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Abstract

For echolocating bats, hearing is essential for survival. Specializations for detecting and pro-

cessing high frequency sounds are apparent throughout their auditory systems. Recent

studies on echolocating mammals have reported evidence of parallel evolution in some

hearing-related genes in which distantly related groups of echolocating animals (bats and

toothed whales), cluster together in gene trees due to apparent amino acid convergence.

However, molecular adaptations can occur not only in coding sequences, but also in the reg-

ulation of gene expression. The aim of this study was to examine the expression of hearing-

related genes in the inner ear of developing big brown bats, Eptesicus fuscus, during the

period in which echolocation vocalizations increase dramatically in frequency. We found

that seven genes were significantly upregulated in juveniles relative to adults, and that the

expression of four genes through development correlated with estimated age. Compared to

available data for mice, it appears that expression of some hearing genes is extended in

juvenile bats. These results are consistent with a prolonged growth period required to

develop larger cochlea relative to body size, a later maturation of high frequency hearing,

and a greater dependence on high frequency hearing in echolocating bats.

Introduction

Echolocating bats have among the highest frequency hearing in the animal kingdom [1].

While high frequency hearing confers a survival benefit to many animals, it is essential for the

survival of bats, because they rely on echolocation to avoid obstacles, obtain food, and find

roosts and conspecifics. High frequencies also allow bats to control the directionality of calls

[2], [3], determine distance to targets [4], reject non-target echo clutter [5], and resolve fine

spatial details such as shape, size, and texture [6–8]. Furthermore, bats are exceptionally long-

lived for their size, with individuals of some species living more than 30 years [9]. The need for

echolocation throughout life suggests that the ability to hear high frequencies without severe

age-related deterioration may have been under positive selection in echolocating bats. This
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stands in contrast with the occurrence of age-related hearing loss (presbycusis) in humans,

which has been estimated to be 40% among those over 70 [10].

The importance of hearing to echolocators has been illustrated by a number of recent stud-

ies examining the molecular evolution of genes involved in hearing in bats. Several genes

known from human and mouse studies to be crucial for normal hearing, such as transmem-

brane channel-like 1 (Tmc1) and Prestin/SLC26A5, exhibit convergence between the two dis-

tantly related groups of echolocating bats, or even between echolocating bats and whales, such

that gene trees sometimes group echolocators together to the exclusion of non-echolocators

[11–17]. While the results of these studies are compelling, the amount or timing of gene

expression may also contribute to different phenotypes without requiring changes in coding

sequence. Recent studies have shown that changes in gene regulation can influence the physi-

cal differences between bats and other mammals: transgenic mice possessing bat limb enhanc-

ers exhibit prolonged expression of limb elongation genes [18] and develop significantly

longer limbs than control mice [19].

The big brown bat (Eptesicus fuscus) is an insectivore that hunts in edge spaces between

open and cluttered environments [20]. This behavior requires the disambiguation of cascades

of echoes from multiple objects into separate percepts [21–22], which must occur quickly

enough to inform motor decisions in flight. Because echolocation and flight are critical for a

young bat’s survival, the development of hearing occurs concurrently with echolocation calls

and the motor skills involved in flight [23–28]. The echolocation calls of juvenile big brown

bats undergo significant changes between birth and three weeks of age, becoming shorter in

duration and higher in frequency [26–29]. These changes in echolocation call frequencies

likely coincide with changes in their hearing, because the frequency place map of the cochlea

changes as it matures, with higher frequency hearing developing later [30, 31]. Additionally,

the call frequencies of five species of bats were lower in the first year of life than later in adult-

hood, suggesting that fine-tuning of echolocation calls may occur well after the development

of hearing is complete (summarized in [32]).

Because of their dependence on hearing for survival and their relatively well-developed

auditory systems, echolocating bats provide a valuable opportunity to examine postnatal

hearing development in an auditory specialist. Laryngeally echolocating bats possess larger

cochlea [33] relative to basicranial width than non-echolocating or non-laryngeally echolocat-

ing bats [34]. Bats using constant-frequency calls also exhibit overrepresentation of dominant

call frequencies in basilar membrane (BM) dimensions and spiral ganglion density [35], and

extremely short hair cells and stereocilia [36]. A recent study showed that echolocating bats

sustain a high prenatal cochlear growth rate throughout development compared to non-echo-

locating bats and other mammals [37], but which genes change expression during bat cochlear

development is unknown. Here, we report on the expression of selected hearing-related genes

in the inner ears of young big brown bats over a two-week period during which their calls rap-

idly increase in frequency, becoming more similar to adult echolocation calls [26–29]. Because

these pronounced frequency shifts in vocalizations have been reported to coincide with fre-

quency shifts in hearing in several bat species (e.g., [24, 38, 39]), examining gene expression

during this period may provide insight into the regulatory changes associated with the devel-

opment of high frequency hearing.

