribosome-inactivating protein found in beans of the
castor plant Ricinus communis. Ricin aerosol does not occur
naturally but may be used as a biological weapon because of its
high toxicity. Ricin is used as a compound of immunotoxins to
target cancer cells (213). Ricin intoxication leads to a strong
inflammatory cascade, i.e. the migration of neutrophils to the
airways, causing apoptosis and necrosis of lung epithelial cells
(214). Conversely to cigarette smoke, ricin also causes apoptosis
of alveolar macrophages (214). While severe ricin poisoning
leads to interstitial pneumonia, alveolar edema, respiratory
failure and death within days, a sublethal ricin dosage leads to
lung fibrosis and pulmonary hemorrhage (215). Like cigarette
smoke and mycotoxins, ricin increases the expression of
proinflammatory genes in airway epithelial cells and
pulmonary macrophages (137). Both ricin and mycotoxins are
factors predisposing exposed individuals to fibrotic lung disease.
The above-listed inflammatory mechanisms contribute not only
to fibrosis, but to DNA damage of lung epithelial cells as well,
which may lead to lung cancer in the long term. Lastly, also non-
biological chemicals can lead to lung inflammation when
inhaled. These include volatile organic compounds from
household items, office supplies and craft materials, e.g.
formaldehyde, benzene and perchloroethylene, and chronic
exposure results in damage of the lung epithelium, fibrotic
remodeling and malignant transformation (216).

3.4 Second-Hand Smoke, COPD and
Lung Cancer
Second-hand smoke counts among the risk factors for COPD in
non- and never-smokers (217). Similarly, second-hand smoke, also
termed “environmental tobacco smoke”, has been classified as a
main pulmonary carcinogen (218). Second-hand smoke is a
composition of mainstream- and sidestream smoke, wich are
mostly similar in quality and composition (219), yet, sidestream
smoke arises at lower burning temperature and the quantities of its
chemical compounds in vapor and particular phase (i.e. the quantity
of semi-volatile or non-volatile agents) differ from the quantities in
mainstream smoke (220). Certain carcinogens, such as aromatic
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amines, are more abundant in sidestream smoke (220, 221).
Second-hand smoke, once released into the air, has the potential
to aggregate and mix with other types of air pollutants (222).
Smokers are generally exposed to a much larger quantity of
smoke-related carcinogens (221). Interestingly, sidestream smoke
was associated with a higher potency to induce mouse skin tumors,
which gave rise to the assumption that second-hand smoke in non-
smoking subjects might even be more carcinogenic than
mainstream smoke inhaled by smokers (223).

Since data on second-hand smoke, COPD and lung cancer is
gathered epidemiologically, the evidence linking second-hand
smoke to these conditions remains weak (224), and a direct
biological link is difficult to outline. In a mouse study, it was
shown that alveolar macrophage recruitment was increased after
exposure to second-hand smoke in a dose-dependent fashion (217).
Moreover, an increased expression of alveolar macrophage markers
and an increase of the COPD-associated pro-inflammatory markers
CCL2 and TNFalpha was also observed in this study (217), showing
a direct causative effect of second-hand smoke in COPD.

In lung carcinogenesis, second-hand smoke is an established
risk factor (22, 225), however, attempts to epidemiologically
confirm the associated risk have only brought forth disputable
evidence (226). In COPD and lung cancer, the uncertainties in
risk assessment of second-hand smoke exposure have arisen,
because exposure assessment is difficult to standardize, given
temporal variabilities in source, formulation and concentration
of effluent second-hand smoke (227). However, for lung cancer,
the risk does significantly increase due to second-hand smoke
with many years of latency (228). Novel studies have focused on
outlining second-hand smoke biomarkers with the aim to
measure exposure over a relevant time period which augments
the risk of lung carcinogenesis (221, 229). Human epidemiologic
studies on second-hand smoke and lung cancer have been
observational (226), correlating the incidence of lung cancer in
long-term second-hand smoke exposed individuals, such as
family members of smokers, to the level of second-hand smoke
exposure (230). Rodent studies on the carcinogenic potential
have been performed, allowing for a better standardization,
however, animals are usually treated with considerably higher
doses of smoke than humans would be exposed to in real life
(231). Moreover, animals with smoke exposure often respond
with appetite suppression and the consecutive inadequate caloric
intake may further contribute to tumor initiation (231). Thus, it
is difficult to exactly quantify the carcinogenic potential of
passive smoking.

