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Abstract

Rational protein design aims at the targeted modification of existing proteins. To reach this

goal, software suites like Rosetta propose sequences to introduce the desired properties.

Challenging design problems necessitate the representation of a protein by means of a

structural ensemble. Thus, Rosetta multi-state design (MSD) protocols have been devel-

oped wherein each state represents one protein conformation. Computational demands of

MSD protocols are high, because for each of the candidate sequences a costly three-dimen-

sional (3D) model has to be created and assessed for all states. Each of these scores con-

tributes one data point to a complex, design-specific energy landscape. As neural networks

(NN) proved well-suited to learn such solution spaces, we integrated one into the framework

Rosetta:MSF instead of the so far used genetic algorithm with the aim to reduce computa-

tional costs. As its predecessor, Rosetta:MSF:NN administers a set of candidate

sequences and their scores and scans sequence space iteratively. During each iteration,

the union of all candidate sequences and their Rosetta scores are used to re-train NNs that

possess a design-specific architecture. The enormous speed of the NNs allows an exten-

sive assessment of alternative sequences, which are ranked on the scores predicted by the

NN. Costly 3D models are computed only for a small fraction of best-scoring sequences;

these and the corresponding 3D-based scores replace half of the candidate sequences dur-

ing each iteration. The analysis of two sets of candidate sequences generated for a specific

design problem by means of a genetic algorithm confirmed that the NN predicted 3D-based

scores quite well; the Pearson correlation coefficient was at least 0.95. Applying Rosetta:

MSF:NN:enzdes to a benchmark consisting of 16 ligand-binding problems showed that

this protocol converges ten-times faster than the genetic algorithm and finds sequences

with comparable scores.

Introduction

Computational protein design has become an important tool in molecular biology [1]. Differ-

ent approaches and protocols have proven their reliability for a broad range of applications.

To name just a few design problems, for a protein under study, the informed user can increase
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thermostability [2, 3], alter the binding of ligands [4, 5], redesign interactions with other pro-

teins [6, 7] or design novel catalytic sites [8]. Moreover, the de novo design of catalytically

active proteins is feasible [9, 10] as well as antibody redesign [11, 12].

For challenging design problems that require the modelling of structural flexibility, the tra-

ditional, single-state design (SSD) strategy that is optimal for finding a sequence for one struc-

turally fixed backbone is not sufficient. For example, enzymes adopt different conformations

during a catalytic cycle and more generally, all important biological effects are best represented

by an ensemble of conformational states; for a review see [13]. This is why multi-state design

(MSD) protocols have been introduced, which score a single sequence with respect to confor-

mationally different backbones modelled as states [14–24]. Moreover, MSD allows for negative

design, i.e., the computation of sequences that destabilize certain states related to misfolded

conformations or an undesired binding interaction [25]. However, the more precise MSD

approach has its price due to the demands for higher computational efforts needed for the

identification of appropriate sequences: Considering m states requires scoring each candidate

sequence m times and combining these scores to a global “fitness” value in order to identify

sequences that are optimal for all states. MSD approaches have demonstrated their superiority

in applications like the prediction of mutational tolerance in enzymes [26], the understanding

of thermal adaptation of enzymes [27], the design of influenza antibodies [28], multi-specific

interfaces [29], and multi-substrate enzymes [30].

A well-proven and highly flexible software suite supporting highly diverse problems of pro-

tein design is Rosetta [31] and several Rosetta-based MSD protocols have been implemented

[14, 15, 28]. To determine the fitness of a sequence during the search phase, the 3D residue

positions, whose occupancy can be varied by the software protocol, are decorated with the con-

sidered amino acid side chains. A key element of this assessment is to find an optimal combi-

nation of side chain orientations [32]. Building these optimized 3D (3Dopt) models consumes

most of the computational time needed for the whole protein design protocol. If the occupancy

of n residue positions is unconstrained for a design task, optimal rotamer combinations have

to be found and assessed for 20n different 3Dopt models in an SSD and for m×20n 3Dopt models

in an MSD experiment. Thus, even for design problems of moderate complexity, a hybrid

method that does not require the computation of a costly 3Dopt model to score each of the can-

didate sequences might drastically reduce computation time of Rosetta’s protein design

protocols.

This search for optimal sequences can be considered a problem of multi-dimensional

regression, were every combination of amino acid residues yields one data point of the design-

specific energy landscape. Due to the superior runtime, the usage of a simple regression model

seems an attractive means for the scoring of these residue combinations. However, structure

and function of proteins often depend on nonlinear and nonadditive relationships between

the physical properties of residues [33]. Especially for protein engineering and design, it is

highly recommended to consider these complex interactions [34], which strongly argues

against the usage of simple regression models. In contrast, neural networks (NNs) have proven

well-suited to solve complex classification and regression problems of computational biology

[35, 36]. Thus, we explored, whether we can utilize an NN in a hybrid approach to rapidly sam-

ple candidate sequences during Rosetta protocols. More specifically, we wanted to test whether

the existence of a moderate number of 3Dopt models is sufficient to teach an NN the energy

landscape of a specific design problem. Thus, we implemented the multi-state framework

ROSETTA:MSF:NN and used benchmark datasets to confirm that NNs can learn the design-

specific energy landscapes of protein design. We found that ROSETTA:MSF:NN converges

10-times faster than our previous protocol and samples alternative areas of sequence space.
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Materials and methods

Datasets used for the initial performance test

The dataset HisB_GAraw consisted of 48,588 tuples des seqraw
j ¼ ðaa

j
1; . . .; aaj

14;RS
j
3DMÞ that were

generated by means of Rosetta:MSF:GA:enzdes during 500 iterations of a genetic algo-

rithm (GA) for an ongoing design project. Based on one-hot encoding, each 20-dimensional vec-

tor aaj
pos represented one amino acid residue at position pos of a candidate sequence j. This

experiment was aimed at the redesign of the 14 residues constituting the ligand-binding site of

the bifunctional enzyme HisB-N from Escherichia coli. This enzyme hydrolyses L-histidinol phos-

phate to L-histidinol and phosphate as well as O-phospho-L-serine to L-serine and phosphate. For

this MSD approach, 11 states were used that represented slightly different conformations gener-

ated by means of a short (1 ns) molecular dynamic simulation seeded with the structure of the

N-terminal domain of E. coli HisB (chain A of PDB-ID 2fpu). The sequences enumerated by the

GA are highly similar, due to the preferential introduction of single point mutations.

In order to create a second, non-redundant dataset HisB_GAnr consisting of tuples

des seqnr
j ¼ ðaa

j
1; . . .; aaj

14;RS
j
3DMÞ, the maximal pairwise sequence identity was limited to 70%,

which gave rise to 533 sequences. Selecting the sequences randomly, a training dataset consist-

ing of 67% and a test dataset consisting of 33% of the sequences were created both for HisB_-

GAraw and HisB_GAnr.