Materials and methods

Subjects and sample preparation

Pregnant female Eptesicus fuscus were captured in the wild under a permit from the Maryland

Department of Natural Resources. All twelve juvenile subjects were born in captivity. Because
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they were group-housed and cluster together, exact dates of birth could not be directly recorded.

Instead, forearm length was measured with calipers and used to estimate age [40]. Forearm

length is a more accurate age estimator than mass for big brown bats, and results from formulae

relating forearm length to age do not differ between wild and captive bats [28]. Estimated ages

ranged from postnatal day (PND) 9 to 19. Juveniles were weighed, anesthetized with isoflurane

and euthanized via decapitation. All procedures were in accordance with the National Institutes

of Health’s Guide for the Care and Use of Laboratory Animals, and were approved by the Johns

Hopkins University Institutional Animal Care and Use Committee (protocol BA14A111). Sam-

ples were also obtained from two adult individuals under a protocol approved by the University

of Maryland Institutional Animal Care and Use Committee (R-13-76).

Inner ear samples, consisting of the entire otic capsule (both cochleae and vestibular

organs), were collected immediately post-mortem and placed into liquid nitrogen prior to

storage at -80˚C until extraction. Both left and right cochleae from an individual were pooled

and processed together. Samples were homogenized with a mortar and pestle while submerged

in liquid nitrogen. RNA extraction was performed using a mirVana kit (Ambion), with added

proteinase K (Sigma Aldrich) to improve yield [41]. All samples were treated with TURBO

DNA-free DNAse (Ambion) and cleaned with isopropanol and ethanol. Sample quality was

checked on a Nanodrop spectrophotometer and reverse transcribed with M-MLV (Thermo

Fisher) using a 50/50 mix of oligo-dT and random primers to lower the risk of bias or trun-

cated transcripts associated with a single priming method [42, 43].

Gene selection and primer design

Candidate genes were selected based on one or more of the following criteria: upregulated in

an echolocating bat vs. a non-echolocating bat (e.g., [44]); upregulated in an adult mouse rela-

tive to juvenile mouse (e.g., [45]); expressed in mid- to late- development (e.g., [46]); evidence

of parallel or convergent evolution between echolocating bats and whales (e.g., [16]); evidence

of parallel or convergent evolution between distantly related echolocating bats (e.g., [16]); or

involved in formation of essential cochlear structures (e.g., [47]; Table 1). For each gene, all

available mRNA transcripts from Eptesicus fuscus and all bats of the genus Myotis (another

genus in the same family, Vespertilionidae), were downloaded from GenBank (NCBI) and

aligned using Clustal Omega (EMBL-EBI). Sequences from Myotis spp. were included in order

to reduce the risk of designing primers in regions with polymorphic sites. All primer pairs

were designed within the same exon to permit preliminary testing on genomic DNA.

To identify exons in an Eptesicus fuscus transcript, exonic regions of the Myotis lucifugus
transcript, as identified in Ensembl, were blasted against the transcript for Eptesicus fuscus. If

the Myotis transcript was not available in Ensembl, the mouse (Mus musculus) transcript was

used instead. If the exonic region was conserved among Eptesicus and Myotis spp., it was

entered into Primer-BLAST (NCBI). Potential primer pairs were checked for specificity

against Eptesicus fuscus RefSeq data, potential for cross- and self-dimerization, and potential to

form hairpins using Beacon Designer (Premier Biosoft). Only primers that were 100% con-

served across all known transcripts from Eptesicus and Myotis spp. were used for quantitative

PCR. Primer sequences are given in Table 2.