Very few data exists on the immunologic changes induced by
second-hand smoke. Presumably this is due to the assumption that
the changes are very similar to those caused by active smoking. One
mouse study investigated in utero and early-life passive smoke
exposure, and the resulting immunologic changes (232). Changes
in plasma cytokine concentrations and in immune cell populations,
i.e. decreased percentages of B-cells and increased percentages of
myeloid cells were observed in the bone marrow of smoke-exposed
versus controlmice. In the spleen of passive smoke exposedmice, the
abundance of B-cells decreased and that of T-cells increased, whereas
myeloid cells were significantly lower in the peripheral blood in
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smoke exposed mice (232). The authors of this study conclude that
the immune changes resulting from second-hand smoke in utero
and in early life are particularly threatening, contributing to
carcinogenesis by lowering host defense mechanisms. In a review
article about the immunologic changes of second-hand smoke in
humans, it becomes evident that the literature is yet too limited to
draw conclusions on how exactly the immunologic changes
induced by second-hand smoke differ from that of active smoking
(233). Environmental smoke exposure may induce hypersensitivity,
leading to asthma andmay furthermore suppress immunoregulatory
mechanisms. Some studies even failed to detect any immunological
changes in passive smoke-exposed individuals (233). Thus, more
research is clearly warranted on this topic.

3.5 Pulmonary Infections and the Lung
Microbiome Are Related to Lung
Carcinogenesis
There is evidence for an increased risk of lung cancer due to a history
of pulmonary infections caused by Mycobacterium tuberculosis
(234). This evidence is supported by large cohort studies, like for
instance a Chinese analysis amongst individuals with a history of
tuberculosis infection. A positive correlation with lung
adenocarcinoma as well as squamous cell carcinoma has been
shown (235). According to previous data, the risk of lung cancer is
increased by about 50% after a prior diagnosis of tuberculosis (236).
Themore recently the infectionwas diagnosed, the greater the risk of
lung cancer became (236). Moreover, it is discussed whether a
chronic pulmonary colonization with Chlamydia pneumoniae led
to an increment in the risk of lung cancer as well (237). As shown by
serologic testing, a chronic Chlamydia pneumoniae infection
resulted in impaired apoptosis of the infected cells, because IL-10, a
prime immunosuppressive cytokine, was activated, resulting in
reduced antitumor immune response (238). Moreover, an
upregulation of IL-8, mediated by Chlamydia pneumoniae, has
been reported to increase the risk of malignancy, endorsing
angiogenesis and cell proliferation, as shown in amousemodel (239).