Benchmark dataset MD_EnzBench

The dataset MD_EnzBench has been generated previously for benchmarking ligand binding

design based on Rosetta:MSF [3]. It has been deduced from molecular dynamics (MD)

simulations of length 10 ns generated with YASARA (version 14.7.17) and the YAMBER3

force field that has been parameterized to produce crystal-structure-like protein coordinates

[37]. MD_EnzBench consists of 16 proteins protk with bound ligand taken from the scientific

sequence recovery benchmark of Rosetta [38] and each protk is indicated by the PDB-ID. To

introduce conformational flexibility during the MD simulations, the ligand has been removed

and for each of the 16 apoproteins, 1000 conformations have been sampled at an interval of 10

ps. As a structural basis for the subsequent MSD protocol, protein conformations have been

saved every 1 ns and used as states. After sampling, the native ligands have been re-introduced

in all conformations of the respective apoproteins by means of PyMOL:superpose [39].

The design and repack shells of all enzymes have been listed previously [2]. All design shell res-

idues have been replaced with alanine and prior to design, all conformations have been

energy-minimized by means of Rosetta:fastrelax with backbone constraints.

Design and implementation of the NN

The 4-layered architecture of the NN is shown in Fig 1A. The input layer consists of 20n neu-

rons that are supplied with a one-hot encoding of amino acid residues aaj
pos of the n design

shell residues whose composition constituted the candidate sequence under study. The first

hidden layer consists of 10+20n/2 neurons and the second hidden layer of 5+20n/4 neurons.

The output layer consists of one neuron that computes the score RSNN as a real value. Each

layer is fully connected with the previous layer and no bias is used in any layer.

The NN was created using the python package Keras version 2.2.4 and TensorFlow 1.12.0 as back-

end. For initialization, a RandomNormal kernel was used in all layers. Both hidden layers utilize a

tanh and the output layer a linear activation function. The network was optimized by means of

a stochastic gradient descent with momentum. Prior to training, the scores RS3DM computed by
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Rosetta for 3D models, were converted to z-scores. The model was trained for 100 epochs in incre-

mental mode. Note that we used a lightweight NN that does not require the usage of GPUs.

Design and data flow of Rosetta:MSF:NN

Our previously introduced approach Rosetta:MSF:GA utilizes the same strategy as a

recently published generic program [14]: In an outer loop, a GA is used to search sequence

space and for each state, rotamers are optimized in an inner loop. However, Rosetta:MSF:
GA does not operate on a population of 100, but on 239 sequences.

In order to allow for a fair comparison with Rosetta:MSF:GA, the novel NN-based

approach Rosetta:MSF:NN administers for each iteration r a set OPTr of s = 239 sequences,

whose RSj3DM values are used for their ranking; see Fig 1B. These des_seqj sequences represent the

amino acid residues aaj
pos chosen for the positions pos = 1,. . .,n of the design shell under study and

for each des_seqj, the RSj3DM value was computed by means of the chosen Rosetta scoring function.

Initially, Rosetta:MSF:NN generates the set OPT1 consisting of the given seed sequences and

mutants, each with a randomly introduced single point mutation [15]. During each iteration r,
OPTr is added to OPT�r , which contains the shuffled union of all so far chosen des_seqj data. The

updated set OPT�r is used to re-train the NN, which is then utilized to assess an extensive set of Z
novel sequences. The seeds for these novel sequences are the iteration-specific top-scoring

sequences. Per default, Z = 2,000,000 random sequences are generated, which get mutated at a

random number of 1 to n positions of design shell residues to randomly chosen amino acid resi-

dues and are fed into the NN to compute their score RSjNN. The dataset PREDr contains the Z

Fig 1. NN architecture and data generation within Rosetta:MSF:NN. (A) The input layer of the NN contains 20n neurons that process the 20-dimensional

vectors representing the amino acids aaj
pos of the pos = 1,. . .,n design shell residues under study. The output layer consists of one neuron that determines the

RSNN value. The first hidden layer consists of 10+20n/2 neurons and the second hidden layer of 5+20n/4 neurons. All neurons of adjacent layers are fully

connected. (B) During all iterations r of sequence optimization, Rosetta:MSF:NN administers a pool OPTr of s sequences, whose RS3DM values are known. The

union OPT�r of these sequences is growing iteration-wise and used to re-train the NN that has an architecture as in (A). The re-trained NN is utilized for an

extensive sequence scan that computes per default the RSNN values for Z = 2,000,000 randomly generated sequences based on a seed. For s/2 sequences

possessing highest RSNN values, the (costly) RS3DM is computed. These sequences and their RS3DM values constitute the lower half of the updated set OPTr+1. For

the first iteration, OPT1 is initialized with s datasets.

https://doi.org/10.1371/journal.pone.0256691.g001
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sequences des_seqj,r ranked according to their RSjNN values. For the s/2 best scoring candidate

sequences candr, the chosen Rosetta scoring function is used to compute their RSj3DM values. To

prepare the set OPTr+1 utilized in the next iteration, Rosetta:MSF:NN replaces the bottom

half of the OPTr sequences with the s/2 candidates candr. These iterations continue until a user-

defined stopping criterion is satisfied. As Rosetta:MSF:NN was utilized for an MSD protocol,

a separate NN was trained for each individual state of each protein.

Assessing design performance

To determine the score of a candidate sequence des_seqj for an MSD protocol, the mean

Rosetta score was computed:

RSj3DMðdes seqjÞ ¼
1

m

Xm

i¼1

tsiðdes seqjÞ ð1Þ

Here, m is the number of states and tsi(des_seqj) is the Rosetta total score for a sequence

given a state i. In all equations, Rosetta scores are indicated in REUs.

To assess the fitness of a sequence set OPTr of an iteration r, the mean of all s = 239

RSj3DMðdes seqjÞ values was determined:

RSðOPTrÞ ¼
1

s

Xs

j¼1

RSj3DMðdes seqj;rÞ ð2Þ

To distinguish the values related to the NN- and GA-based protocol, they were designated

RSNN(OPTr) and RSGA(OPTr), respectively.

For the determination of the design-specific normalized areas above (NAA) the

RSNN(OPTr) and RSGA(OPTr) values, the areas flanked by the specific RS(OPT1) and RS
(OPT100) values were calculated. For their normalization between 0.0 and 1.0, the lowest value

reached after 100 generations by either of the two protocols was used.

Following trends of sequence sampling

To characterize trends of sequence sampling, for each design protk of MD_EnzBench the com-

position of the sequence sets OPTNN
k;r (r = 1–100) generated by the NN-based protocol was

compared with a well-defined reference sequence set OPTGA
k;d� .