Five-point dilution series (1:3 or 1:4) were performed for each gene and only primer pairs

with efficiencies greater than 90% after exclusion of non-linear dilutions (typically at the high-

est or lowest concentration of template) were selected for use. Post-amplification melt curves

were checked to ensure each product consisted of a single, narrow peak, and gel electrophore-

sis was performed for each amplicon to ensure a single product of correct size was produced

during amplification.
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qPCR and data analysis

For each primer pair, 20 μL reactions were prepared for each of the samples in triplicate using

SYBR Select Master Mix (Thermo Fisher). Glyceraldehyde-3-phosphate dehydrogenase

(GAPDH) was included as a reference gene on each 96-well plate. Fluorescence was measured

using a Roche 480 Lightcycler and melt curves were measured immediately after the comple-

tion of all amplification cycles. Technical replicates that reached threshold two or more cycles

earlier or later than the other two replicates were excluded from analyses.

Table 1. Criteria for inclusion and other relevant information for genes included in this study, and references. In the “Criteria for inclusion column,”

letter codes mean the following: A, upregulated in an echolocating bat vs. a non-echolocating bat; B, upregulated in an adult mouse relative to juvenile mouse;

C, expressed in mid- to late- development; D, exhibits signs of parallel or convergent evolution between echolocating bats and whales; E, exhibits signs of par-

allel or convergent evolution between distantly related echolocating bats; F, participates in forming essential cochlear structures. aMutations in Gjb6 may

cause hearing loss by inducing a downregulation of Gjb2. Gjb6 appears not be critical for hearing, unlike Gjb2 (see [64]).

Gene

symbol

Full name of gene Criteria for

inclusion

Location of gene

product

Morphological effects of deletion

or mutation in mouse models

Associated with

human deafness

(and loci if

applicable)

Sources

Bmp7 Bone morphogenic

protein 7

F throughout cochlear duct loss of position-specific sensory cell

morphology consistent with loss of

tonotopy

yes [48, 49]

Ceacam16 Carcinoembryonic

antigen-related cell

adhesion molecule 16

A, F tallest OHC stereocilia

tips; TM

disruption of normal striated-sheet

matrix of TM, Hensen’s stripe absent

DFNA4 [44, 50–

53]

Col11A2 Collagen type XI alpha 2

chain

A TM, cartilaginous otic

capsule, spiral limbus,

lateral wall, cristae

ampullaris

enlarged TM containing disorganized

collagen fibrils; reduced density of

radial collagen fibers in the TM

DFNA13; DFNB53 [44, 54–

56]

GFAP Glial fibrillary acidic

protein

B supporting cells,

Schwann cells in SG and

osseous spiral lamina

greater loss of OHCs after noise

exposure

[45, 57,

58]

Gjb2 Gap junction protein beta

2

AF gap junctions of

supporting cells

severe degeneration of the organ of

Corti and SGN loss

DFNB1 [44, 59–

61]

Gjb6 a Gap junction beta protein

6

A, F gap junctions of

supporting cells

missing OHCs DFNB1; DFNA3 [44, 62–

65]

LOXHD1 Lipoxygenase homology

domains 1

A, B cochlear and vestibular

hair cell stereocilia

fused stereocilia and ruffled apical

cell surface at cochlear base, leading

to eventual hair cell and SGN loss

DFNB77 [44, 66]

Pou3F4 POU class 3

transcription factor 4

A throughout otic capsule radial bundle defasciculation;

abnormal gap junctions; malformed

stapes footplate; reduced cochlear

coiling; other abnormalities

DFNX2 [44, 67–

69]

Pou4f3 POU class 4

transcription factor 3

C nuclei of cochlear and

vestibular hair cells

loss of auditory and vestibular hair

cells; failure of differentiated hair

cells to develop stereociliary

bundles; loss of spiral and vestibular

ganglion neurons

DFNA15 [46, 70,

71]

Tmc1 Transmembrane

channel-like 1

A, D, E, F MET channels of hair

cells

none DFNA36; DFNB7;

DFNB11

[16, 44,

47, 72–

74]

Tmc2 Transmembrane

channel-like 2

F MET channels of hair

cells

none [72–74]

Tspan1 Tetraspanin 1 B in zebrafish, rostral

mantle cells within

neuromasts

[45, 75]

Ush1C USH1 protein network

component harmonin

A, B, C, F Upper tip link density of

stereocilia bundles;

cochlear and vestibular

neurosensory epithelia

splayed hair cell bundles;

progressive degeneration of hair

cells

DFNB18 [44, 76–

80]

https://doi.org/10.1371/journal.pone.0186667.t001
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For each sample-primer combination on a given plate, the comparative CT method [81] was

used to calculate relative expression. Briefly, delta CT was calculated as the average threshold

cycle of replicates from the gene of interest minus the average threshold cycle of the GAPDH
replicates. To control for any batch effects, delta CT values were adjusted by the difference in

mean delta CT between batches for each gene. Delta CT values were then normalized by sub-

tracting the average delta CT for all juvenile samples for a given gene (yielding delta-delta CT).