The lung microbiome in general seems to impact the likelihood
of lung cancer, in smokers and non-smokers alike (240). Apart
from chronic inflammation and bacterial and viral lung infections,
even periodontal disease and not only pathogenic but also
opportunistic microorganisms can drive lung carcinogenesis in
the long term, as shown for Haemophilus influenzae, Enterobacter
spp., E. coli, Pneumococcus (241), Legionella (242) and Moraxella
genera (137, 243). These pathogens can increase the likelihood of
lung cancer, with an association even with certain histological
subtypes (240). Klebsiella, Rhodoferax, Acidovorax, Comamonas
and Polarmonas genera, for example, are frequently found in the
lung microbiome of small-cell lung cancer (SCLC) patients, but
not in patients with adenocarcinoma (244). It is proposed, that in
some cases not the infection itself increases the risk for subsequent
lung cancer, but the significant disruption of the lung microbial
landscape. Alpha diversity of the lung microbiome, namely the
number of different microbes in one habitat, is usually low in lung
cancer patients. Interestingly, the beta diversity, meaning the
diversity of microbes between habitats is not different when
comparing healthy lungs and those from lung cancer patients
Frontiers in Immunology | www.frontiersin.org 10
(245). In recent years, the importance of the microbiome as an
indicator of malignant transformation was recognized
increasingly. A study on the lung microbiome, comparing
samples from patients with benign and malignant tumors via
next generation sequencing, showed the genera Veillonella and
Megasphaera to be potential lung cancer biomarkers (243).
Moreover, a correlation between Acidovorax genus and SCLC
has been shown (244), and Pseudomonas is associated with lung
adenocarcinoma (240, 246).Within the last decades, the molecular
mechanisms by which microbes endorse malignant
transformation, have been investigated in greater detail. The
microbial carcinogenic effects comprise bacterial toxins,
inflammatory stimuli from immune cells and the direct effects
of microbes on epithelial cells. A study on mice with a
dysfunctional lung microbiome and impaired function of gdT17
T-cells due to long-term antibiotic treatment, showed an increased
risk for Lewis lung carcinoma. The total bacterial count of the lung
microbiome in these mice decreased dramatically, showing that
the commensal microbiome is indeed crucial for anti-tumor
immune cell functions (247). Also bacterial toxins change the
immune landscape in a way that may contribute to tumorigenesis.
For instance, cytolethal distending toxin (CDT), cytotoxic
necrotizing factor 1, and Bacteroides fragilis toxin can damage
the DNA repair system, allowing for malignant transformation
(248–250). In a murine model of A427 non-small cell lung
cancer (NSCLC) it was demonstrated that the toxin of
Cyanobacteria decreases CD36 protein levels and increases the
concentration of PARP1, an enzyme profoundly linked to tumor
development. In the mouse model, these results were proven with
bacteria-positive lung cancer (251). Moreover, heat-inactivated E.
coli bacteria were found to enhance migration and metastatic
dissemination of NSCLC cells in vivo (252). Apart from these
direct effects of microorganisms on lung cancer development, it
was also shown that a shift in the lung microbiome causes ROS
rates to increase. Higher amount of ROS lead to an increase in
DNA damage in the long term and predispose to tumor
development. Interestingly, TP53 mutated lung tumors are
known to be associated with the colonization with Acidovorax
genus in the tissue microenvironment (244).

A disruption of the lung microbiome, triggered by lung
infections or possibly chronic exposure to carcinogenic dusts
or second-hand smoke, may therefore be an important factor
predisposing non- and never-smokers for lung cancer.
4 CONCLUSION

The prime risk factor for lung cancer and COPD is tobacco
smoking. However, in non- and never-smokers, these diseases
also occur because of other noxa not related to tobacco smoke.
When comparing the effects of smoking on the immune
landscape with the damage on lung tissue caused by ambient
air pollutants, oxidative stress in general, occupational toxins and
DNA damage as a side effect of lung fibrosis or pulmonary
infections, the complex changes of the immune landscape are
partly overlapping. Recently it was discovered that the lung
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microbiome also has a profound effect on the immune response,
carcinogenesis and tissue remodeling, which remains to be
investigated in greater detail. It can be said that smoking has a
synergistic adverse effect when co-occurring with the above-
mentioned other risk factors.

Table 2 contains the most important bullet points of this
manuscript, summarizing non-smoking related risk factors for
lung cancer and COPD (Table 2).
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TABLE 2 | Take-home messages of this review article.

Non-
smoking
related risk
factor

Lung cancer COPD

Air pollution • Airborne PM and ozone lead to chronic respiratory inflammation
and create ROS, paving the way for lung cancer

• PM persist in the airways as particle deposits
• Particles from diesel exhaust lead to radical-induced oxidative

lesions
• Day-to-day mortality from lung cancer is associated with airborne

PM readings

• An increase in emergency department visits of COPD and asthma
patients is observed as a consequence of increased particulate matter
readings

• Diesel exhaust is particularly related to COPD development, reducing
phagocytosis of alveolar macrophages