To begin with, for each design protk the reference set OPTGA
k;d� was identified. This set repre-

sents among the first δ = 1−500 GA iterations the earliest generation δ�, whose score value was

most similar to RSNNðOPT
NN
k;100
Þ, which was generated by Rosetta:MSF:NN:enzdes dur-

ing the last iteration of the NN-based protocol. Utilizing the amino acid composition of the

related 239 sequences des_seqj,r belonging to OPTGA
k;d� , a normalized frequency table ftGAk;pos ¼

f GAk;posðaaiÞði ¼ 1 � 20Þ was deduced for each of the n residue positions pos of the design shells.

Analogously, frequency tables ftNNk;pos;r were derived from the 100 OPTNN
k;r sets created during all

iterations of the NN-based protocol. Position-specific Euclidean distances eukrðftNNk;pos;r; ft
GA
k;posÞ�

ðr ¼ 1 � 100Þ were computed according to:

eukrðft
NN
k;pos;r; ft

GA
k;posÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X20

i¼1

ðf NNk;pos;rðaaiÞ � f GAk;posðaaiÞÞ
2

s

ð3Þ
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To assess the mean amino acid variation for each iteration r and each design k, the Euclid-

ean distances were averaged according to:

distk;r ¼
1

n

Xn

pos¼1

eukrðft
NN
k;pos;r; ft

GA
k;posÞ ð4Þ

distk,r values were divided in two groups NNk
1
¼ fdistk;rjr ¼ 1 � 50g and NNk

2
¼

fdistk;rjr ¼ 51 � 100g to distinguish the composition of the sequences generated during the

first and second half of the iterations.

To compute “null model” distributions Rk
1

and Rk
2

that served as references, the frequencies

were shuffled table-wise for each of the 100×n ftNNk;pos;r sets. Afterwards, Euclidean distances to

ftGAk;pos were computed according to Eq 3 and their mean was determined according to Eq 4. The

four protk specific distributions of distk,r values were visualized by means of a box plot.

Results and discussion

A 4-layer NN is able to approximate the energy landscape of a design

problem

Our basic assumption was that an NN can deduce the energy landscape of a design problem, if

it is trained with a small number of sequences, whose design-specific Rosetta scores are

known. In order to test this hypothesis, we had to choose a suitable representation of amino

acid residues, the number of residues fed into the NN, and a network topology. We decided to

represent each amino acid residue aa by means of one-hot encoding. The amino acid specific,

20-dimensional vectors are listed in S1 Table. We restricted the number of residue positions

fed into the NN to those n ones that are subjected to the design process, i.e. belong to the

design shell. To deduce a prediction of the Rosetta score from these 20n features, we opted for

a 4-layered, fully connected, feed-forward network. We chose two hidden layers, because these

feed-forward networks generalize better than those with only one hidden layer [40]. As we

expected mutual dependencies in the occupancy of the structurally adjacent positions of design

shells, we opted for a fully connected architecture, because it is capable of learning any func-

tion [41]. The representation of the candidate sequences proposed an input layer consisting of

20n neurons and an output layer consisting of one neuron that presents the predicted score as

a real value. Based on a grid search for the number of hidden neurons (S1 Fig), we chose a first

hidden layer with 10+20n/2 neurons and a second hidden layer with 5+20n/4 neurons; see

Fig 1A.

For a first assessment of the predictive power of the NN, we utilized the outcome of a com-

prehensive Rosetta:MSF:GA:enzdes run of a HisB-N design, which was based on a

genetic algorithm (GA). Briefly, a GA imitates the process of natural selection by maintaining

a population of design sequences that are evolving for several generations. The MSD protocol

Rosetta:MSF:GA generates candidate sequences by using the well-proven GA of Rosetta

and computes their Rosetta total score averaged over all chosen states; for details see [15] and

references therein. MSD is superior over SSD even for seemingly simpler design task: Com-

pared to SSD, a positive MSD approach similar to the one used here has more clearly identified

for a dataset of 15 design problems the sequences that are optimal for all states [23].

These HisB-N data are from an on-going design project, where we want to accommodate a

new ligand in the binding site of the enzyme HisB-N by altering the occupancy of n = 14 resi-

due positions. During 500 iterations of the GA, the Rosetta scores RS3DM of 48,588 candidate

sequences were computed, each based on a sequence-specific 3Dopt model. This set, which we
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named HisB_GAraw consisted of tuples des seqraw
j ¼ ðaa

j
1; ::; aaj

pos; ::; aa
j
14;RS

j
3DMÞ, where each

20-dimensional vector aaj
pos represents one amino acid at a position pos of a candidate

sequence j and RSj3DM is the corresponding and normalized score (Eq 1) deduced by Rosetta

from specific 3Dopt models. We randomly selected 67% of the HisB_GAraw tuples and used

them to train the NN; for details see Materials and methods. After training, we utilized this

NN to determine predicted Rosetta scores RSjNN for the remaining 33% of the feature vectors

des seqraw
j ¼ ðaa

j
1; . . .; aaj

14Þ.

In Fig 2A, RSjNN values are plotted versus the corresponding RSj3DM values. The clearly visi-

ble correspondence of both scores is evidenced by the high value of the Pearson correlation

coefficient (PCC), which was 0.95 (p<< 1E-100) for the set of all test data. The average error

determined for the test dataset was not larger than 0.96 Rosetta Energy Units (REU). This test

set was generated by the GA and of the 16,196 sequences, not more than 110 contain more

than two mutations. Thus, this dataset did not allow us to study whether the NN is able to cor-

rectly score more strongly deviating sequences.

In order to assess the predictive performance of the NN for more difficult cases, we utilized

HisB_GAraw to deduce the non-redundant dataset HisB_GAnr. By accepting a maximal pair-

wise sequence identity of 70%, 533 tuples were identified that differed at least in four residue

occupancies. The set HisB_GAnr was used to train and test the NN as described above. As Fig

2B shows, the NN performed well also for the more difficult cases: The PCC was 0.97 (p< 1E-

100) and the average error was 1.8 REU.

To generate the plot shown in S2B Fig, we exclusively utilized the 238 HisB_GAraw tuples

generated during the first iteration of the genetic algorithm. For the 80 test cases, the PCC

dropped to 0.62 (p = 1.2E-9) and the average error was 2.9 REU. These values indicate that one

Fig 2. Performance of NNs for sequence sets with different sequence similarities. In both panels, Rosetta scores RSj3DM deduced from 3Dopt models are

plotted versus the Rosetta scores RSjNN predicted by NNs for an enzyme design. Scores are given in REUs and training and test data are represented as dark and

light green dots, respectively. The gray lines indicate the diagonal, i.e. the position of perfect predictions. (A) Performance resulting for the dataset HisB_GAraw

that consists mainly of sequences with point mutations. The PCC deduced from RSj3DM and RSjNN values of the test data was 0.95. For reasons of clarity, a large

number of overlapping dots were removed; the plot shown in S2A Fig contains the full dataset. (B) Performance resulting from the redundancy-free dataset

HisB_GAnr that consists of 533 sequences with a maximal pairwise sequence identity of 70%. The PCC was 0.97.

https://doi.org/10.1371/journal.pone.0256691.g002
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iteration of the GA is not sufficient to sample the complex energy landscape of this design

problem in an adequate manner.