Fold expression was calculated as the efficiency-adjusted amplification factor raised to the nega-

tive delta-delta CT. Average CT and calculated fold expression values are given in S1 Table.

We performed t-tests to determine whether the mean adjusted fold expression values of

juveniles differed from adults for 13 genes. We also fitted least squares regression lines between

estimated age and adjusted fold change to identify genes that exhibited age-dependent expres-

sion. All statistical analyses were performed in JMP 13.0.0 (SAS Institute). Figures were gener-

ated in JMP and MATLAB R2015a (The Mathworks).

Results

Adult vs. juvenile expression

Of the 13 genes tested, eight exhibited differential expression between juveniles and adults

(Table 3; Fig 1). Expression was higher in adults for six genes—bone morphogenic protein 7

(Bmp7), carcinoembryonic antigen-related cell adhesion molecule 16 (Ceacam16), collagen

type XI alpha 2 chain (Col11A2), POU class 4 transcription factor 3 (Pou4f3), transmembrane

channel-like 2 (Tmc2), and USH1 protein network component harmonin (Ush1C), and higher

in juveniles for the remaining two genes—gap junction protein beta 2 (Gjb2) and POU class 3

transcription factor 4 (Pou3f4).

Age-related gene expression

Linear fits of adjusted fold change to estimated age revealed that juvenile age over a two-week

period predicted expression for four genes: POU class 3 transcription factor 4 (Pou3f4), trans-

membrane channel-like 1 (Tmc1), and gap junction protein beta 2 (Gjb2) and 6 (Gjb6; Table 3;

Fig 2).

Table 2. Primers used to amplify Eptesicus fuscus cDNA and calculated efficiencies based on dilution series. Efficiencies greater than 100% typi-

cally indicate the presence of inhibitors, the effects of which decrease at lower dilutions.

Gene Forward primer Reverse primer Efficiency (%)

Bmp7 CCTACAAGGCGGTCTTCAGC CGTCGGTGAGGAAGTGGCTA 102.2

Ceacam16 ACATCGTAAGCACAGGCGAC CTGAAGGATGTAGGTGCCCG 102.6

Col11A2 CGAAGTGCTCGTCCAGTGTTG ATCCAGGATACGGGCACCAAA 101.6

GAPDH GGGCTGCCCAGAACATCATC GCTCAGGGATGACCTTGCC 109.4

GFAP CACCGGCTTCAAGGAGACAC TTCTCGATGTAGCTGGCGAAG 101.4

Gjb2 CAGAAGGTCCGAATTGAAGGGT AAGATGACCCGGAAGAAGATGC 108.0

Gjb6 TTCATCGGGGGTGTGAACAAA CACGAGGATCATGACACGGAAG 95.6

LoxHD1 CGAGATCGTCATAGAAACGGGC TCTTTGGATCGGTTCTTCCTGC 102.5

Pou3f4 AGCGATCTAGGCTCTCACCA CATCCGAGGTTGGTGTCTCC 111.0

Pou4f3 TGGATATCGTCTCCCACGGC TGGTATGGTAGGTGGCGTCG 108.3

Tmc1 CTCATCTTTTGGGCTGTGAAG CCCAAGGGTGTCAGGATCTT 102.0

Tmc2 CAGGACTGGTGGGCATCAAC GTTGGATCGGGAGGCTTTGA 107.2

Tspan1 GTGCTCTTGGCTCTCGGTTT AGGGCACACTTGTTCTCAGTG 109.9

Ush1C GCTGGAAGAGGTGAGGCAG CTTGTTGGACTCCATCGCCA 103.9

https://doi.org/10.1371/journal.pone.0186667.t002
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Discussion

Adult vs. juvenile expression

We found significant differences between juvenile and adult bat in inner ear expression of

eight genes. The most significantly upregulated gene in adults was Tmc2 (Fig 1). Tmc1 and

Table 3. Results of two-sided t-tests performed on adjusted fold change between adults and juveniles (left) and bivariate fits of adjusted fold

change by estimated age (right). For all t-tests, there were 13 degrees of freedom, and bivariate fits had 11 degrees of freedom. Fold change values were

adjusted to the mean of all juvenile samples and also to differences in mean juvenile expression between batches (see Materials and Methods). Asterisks

denote level of significance (*p�0.05, **p�0.01, ***p�0.005).