Oxidative
stress

• Ozone, via redox effects, causes chronic oxidative stress in the
lungs

• The exposure to a combination of air pollutants (ozone and PM)
leads to a synergistic increase of lung cancer risk

• Pulmonary antioxidant capacity, as a crucial tumor-suppressive
event, is significantly impaired by ROS

• ROS from ambient air pollution cause immunological changes leading to
lung tissue damage

• Activated macrophages and neutrophils from the bloodsteam of COPD
patients release ROS as well, further promoting COPD development

• Oxidative stress from air pollution increases the expression of
proinflammatory genes, damaging the alveoli

Asbestos • Asbestos exposure is associated with an increased lung cancer,
and especially, pleural mesothelioma risk

• Alveolar macrophages harbor inhaled asbestos fibers, and an
increased amount of collagenic fibroblasts and tissue remodeling
surrounding these fibers is observed

• Immune cell functions, and the associated anti-tumor defense
mechanisms, are impaired due to chronic asbestos exposure

• Chronic asbestos exposure leads to lung tissue remodeling, ultimately
resulting in COPD

• Asbestos and other occupational lung irritants cause an increased
secretion of cytokines and chemokines from immune cells, as well as
growth factors responsible for lung tissue damage

Silica • The anti-tumor activity of alveolar macrophages is largely impeded
by silica exposure

• The loss of normal pulmonary macrophage function is one of the
key events leading to lung cancer upon silica dust exposure

• In mouse models, silica also led to a reduction in B- and T-
lymphocytes, and a reduction in antigen-presentation and priming
of antigen-specific T- and B-lymphocytes

Pulmonary
fibrosis

• Fibrotic lung conditions predispose patients to lung cancer
• Fibrosis leads to a chronic low-level inflammatory state
• Excessive connective tissue remodeling and alveolar microinjuries

render the lung tissue more susceptible for malignant
transformation

• Smoking, in addition to lung fibrosis, synergistically augments lung
cancer risk

Pulmonary
infectons

• Pulmonary infections caused my Mycobacterium tuberculosis
increase the risk for lung cancer later in life

• Colonization with Chlamydia pneumoniae may also increase the
risk for malignant transformation

Lung
microbiome

• Alterations of the lung microbiome by recurrent bacterial and viral
infections (e.g. in immunosuppressed patients) may facilitate
malignant transformation in the lung tissue

• Periodontal disease and opportunistic microorganisms have been
found to alter the lung microbiome, posing a possible risk factor for
lung cancer as well

• Haemophilus influenzae, Enterobacter spp., Pneumococcus,
Legionella and Moraxella genera count among the microbes that
have been linked to lung carcinogenesis
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59. Vargas-Rojas MI, Ramıŕez-Venegas A, Limón-Camacho L, Ochoa L,
Hernández-Zenteno R, Sansores RH. Increase of Th17 Cells in Peripheral
Blood of Patients With Chronic Obstructive Pulmonary Disease. Respir Med
(2011) 105:1648–54. doi: 10.1016/J.RMED.2011.05.017

60. Maeno T, Houghton AM, Quintero PA, Grumelli S, Owen CA, Shapiro SD.
CD8+ T Cells are Required for Inflammation and Destruction in Cigarette
Frontiers in Immunology | www.frontiersin.org 13
Smoke-Induced Emphysema in Mice. J Immunol (Baltimore Md. : 1950)
(2007) 178:8090–6. doi: 10.4049/JIMMUNOL.178.12.8090

61. Nadigel J, Préfontaine D, Baglole CJ, Maltais F, Bourbeau J, Eidelman DH,
et al. Cigarette Smoke Increases TLR4 and TLR9 Expression and Induces
Cytokine Production From CD8(+) T Cells in Chronic Obstructive
Pulmonary Disease. Respir Res (2011) 12. doi: 10.1186/1465-9921-12-149

62. Duan MC, Huang Y, Zhong XN, Tang HJ. Th17 Cell Enhances CD8 T-Cell
Cytotoxicity via IL-21 Production in Emphysema Mice. Mediators Inflamm
(2012) 2012. doi: 10.1155/2012/898053
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