Taken together, we concluded that the representation of amino acid side chains with one-

hot encoding and a trained NN are appropriate to model that part of the energy landscape

(Rosetta scores) sampled by a GA during the problem-specific enzdes calculation.

Rosetta:MSF:NN, a hybrid framework for MSD

The training with the HisB_GAraw tuples generated during the first GA iteration was too

sparse for the complex energy landscape to be learnt by the NN. S2B Fig suggests that the

RSj3DM values of several rounds of sequence optimization are required for an adequate repre-

sentation of this energy landscape. However, one cannot predefine the number of iterations

needed to find optimal sequences for a given design problem, as convergence speed is prob-

lem-specific. Guided by this constraint, we designed a novel protocol for sequence search;

compare Fig 1B. We decided to replace the genetic algorithm of Rosetta:MSF:GA with an

NN-based sequence selection, but to continue keeping a specific set OPTr = {des_seqj,r|1�j�s}
of s optimal sequences for each iteration r. Rosetta:MSF:NN computes the RSj3DM score

based on sequence-specific 3Dopt models only for newly generated elements of OPTr. The

union of all OPTt tuples determined during the preceding iterations t = 1, . . ., r-1 constitutes

the continuously growing training set OPT�r , which is used to re-train the NN for iteration r.
The re-trained NN is then utilized to predict the scores RSjNN of an extensive number Z of

randomly generated sequences; the default value is Z = 2,000,000. For those s/2 sequences with

highest RSjNN values, Rosetta:MSF:NN computes the RSj3DM values based on sequence-spe-

cific 3Dopt models; for details see Materials and methods. To compile the next set OPTr+1, half

of the des_seqj,r tuples are replaced with newly generated ones and their corresponding RSj3DM
values. Analogously to Rosetta:MSF:GA, the user has to execute the novel algorithm for

several iterations until convergence is reached. This hybrid algorithm of sequence selection

combines three major advantages:

1. Due to the high speed of the NN in computing RSjNN values, an extensive number of candi-

date sequences can be assessed, and the RSjNN values approximate the RSj3DM values quite

well. The determination of RSj3DM values for all possible candidate sequences is currently

not feasible due to the computational costs of the 3Dopt models.

2. By merging the iteratively generated sets OPTr that consist of all hitherto found well-scor-

ing sequences, the prediction quality of the NN increases continuously due to the denser

sampling of the problem-specific energy landscape.

3. The iteration-specific determination of RSj3DM values for the sequences with highest RSjNN
values provides a corrective feedback and helps to eliminate less optimal NN predictions.

Encouraged by these promising initial results, we wanted to answer the following four ques-

tions in order to assess the potential benefit of integrating an NN into Rosetta:MSF:

1. Does the use of NNs reduce the number of iterations needed to identify optimal candidate

sequences?

2. How robust is this approach with respect to the chosen features and scoring functions?

3. Does the NN-based approach find sequences with better Rosetta scores?

4. Does the extensive sampling of sequence space lead to candidate sequences not found by

the GA?
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Rosetta:MSF:NN converges 10-times faster than Rosetta:MSF:GA and

enumerates better scoring sequences

For a comprehensive comparison of Rosetta:MSF:NN with the older Rosetta:MSF:GA
protocol, we utilized the previously introduced benchmark MD_EnzBench [15]. This set has

been compiled to test the ability of protocols to rebuild the ligand-binding site of 16 proteins

protk. For each protk, 10 specifically prepared conformations that served as states of an MSD

protocol have been deduced by means of molecular dynamics simulations. Each conformation

contains the bound ligand and in order to increase the difficulty of the design task, all residues

of the design shells were replaced with alanines; for details see Materials and methods.

For these 16 design problems, Rosetta:MSF:GA:enzdes and Rosetta:MSF:NN:
enzdes were executed as 10-state MSD protocols for at least 100 iterations and the NNs were

re-trained during each iteration as described. In order to follow the convergence of the two

design processes, the mean Rosetta score RS(OPTr) (Eq 2) was determined for each iteration r.
RS(OPTr) is the mean of the RSj3DM scores of all sequences related to the iteration-specific set

OPTr. In Fig 3, the protocol-specific convergence is shown for four representative examples

repr_prot = {2dri,2ifb,lopb,2rct}, which are indicated by their PDB-ID, and all 16 designs are

documented in S3 Fig. As can be seen, both protocols find sequences that score considerably

better than the native ones. Most interestingly, the RSNN(OPTr) values dropped more rapidly

than the RSGA(OPTr) values. In order to assess the momentum of convergence numerically,

we determined the normalized area above (NAA) the RSNN(OPTr) and the RSGA(OPTr) values

Fig 3. Convergence of Rosetta:MSF:GA:enzdes, Rosetta:MSF:mmGA:enzdes, and of Rosetta:
MSF:NN:enzdes. The three protocols were utilized for each of the four designs from repr_prot. The mean Rosetta scores

RS(OPTr) were determined in REUs for each iteration r = 1–100 and plotted. The blue lines represent the RSNN(OPTr)

values, the orange lines the RSGA(OPTr) and the green line the RSmmGA(OPTr) values. The dashed horizontal line marks

the score of the relaxed native protein; the PDB-ID of the corresponding native protein is indicated. The Rosetta:
MSF:GA:enzdes and Rosetta:MSF:NN:enzdes plots for all 16 designs are shown in S3 Fig. mmGA is a genetic

algorithm that introduces multiple mutations.

https://doi.org/10.1371/journal.pone.0256691.g003
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in analogy to a ROC curve [42]. An NAA value gets close to 1.0, if the curve drops vertically to

its minimum during the first few iterations. In Table 1, the NAANN and NAAGA values are

listed for all 16 designs as well as the numbers n and ss of design shell residues and second shell

residues; for their definition see [8]. The comparison of the design-specific NAANN and

NAAGA values confirmed that Rosetta:MSF:NN:enzdes converged much faster than the GA-

based protocol: The mean RSNN(OPTr) value was 0.95, whereas the mean RSGA(OPTr) value

was 0.63. Although trained with relatively few examples during the first iterations, Rosetta:

MSF:NN:enzdes found more rapidly sequences with low Rosetta scores than the GA-based

protocol did.