Adult vs. juvenile t-test Age vs. adjusted fold change bivariate fit

t Ratio p Value Mean ± SE,

adult

Mean ± SE, juvenile F ratio p Value Adjusted R2

Bmp7 -3.25** <0.01 6.60 ± 5.44 1.04 ± 0.09 1.75 0.22 0.06

Ceacam16 -3.22** <0.01 6.79 ± 5.61 1.08 ± 0.12 1.88 0.20 0.07

Col11A2 -2.92* 0.01 7.70 ± 6.98 1.17 ± 0.20 0.84 0.38 -0.02

GFAP -1.90 0.08 5.16 ± 4.68 1.55 ± 0.48 0.39 0.55 -0.06

Gjb2 2.21* 0.05 0.30 ± 0.18 1.12 ± 0.14 14.85*** <0.01 0.56

Gjb6 1.89 0.08 0.27 ± 0.23 1.25 ± 0.20 18.62*** <0.01 0.62

LoxHD1 -1.93 0.08 5.24 ± 4.76 1.56 ± 0.48 0.32 0.58 -0.07

Pou3f4 2.31* 0.04 0.28 ± 0.03 1.11 ± 0.14 7.32* 0.02 0.37

Pou4f3 -3.21** <0.01 49.44 ± 48.20 1.15 ± 0.19 1.02 0.34 0

Tmc1 -1.88 0.08 3.03 ± 2.18 1.30 ± 0.24 5.82* 0.04 0.31

Tmc2 -3.97*** <0.01 6.18 ± 4.04 1.06 ± 0.11 1.14 0.31 0.01

Tspan1 1.98 0.07 0.41 ± 0.23 1.12 ± 0.14 3.75 0.08 0.2

Ush1C -3.01* 0.01 7.98 ± 7.27 1.08 ± 0.14 1.49 0.25 0.04

https://doi.org/10.1371/journal.pone.0186667.t003

Fig 1. Log2-scaled means and standard errors of adult and juvenile expression relative to GAPDH. Values were adjusted to

remove the effect of batch and normalized to average juvenile expression (see Materials and Methods). Juvenile data are shown in

light grey, and adult data are shown in dark grey. Asterisks denote level of significance of associated t-tests (see Table 3; *p�0.05,

**p�0.01, ***p�0.005).

https://doi.org/10.1371/journal.pone.0186667.g001
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Tmc2 are expressed in the cochlea and vestibular system [72, 74], and encode components of

the mechanoelectrotransduction (MET) channels of hair cells [73]. Their protein products

may form heteromeric assemblies that confer different electrophysiological properties to hair

cells along the BM [73]. Despite functional redundancy between Tmc1 and Tmc2, mice with a

targeted deletion of Tmc1 are deaf because Tmc2 does not persist in the cochlea beyond early

postnatal ages [72]. In the utricle, Tmc1 and Tmc2 expression continues through the first few

postnatal weeks [72]. These observations in postnatal mice suggest that continued Tmc2
expression into adulthood in bats may be restricted to the balance organs.

Bmp7, Ceacam16, Col11A2, and Ush1C were also upregulated in adults relative to juveniles

(Fig 1). Bmp7 is expressed in a gradient along the basilar papilla, and disruption of this gradi-

ent results in loss of tonotopy and morphological changes in sensory cells [49]. While we

found that it was upregulated in adult bats, another study reported that Bmp7 is downregulated

in the cochlear sensory epithelia of P60 mice relative to P1 mice [82]. Ush1C encodes a protein,

harmonin, that is a component of upper tip-link densities of stereocilia bundles [78]. Muta-

tions in Ush1C are associated with Usher syndrome type 1C in humans [76], and mouse

mutants exhibit splayed stereocilia bundles and progressive loss of hair cells and spiral gan-

glion neurons [77]. Cochlear expression of Ush1C drops prior to birth and then increases into

adulthood in mice [79] and is similarly expressed at higher levels in adult than juvenile bats

(Table 3; Fig 1).