To estimate the performance gain, we determined for each design k the first iteration r�k ,

whose RSNN(OPTr) value reached the RSGA(OPT100) value of iteration 100 of Rosetta:
MSF:GA:enzdes. As Table 1 shows, the r�k values varied between 6 and 10; this spread

reflects most likely the differing complexity of the design-specific energy landscapes. On aver-

age, 7.6 iterations of the NN-based protocol were sufficient to find sequences that scored as

good as those created by the GA-based protocol in iteration 100. We concluded that

Rosetta:MSF:NN:enzdes converges approximately ten times faster than the GA-based

protocol. A sevenfold gain results, if one compares for both approaches the first iterations rnativek;GA

and rnativek;NN that generated a sequence set OPTr having native-like Rosetta energies. On average,

the GA needed 25.8, and the NN approach not more than 3.8 iterations; compare Table 1.

Interestingly, convergence speed seems uncorrelated with the number of the design shell resi-

dues; of the three Spearman rank order correlation tests of n with NAANN, NAAGA, and r�k ,

none gave a statistically significant result.

Table 1. Performance comparison of the GA- and NN-based protocols.

PDB-ID n ss NAAGA NAANN r�k rnativek;GA rnativek;NN

1fzq 20 29 0.59 0.96 8 32 4

1hsl 19 42 0.73 0.96 9 16 3

1j6z 27 45 0.75 0.95 9 31 5

1n4h 25 51 0.62 0.95 7 19 3

1nq7 28 57 0.62 0.95 9 24 4

1opb 22 50 0.57 0.93 10 21 4

1pot 19 41 0.67 0.94 7 4 2

1urg 19 40 0.56 0.96 7 24 3

2b3b 17 46 0.68 0.97 6 25 3

2dri 19 42 0.67 0.97 6 29 4

2ifb 22 54 0.63 0.95 8 18 3

2q2y 23 34 0.67 0.96 8 47 5

2qo4 22 40 0.58 0.96 7 25 4

2rct 22 51 0.57 0.94 7 17 4

2rde 20 35 0.61 0.93 7 19 4

2uyi 23 35 0.61 0.96 7 61 5

Average 22 43 0.63 0.95 7.6 25.8 3.8

All values were determined for each of the k = 16 proteins (indicated by their PDB-ID) from the MD_EnzBench set. n is the number of design shell residues and ss the

number of second shell residues, respectively. The NAAGA and NAANN values specify the area above the plots of the corresponding RS values for the GA- and NN-based

protocol. r�k is the number of the first NN iteration, whose RSNN(OPTr) value reached the RSGA(OPT100) value that served as a reference. The rnativek;GA and rnativek;NN values

indicate for the GA- and the NN-based protocols the number of the first iteration that generated a sequence set having native-like Rosetta energies.

https://doi.org/10.1371/journal.pone.0256691.t001
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The comparison of the NAANN and NAAGA values and the plots shown in S3 Fig indicate

that Rosetta:MSF:NN:enzdes finds for a given number of iterations better-scoring

sequences than the GA-based protocol. If both protocols were executed for 100 iterations, the

RSNN(OPT100) value was superior to the RSGA(OPT100) value in all designs; compare S3 Fig.

These findings confirm that the NN can beneficially exploit the extensive sampling to identify

sequences with superior Rosetta scores.

The notably reduced number of iterations that are sufficient for Rosetta:MSF:NN:
enzdes to reach a minimum, leads to time savings, if one condition is met: The protocol is

faster, if the extra time required to train and use the NN has no drastic effect on the computing

time needed to create a new generation of sequences. In order to estimate runtimes, we com-

pared the performance of the GA- and the NN-based approach for the HisB design. For a fair

comparison, execution times were determined for designs running on one CPU.

Most expensive was the determination of the RSj3DM scores and Rosetta:MSF:GA:
enzdes required constantly 32 h for each iteration. In contrast, the execution time of

Rosetta:MSF:NN:enzdes increases linearly with the size of the training set, which grows

due to the union of the OPTr sets. During the first iteration, two minutes were required for

training and approximately 15 minutes for the determination of the new candidate sequences.

For generation r, execution time t(r) accumulated to

tðrÞ ¼ r � ð32hþ 10minÞ þ
Xr

s¼1
ðs � 2minÞ.

This minor increase of the iteration-specific execution time is more than compensated by

the reduced number of iterations: As Table 1 shows, Rosetta:MSF:NN:enzdes needs on

average only eight iterations to find sequences having scores comparable to those from genera-

tion 100 of Rosetta:MSF:GA:enzdes. Thus, for a design task whose complexity is com-

parable to the HisB case, the GA consumes approximately 3200 h to finish 100 iterations. In

contrast, the NN-based approach needs not more than 8 iterations, which are finished after

256 h + 80 min + 72 min, i.e. after less than 260 h. This approximation makes clear that the

faster convergence of Rosetta:MSF:NN:enzdes has a drastic effect on runtime due to

the relatively minor expense added by the NN.

In principle, the NN-based protocol is applicable to all design algorithms that fulfill two

prerequisites: i) The algorithm can provide tuples des seqj ¼ ðaa
j
1; ::; aaj

pos; ::; aa
j
n; 3D � scorejÞ

each consisting of a sequence and the corresponding 3D−scorej. ii) The algorithm can process

the NN output, which is a list of newly generated des_seqj candidates. The NN-based protocol

is most useful, if the calculation of approximative 3D � scorejapprox values reduces execution

time, which has to be determined for each application. For example, protein design by means

of EvoEF2 [43] or FoldX [44] is relatively fast: EvoEF2 is capable of designing de novo proteins

consisting of 200 residues in 15 min and FoldX is at most five times slower [43]. Thus, the

additional expense for training and using an NN does not seem justified for these applications.

Rosetta:MSF:NN performs well with different representations of amino

acid residues, scoring functions, and design protocols

In order to assess the robustness and the applicability of Rosetta:MSF:NN, we performed

additional redesign experiments of the four proteins from the set repr_prot. First, we wanted

to make plausible that the performance of Rosetta:MSF:NN does not critically depend on

the chosen one-hot encoding of residues shown in S1 Table. For the experiment named

NN_FT, residues were not represented by one-hot encoding, but by vectors indicating the five

features “volume”, “polarity”, “isoelectric point”, “hydrophobicity”, and “mean solvent accessi-

bility” [45]; compare S2 Table. The analysis of the plots shown in S4 Fig reveals that this
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alternative residue representation does not reach the performance of one-hot encoding, but

performs better than the GA: In all cases, the NN-based algorithm converged faster than the

GA-based one.

For all designs presented so far, we utilized the REF15 scoring function [46]. In order to

make plausible that the convergence of Rosetta:MSF:NN is not dependent on a specific

scoring system, another four redesign experiments were performed for the proteins from

repr_prot by using the alternative talaris [47] scoring function: A clear convergence gain of the

NN- over the GA-based protocol is confirmed by S5 Fig for the talaris scoring function as

well.

The FastDesign (FD) protocol iterates between sequence optimization and structure

refinement and has been used to design novel protein folds and assemblies [48], but also for

enzyme design [49]. For an initial assessment of the NN’s ability to find proper sequences in

the FD-specific energy landscape, we applied the settings “FastDesign (with ligand)” intro-

duced recently [49] to the four proteins from repr_prot. For a comprehensive sampling of the

energy landscape and an initial training of the NN, we used FastDesign to enumerate for

each protein 1000 sequences FD
1000
¼ des seqFDj¼1� 1000

¼ ðaaj
1; ::; aaj

pos; ::; aa
j
n;RS

j
FDÞ, which is

more than twice of the designs used elsewhere [49]. As Table 2 indicates, the extensive sam-

pling has no drastic effect on the scores: The mean of all 1000 RSjFD-values and of the 250 best

ones (FDbest250) differed at most by 6.5 REU. As already observed with the enzdes protocol,

the native sequences were scored worse than the designs. The RSnativeFD values of 2dri, 2ifb, 1opb,

and 2rct were -894.4, -391.1, -419.5, and -434.8, respectively.

For each protein, the 1000 sequences and their RSjFD-values were used to train an NN. The

trained NNs were utilized to score Z = 2,000,000 randomly generated sequences and in analogy

to our other comparisons, those 250 ones possessing the highest RSjNN-values were selected. To

assess the quality of the NN predictions, these sequences were scored by means of FastDe-
sign and the mean values were determined. As Table 2 indicates, the NN(FD1000) approach,

i.e. a singular training of an NN with 1000 optimal cases performed poorly: In all four cases,

the mean values were more than 25 REU worse than the mean FDbest250 values.

Most plausibly, the poor performance is (also in this case) due to the lack of unsuitable

sequences in the training set. As a compensation, we applied the following protocol that iterates

between FastDesign steps and NN-based sequence predictions: Initially, FastDesign

Table 2. Performance of FastDesign and a protocol based on four iterations of NN training.

2dri 2ifb 1opb 2rct

RSFD distFDr RSFD distFDr RSFD distFDr RSFD distFDr
FD1000 -929.3 - -407.6 - -438.0 - -459.0 -

FDbest250 -934.0 - -412.7 - -442.7 - -465.3 -

NN(FD1000) -880.0 0.50 -386.0 0.49 -391.1 0.46 -435.4 0.51

OPTFD
1

-929.8 0.03 -407.7 0.04 -438.0 0.04 -459.1 0.05

FDNN_1 -889.4 0.51 -370.4 0.43 -404.1 0.48 -413.7 0.52

FDNN_2 -897.8 0.38 -382.4 0.37 -385.8 0.55 -432.6 0.34

FDNN_3 -924.8 0.38 -400.0 0.43 -437.5 0.38 -448.5 0.39

FDNN_4 -933.2 0.50 -410.8 0.56 -442.2 0.50 -457.7 0.41

The RSFD columns list mean FastDesign scores and the distFDr columns frequency distances for designs with the four proteins from repr_prot. Rows FD1000 and

FDbest250 represent the values related to 1000 and the best 250 FastDesign sequences. The NN(FD1000) values resulted from an NN training with the FD1000

sequences. The OPTFD
1

values represent the initial training set of an iterative training that generated the output FDNN_1 to FDNN_4.

https://doi.org/10.1371/journal.pone.0256691.t002
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was used to generate 250 sequences, which served in combination with their FastDesign

scores RSjFD as training cases OPTFD
1
¼ des seqFDj¼1� 250

¼ ðaaj
1; ::; aaj

pos; ::; aa
j
n;RS

j
FDÞ. After train-

ing, the NN was used to generate Z = 2,000,000 sequences and those 250 ones with highest

RSjNN-values were scored by means of FastDesign and stored as the result FDNN_1. The

union of this sequence set and of OPTFD
1

gave the training set OPTFD
2

. During the second itera-

tion, the NN was trained with these 500 sequences and used to create 250 sequences constituting

FDNN_2. For these sequences, their RSjFD score was determined and they were merged with

OPTFD
2

to the training set OPTFD
3

. During a third and a fourth iteration, the NN was trained

with 750 OPTFD
3

and 1000 OPTFD
4

sequences, and the two sets FDNN_3 and FDNN_4 were gener-

ated, each consisting of 250 sequences and their RSjFD scores.

The iteration-specific mean RSFD values shown in Table 2 confirm that this approach per-

formed much better than the single-iteration training with 1000 sequences: For three proteins,

the mean FDNN_4 value differed not more than 2 REU from the FDbest250 value and the maxi-

mal difference was 7.6 REU. These findings suggest for most cases that the corrective feedback

generated during a minimum of four training iterations is sufficient for an NN to learn the

FastDesign specific energy landscape. Iterative training is more effective, as the newly com-

puted RSFD values provide valuable feedback and allow the NN to avoid false positive

predictions.

In summary, these results emphasize the capability of the NNs to learn a problem-specific

energy landscape modelled by means of different residue representations, scoring functions,

and protocols.

The extensive sampling of the sequence space finds alternative minima

With default values, our NN-based approach allows per iteration the assessment of 2,000,000

alternative sequences; in contrast, the GA-based approach generates less than 120 novel candi-

dates per generation. We were interested to find out, whether this rigorous widening of search

space sampling had a pronounced effect on the composition of the enzdes outcome. It is dif-

ficult to compare precisely the composition of two sequence sets, thus we opted for an approxi-

mate approach, namely the comparison of amino acid frequency tables.

To characterize trends, we wanted to compare for each design protk of MD_EnzBench the

composition of the sequence sets OPTNN
k;r (r = 1–100) generated by the NN-based protocol with

a fixed reference sequence set OPTGA
k;d� consisting of sequences generated by a late iteration of

the GA-based protocol. If both protocols sample the same area of sequence space, the amino

acid composition of the NN-based outcome should iteratively approach the amino acid fre-

quencies of the GA-based reference.

To begin with, we determined for each design protk of MD_EnzBench the set OPTGA
k;d�

among δ = 1,. . .,500 GA iterations. It belonged to the first generation δ� whose sequence set

OPTGA
k;d had a score comparable to that of the OPTNN

k;100
set. In order to estimate compositional

differences, we deduced for each of the n design shell residue positions pos a reference fre-

quency table ftGAk;pos ¼ f GAk;posðaaiÞði ¼ 1 � 20Þ from OPTGA
k;d� and further frequency tables ftNNk;pos;r

from all of the 100 OPTNN
k;r sets. Euclidean distances eukrðftNNk;pos;r; ft

GA
k;posÞðr ¼ 1 � 100Þ (Eq 3)

were computed and their mean distk,r determined according to Eq 4. In order to assess the pro-

gression of compositional differences, these were divided into two groups NNk
1
¼

fdistk;rjr ¼ 1 � 50g and NNk
2
¼ fdistk;rjr ¼ 51 � 100g consisting of the outcome of the first

and second half of the iterations. In order to generate “null model” distributions Rk
1

and Rk
2
, the

ftNNk;r frequencies were shuffled prior to the computation of their Euclidean distances to ftGAk .
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For each design protk these four distributions of distances were visualized by means of a

box plot. Fig 4 shows that in all four cases from repr_prot, the mean of the distances sampled

with the two null models Rk
1

and Rk
2

was close to the maximally possible distance, which is
ffiffiffi
2
p
� 1:4. All NNk

1
and NNk

2
distributions had lower, but substantial distances to ftGAk . The

sequences found for 2dri by the GA- and NN-based protocols resemble each other to a certain

extent (mean 0.2), but those found for the other three designs are more dissimilar

(mean > 0.56). This finding suggests that the GA- and the NN-based protocols concentrate on

different regions of sequence space. In all four cases, the NNk
1

spread (first half of iterations) of

the distances was larger than the NNk
2

spread, which indicates the convergence to a minimum.