Both Ceacam16 and Col11A2 encode proteins that are components of the tectorial mem-

brane (TM), and their deletion disrupts TM structure [53, 56], resulting in hearing loss [52,

Fig 2. Genes for which the relationship between adjusted fold change and estimated age was significant for juvenile bats.

Values were normalized to average juvenile expression and adjusted to remove the effect of batch (see Materials and Methods).

Asterisks denote level of significance of associated t-tests (see Table 3; *p�0.05, **p�0.01, ***p�0.005).

https://doi.org/10.1371/journal.pone.0186667.g002
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54]. The TM acts as an inertial mass which allows the outer hair cells (OHCs) to amplify BM

motion [83]. Reducing its mass by deleting Tectb improved the frequency selectivity of the BM

and neural response at high frequencies [84]. Ceacam16 may stabilize interactions between

TM glycoproteins, such that cochlear amplification becomes unstable without it [53]. The

upregulation of Col11A2 and Ceacam16 may, therefore, result in a TM structure which allows

bat hair cells to effectively amplify high frequency sounds.

Pou4f3 showed the greatest difference in expression between age groups (Fig 1). Pou4f3 is a

transcription factor implicated in progressive non-syndromic hearing loss in humans [71].

Mice lacking Pou4f3 fail to develop stereocilia bundles [46], resulting in the loss of hair cells

and spiral ganglion neurons [70]. Pou4f3 is expressed into adulthood in mice [46, 70, 85] but is

downregulated in the P60 mouse cochlea compared to P1 [82]. Taken together, the upregula-

tion of Tmc2, Bmp7, Ush1C, Ceacam16, Col11A2, and Pou4f3 in adult big brown bats may

reflect continued development or maturation of the inner ear that continues beyond the time

point at which bats can fly and produce adult-like echolocation calls. The two genes that were

significantly upregulated in juveniles relative to adult bats, Gjb2 and Pou3f4, are discussed in

further detail in the next section, as their expression also correlated with juvenile age.

Age-related gene expression

Four genes were significantly upregulated with age in juvenile bats. Of these, Gjb2, Gjb6, and

Pou3f4 were downregulated in adult bats relative to juvenile bats, perhaps because their roles

in inner ear development were complete (Table 3; Figs 1 and 2). The expression of the fourth

gene, Tmc1, did not differ significantly between juveniles and adults, although standard errors

for adult samples were high due in part to small sample size (Fig 1). While levels of the protein

products (Cx26 and Cx30) of Gjb2 and Gjb6 saturate at P15 in the mouse cochlea [86], we

found that Gjb2 and Gjb6 expression increased through the third postnatal week in the inner

ears of bats. In an earlier report, these genes were significantly upregulated in the inner ears of

an echolocating bat (Myotis ricketti) compared to a non-echolocating bat (Cynopterus sphinx)

[44]. Gjb2 appears critical for cochlear function and is implicated in the most common form of

congenital deafness in humans [59, 87]. Gjb6 has also been linked to human deafness [62],

although the deleterious effects of Gjb6 knockdown in mice are less severe than those of Gjb2
and may be partly caused by associated downregulation of Gjb2 [64, 88].

The upregulation of Gjb2 and Gjb6 may reflect greater numbers of gap junctions in the bat

cochlea. Both genes may participate in the recycling of potassium, the major charge carrier in

transduction (reviewed in [89]). Conditional knockdown of Gjb2 in early postnatal mice

impaired OHC amplification and high frequency hearing [90], consistent with gap junction

conductivity enabling OHCs to respond to higher frequencies [91–93]. The continued expres-

sion of Gjb2 and Gjb6 may also result from prolonged development of the cochleae, which are

relatively large in echolocating bats [33, 34]. A recent paper showed that the relative median

prenatal growth rate of echolocating bats’ cochleae was approximately two and four times

larger, respectively, than that of non-echolocating mammals and non-laryngeally echolocating

bats [37].

Gjb2 and Gjb6 upregulation may provide some protection against hearing loss in echolocat-

ing bats, which depend on hearing throughout their long lives. Conditional knockdown of

Gjb2 in mice at P18 resulted in greater susceptibility to noise-induced hearing loss at P30 and

P45 [94], and mice lacking Gjb6 exhibited abnormal epithelial repair after hair cell loss and

reduced intercellular communication between supporting cells [95]. Cx26 and Cx30 may be

targets of oxidative damage, contributing to age-related and noise-induced hearing loss [96].

The increase of Gjb2 and Gjb6 expression during juvenile development in bats may, therefore,
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be associated with a system of gap junctions that facilitates cochlear protection or repair. After

an hour of broadband noise exposure at 152 dB SPL, adult big brown bats showed no signifi-

cant threshold shifts [97, 98], increase in errors, or changes in echolocation behavior when fly-

ing through a cluttered corridor [99]. Additionally, bat echolocation calls can be as intense as

140 dB, although they last only milliseconds [100], and it is unclear whether wild bats encoun-

ter sounds that could damage their hearing.

Pou3f4 is a transcription factor that has been implicated in X-linked non-syndromic deaf-

ness [67]. Pou3f4 mouse mutants exhibit audiological and balance impairments, reduced coil-

ing of the cochlea [68], and defects in gap junctions [101]. Deletion of Pou3f4 from otic

mesenchyme causes defasciculation of spiral ganglion neurons [69], which could disrupt coor-

dination of hair cell and neuronal frequencies [102]. These studies suggest that the continued

upregulation of Pou3f4 in the developing bat inner ear may be linked to cochlear elongation

and functional organization. One report did not find evidence of positive selection on Pou3f4
among echolocating bats [103], suggesting that change in expression, rather than sequence,

has been more important in bats.

Tmc1 encodes a MET channel protein [73] that localizes to the tip-links of stereocilia [74]

and which is essential for mechanotransduction in cochlear hair cells [72]. Reports of its post-

natal expression pattern conflict: one study found a slight increase, then decrease in Tmc1
expression in the inner ear of mice from P9 to P19, with a net decrease of approximately 8%

over the period [47]. Another study reported a 2-fold increase between P9 and P19 in the utri-

cle and a much greater increase over the same time period in the apex of the cochlea [72]. The

increase in Tmc1 we observed in developing big brown bats is consistent with the latter study,

and with a transcriptomic comparison of the inner ears of bats which showed that 18 hearing-

related genes were upregulated in an echolocating bat compared to a non-echolocating bat,

including Tmc1, which was also upregulated in echolocating bats relative to mice and rats [44].

Although the nature of our samples (entire inner ears) did not permit examination of gene

expression specifically in the cochlea or its basal, high frequency region, the upregulation of

Tmc1 could reflect a greater number of MET channels per hair cell, which might increase sen-

sitivity to high frequencies by strengthening the influx of calcium and reducing the adaptation

time of hair cells (reviewed in [104]). In midshipman fish (Porichthys notatus), fluctuations in

the expression of a calcium-activated potassium (BK) channel conferred greater hearing sensi-

tivity during the breeding season [105], and knockdown of BK channel genes increased thresh-

olds in zebrafish larvae [106]. Alternatively, bat MET channels may contain more Tmc1

subunits. Because mouse hair cells expressing only wildtype Tmc1 had faster adaptation times

than those expressing only Tmc2 or only a Tmc1 mutant [73], MET channels incorporating

more Tmc1 subunits might respond better at high frequencies.

Although only a small set of genes were examined in this study, and we did not manipulate

gene expression directly and monitor subsequent phenotypic effects, this study provides the

first insight into the developmental expression of hearing genes in echolocating animals. With-

out separation of the cochlea from the vestibular organs, it is not possible to ascribe expression

differences to one section of the inner ear or the other. However, Tmc1 and Gjb2 mouse

mutants exhibit hearing loss without vestibular dysfunction, illustrating their greater impor-

tance for audition [47, 60]. Furthermore, hearing genes exhibiting various degrees of conver-

gence between echolocating bats and whales have been implicated in human deafness [11–17],

as have most of the genes we identified as being significantly upregulated with age in big

brown bats. In particular, Tmc1 exhibits both sequence convergence [16] and upregulation

([44], this report) in echolocators, suggesting that in some cases selection may act on both cod-

ing sequence and gene regulation to confer improved hearing in echolocating mammals.
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