The remaining 12 designs have similar variations of their box plots patterns; compare S6 Fig:

The smaller NNk
2

values indicate the focusing on a certain region of sequence space, which dif-

fers in all cases from the one chosen by the GA: For 8 of the 16 designs, the mean of the NNk
2

distances was > 0.4. In summary, we concluded that the GA and the NN protocols find differ-

ent minima of sequence space in 8 of the 16 designs.

We expected that the NN finds also alternative minima of the FastDesign energy land-

scape. Thus, we determined for each of the four proteins from repr_prot mean distFDr values by

comparing FD1000, i.e., the 1000 sequences generated by FastDesign, with the four

sequence sets FDNN_r each comprising 250 sequences generated by the NN after training with

250, 500, 750, or 1000 sequences scored by means of FastDesign. The values were added to

Table 2, are comparable to the differences between the GA and the NN protocols and propose

the usage of an NN to broaden the sampling of the FastDesign energy landscape.

Epistatic effects may cause alternative minima

The region of sequence space optimal for a given protein backbone seems relatively limited to

the neighborhood of the native sequence [50]. Although scoring better than native ones, the

Fig 4. Amino acid frequency distributions for the outcome of the first and second half of design protocols. The

boxplots represent the distributions of mean distances between amino acid frequencies tables ftk,pos,r related to the

iterations of the NN-based protocol and a reference table ftGAk;pos from the GA-based protocol; compare Eq 3 and Eq 4.

The group NNk
1

contains the distributions related to the first 50 and NNk
2

the distributions of the second 50 iterations.

For the computation of Rk
1

and Rk
2
, the values of each table ftNNk;pos;r were shuffled; for details see Materials and methods.

The boxplots show the results for the four designs with the set repr_prot.

https://doi.org/10.1371/journal.pone.0256691.g004
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sequences generated by the GA and the NN for the design shells were markedly different,

which prompted us to find an explanation.

One reason could be that the width of sequence sampling differs markedly between the GA

and the NN protocol. In order to compare the sampled sequences space, we determined

sequence variability of the s/2 sequences (candGA
r ; candNN

r ; see Materials and methods) that

were generated by the GA or the NN and used to replace the bottom half of OPTr during each

iteration r. Each sequence from a candr set was compared to the most similar one from OPTr

to determine the number of newly introduced mutations. Sequence variability deduced from

100 iterations is shown in Table 3 and that of the first 10 iterations in Table 4, because the ini-

tial iterations are crucial for NN training. Both distributions demonstrate that the GA gener-

ated the candGA
r sequences mainly by introducing single point mutations, whereas the NN

introduced up to 18 mutations to generate a candNN
r sequence. These findings indicate that the

NN approach samples sequence space much broader than the GA and generalizes well,

because these highly mutated sequences reach high RSj3DM values. Moreover, these results make

clear that the NN is trained with a broad sequence set, because the RSj3DM values of these novel

and diverse candNN
r sequences are part of the training set utilized by the next iteration r+1.

It is known that mutual dependencies in the occupancy of residue positions drastically

affect the fitness landscape as has been confirmed in silico [51] and experimentally [52, 53]. As

a consequence, high-order epistasis constrains the adaptive pathways that can be followed by

evolution [54], because each given occupancy of residue positions severely restrains the subse-

quently tolerated mutations.

The design shells used here consist of a small number of highly constrained residue posi-

tions and the above findings strongly suggest that their occupancy is mutually dependent.

Table 3. Comparison of sequence heterogeneity in candidate sequences added to OPTr during r = 100 iterations.

Mutations 2dri 2ifb 1opb 2rct

GA NN GA NN GA NN GA NN

1 11551 10606 11551 9562 11551 9019 11551 9226

2 708 1527 1738 1456

3 123 259 297 327

4 71 145 98 134

5 38 65 84 99

6 44 37 73 110

7 32 29 99 109

8 31 20 126 62

9 28 19 57 40

10 11 19 28 24

11 14 6 17 31

12 3 7 22 16

13 2 5 10 23

14 4 3 17 26

15 1 1 21 14

16 3 11 12

17 2 11 8

18 3 2

The table lists numbers of candidate sequences candGA
r¼100

and candNN
r¼100

grouped according to their differences (number of mutations) to the most similar sequence from

OPTr = 100. For this analysis, r = 100 iterations of the designs for the four proteins from repr_prot were analyzed.

https://doi.org/10.1371/journal.pone.0256691.t003
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Analogously to the evolution of native proteins, each design protocol induces a specific chrono-

logical order of residue substitutions and a trajectory that is–under these circumstances–most

likely inaccessible, if the order of mutations is different. Thus, if GA and NN choose dissimilar

residues for some key positions during the first iterations, the sequence space available to subse-

quent candidates will be different, if epistasis is dominant. In order to illustrate the existence of

epistatic effects, we analyzed mutual dependencies of residue pairs in four design shells.

We manually compared sequence logos resulting from GA and NN generation 100 and

searched for positions that were occupied by strikingly different residues. By inspecting the 3D

structure of corresponding design candidates, consequences, i.e. pairwise mutual dependen-

cies, of these choices were made plausible. Fig 5 illustrates differences in the orchestration of

the design shells of repr_prot proteins generated by GA and NN protocols; all arrangements

are valid with respect to orientation and Rosetta scores. In the design shell of 2dri, we found

mutual dependencies in the occupancies of positions 15 and 235. The GA chose at position 15

preferentially Ala or Asp and at position 235 Glu. In contrast, the NN preferred at position 15

Phe and at position 235 His. In the design shell of 2ifb, the occupancies of residue positions 70

and 72 are mutually dependent: The GA prefers for position 70 His and for position 72 Asn.

The NN chose at position 70 Tyr or Phe and at position 72 Leu. In the design shell of 1opb, the

GA selected for position 40 Ala and for position 53 Phe or Trp. In contrast, the NN introduced

at position 40 His or Ile and at position 53 Val or Ser. In the design shell of 2rct, the GA chose

for position 62 preferentially Tyr and for position 81 Glu. In contrast, the NN preferred at

position 62 Ser and at position 81 Trp.

In summary, these analyses illustrate strong mutual dependencies in the occupancies of

design shell residues. As design shells are generated by mutating residues in a randomly cho-

sen chronology, epistasis directs the protocols to different regions of sequence space.

Table 4. Comparison of sequence heterogeneity in candidate sequences added to OPTr during the first 10 iterations.

Mutations 2dri 2ifb 1opb 2rct

GA NN GA NN GA NN GA NN

1 1067 237 1066 160 1058 77 1059 116

2 442 472 408 373

3 113 149 162 140

4 71 83 72 65

5 38 56 55 44

6 44 37 47 42

7 32 29 42 55

8 31 20 36 41

9 28 19 32 39

10 11 19 28 24

11 14 6 17 31

12 3 7 22 16

13 2 5 10 23

14 4 3 17 26

15 1 1 21 14

16 3 11 12

17 2 11 8

18 3 2

The table lists numbers of candidate sequences candGA
r¼10

and candNN
r¼10

grouped according to their differences (number of mutations) to the most similar sequence from

OPTr = 10. For this analysis, the first 10 iterations of the designs for the four proteins from repr_prot were analyzed.

https://doi.org/10.1371/journal.pone.0256691.t004
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Fig 5. Residue occupancies generated by Rosetta:MSF:GA and Rosetta:MSF:NN for four design shells. For each design

shell, the GA- and NN-specific logos resulting from the 239 sequences of generation 100 are given. In each case, one residue pair
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The NN outperforms the GA on multiple mutations and adopts iteratively

the energy landscape

A major difference of the NN- and GA-based protocol is the number of mutations introduced

per iteration, which are 1 to n for the NN and one for the GA approach; compare Table 3.

Thus, one might argue that the superior performance of the NN-based approach is simply a

consequence of the more exhaustive sampling of sequence space resulting from the simulta-

neously introduced multiple mutations. If the number of mutations has a much stronger effect

on performance than the protocol, a modified GA that can introduce up to n mutations per

iteration, must reach a performance that is comparable to the NN-based protocol. Thus, we

created a multi-mutation GA protocol, which we named mmGA, and equipped it with a func-

tion that chooses 1 to n mutations as does the NN. Fig 3 makes clear that multi mutations

degraded the performance of the GA: Compared to the standard GA that introduces single

mutations, the mmGA required twice the number of iterations to find sequences having native-

like RS-values.

The training with the tuples generated during the first iteration of the HisB_GAraw design

resulted in a relatively low PCC of 0.62 (p = 1.2E-9) and the average error was 2.9 REU. This

relatively disappointing result argues in favor of utilizing a simpler and much faster regression

model that might replace the NN. On the other hand, the results shown in Fig 5 are indicative

of non-linear dependencies in the orchestration of residue positions, which is in agreement

with literature [51–53]. In order to test whether the NNs improved their approximation of the

energy landscape during the iterative training, we determined for each iteration the PCC of

the RSjNN and the corresponding RSj3DM values. In Table 5 the result for the four designs from

repr_prot are tabulated for the first ten iterations. In all four cases, the initially modest correla-

tion reaches a PCC value of 0.95 not later than after 10 iterations. This finding strongly sug-

gests that the iterative training allowed the NNs to improve their approximation of the energy

landscape and argues against a simpler modelling approach.

that is most likely affected by epistatic effects is indicated with red boxes and the 3D orientation of the residues is shown as sticks

for the NN (left) and the GA (right) design solution. The designs for the proteins from repr_prot were analyzed: (A) 2dri, (B)

2ifb, (C) 1opd, (D) 2rct. The chosen residues are shown in turquoise and the ligand in pale blue; the rest of the protein is

represented as a white cartoon.

https://doi.org/10.1371/journal.pone.0256691.g005

Table 5. Generation-specific PCC values determined for the first ten iterations of four designs.

Generation 2dri 2ifb 1opb 2rct

1 0.53 0.54 0.48 0.42

2 0.84 0.87 0.70 0.69

3 0.90 0.92 0.78 0.74

4 0.95 0.94 0.82 0.82

5 0.97 0.96 0.88 0.89

6 0.98 0.97 0.91 0.92

7 0.98 0.97 0.92 0.94

8 0.98 0.98 0.93 0.94

9 0.98 0.98 0.95 0.96

10 0.98 0.98 0.95 0.96

The table lists Pearson correlation coefficient (PCC) values for the first 10 iterations of the designs with the proteins

from repr_prot and Rosetta:MSF:NN:enzdes.

https://doi.org/10.1371/journal.pone.0256691.t005
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For the NNs, a limited number of samples maps the complexity of a

problem-specific energy landscape in sufficient detail

Generally, the reconstruction of an all-atom model from an incomplete representation of a

protein is a challenging problem [55]. Thus, at first glance it seems surprising that a one-hot

encoded representation of candidate sequences suffices to predict the correct RS values with

an average error of 1.8 REUs; compare Fig 2. To determine an RS3DM value, Rosetta has to

build a 3D model and to find a combination of rotamers that is suitable for all residues of the

design shell. Why is an NN that lacks the assessment of a three-dimensional representation, so

successful in an enzdes protocol? Although the NN does not explicitly process three-dimen-

sional information, it can learn the energy landscape, because the RS3DM values of the training

data implicitly transfer three-dimensional information into the scoring function learned by

the NN.

Another example for the beneficial mapping of structure space by means of an NN is

refineD, which is aimed at protein structure refinement. This program utilizes additional

restraints integrated into a Rosetta all-atom energy function that have been deduced by means

of a deep convolutional neural field from the starting structure. refineD outperformed unre-

strained relaxation strategies, most likely because these restraints guide conformational sam-

pling [56].

Furthermore, the performance of our NN and our analysis of residue pairs suggests that the

orchestration of the design shells with amino acid residues and their orientation is severely

biased. This assumption is supported by recent statistical findings related to residue prefer-

ences: The algorithm NEPRE assesses successfully the quality of three-dimensional protein

models. It is based on a scoring system for residue neighborhood preferences deduced from

14,647 PDB structures. It turned out that certain residues exhibit strong preferences for their

neighboring residues and their relative positions [57]. trRosetta generates with high qual-

ity the three-dimensional structure of proteins based on predictions for inter-residue contacts,

distances, and residue orientations. These predictions originate from a deep residual network

that analyzes protein-specific MSAs. For the 31 FM targets of the CASP13 contest, the mean

TM-score, which signals the correspondence with the native structure, has been 0.625. The

score had dropped only marginally to 0.592, if residue orientation has been ignored during

structure prediction [58]. Along this line, a restricted number of residue orientations has been

observed at certain positions in more than 2600 antibody structures [59]. Taken together,

these findings support the idea that Rosetta:MSF:NN:enzdes performs well, because the

orchestration of the design shell with a restricted number of amino acid residues has a stronger

effect on scores than the choice of rotamers.
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