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Different combinations of atomic
interactions predict protein-small
molecule and protein-DNA/RNA affinities
with similar accuracy
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ABSTRACT

Interactions between proteins and other molecules play essential roles in all biological processes. Although it is widely held

that a protein’s ligand specificity is determined primarily by its three-dimensional structure, the general principles by which

structure determines ligand binding remain poorly understood. Here we use statistical analyses of a large number of pro-

tein2ligand complexes with associated binding-affinity measurements to quantitatively characterize how combinations of

atomic interactions contribute to ligand affinity. We find that there are significant differences in how atomic interactions

determine ligand affinity for proteins that bind small chemical ligands, those that bind DNA/RNA and those that interact

with other proteins. Although protein-small molecule and protein-DNA/RNA binding affinities can be accurately predicted

from structural data, models predicting one type of interaction perform poorly on the others. Additionally, the particular

combinations of atomic interactions required to predict binding affinity differed between small-molecule and DNA/RNA

data sets, consistent with the conclusion that the structural bases determining ligand affinity differ among interaction types.

In contrast to what we observed for small-molecule and DNA/RNA interactions, no statistical models were capable of pre-

dicting protein2protein affinity with >60% correlation. We demonstrate the potential usefulness of protein-DNA/RNA bind-

ing prediction as a possible tool for high-throughput virtual screening to guide laboratory investigations, suggesting that

quantitative characterization of diverse molecular interactions may have practical applications as well as fundamentally

advancing our understanding of how molecular structure translates into function.
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INTRODUCTION

Proteins and other biological macromolecules function

largely through their three-dimensional structure, which

determines the spatial distributions of physical-chemical

properties as well as their dynamics.1–3 However, under-

standing how structural characteristics quantitatively

affect molecular function has proven one of the most

challenging objectives in structural biology.4 Particular

examples have been elucidated in detail,5–8 but we know

very little about the general principles by which molecu-

lar structure determines function.

Although a drastic simplification of a protein’s func-

tional repertoire, binding affinity is typically used to

characterize protein2ligand interactions. Affinity is

commonly measured using the dissociation constant [Kd

or pKd 5 2log(Kd)], which is the ligand concentration

at which half the protein in solution is bound to ligand

at equilibrium.9–13 Predicting molecular binding affinity

from structural complexes has been investigated for

decades, due to its fundamental importance in bio-

chemistry and applications to structure-based drug
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development.14–18 Most approaches attempt to produce

a quantitative mapping to binding affinity from features

that can be derived from a protein2ligand struc-

ture.9,18,19 Mapping atomic interactions to binding

affinity is not trivial, and a variety of methods have been

developed. These methods can be broadly classified into

approaches that attempt to directly model the physical

forces contributing to molecular binding and those that

rely on statistical associations between combinations of

atom2atom interactions and ligand affinity.14,18,20–25

Robust physics-based methods such as molecular dynam-

ics are able to infer information about changes in system

energy and other factors and can produce highly accurate

affinity prediction, albeit at the cost of increased compu-

tation time.26 Statistical prediction methods are typically

much faster than physics-based approaches and can gen-

erally predict protein-small molecule affinity with accu-

racy suitable for high-throughput drug screening and

similar applications.24,26–33 It has also been suggested

that linear combinations of atomic interaction features

suitable for statistical prediction methods correlate

strongly with more complex physics-based energy

calculations.33,34

Protein-small molecule interactions have received the

most extensive research attention—primarily due to

applications in structure-based drug design—and great

progress has been made toward understanding how pro-

tein structure impacts small-molecule binding.17,35–39

However, predicting protein-DNA/RNA and protein2-

protein binding from structural data has remained chal-

lenging, suggesting that these types of interactions may

not follow the same rules governing protein-small mole-

cule binding.4,21,24,27,34,40–46

Here we use statistical machine learning to examine

the general patterns of atomic interactions determining

protein-small molecule, protein-DNA/RNA, and pro-

tein2protein binding affinities. We find that atomic

interaction data present in the X-ray structure of the

protein2ligand complex is generally sufficient to predict

protein-small molecule and protein-DNA/RNA affinities

with similar accuracy, but protein2protein affinity pre-

diction was much less accurate. Although protein-small

molecule and protein-DNA/RNA affinities were similarly

predictable, the specific combinations of atomic interac-

tions required for accurate prediction differed between

the two types of ligands, suggesting that the way patterns

of atom-atom interactions translate into macromolecular

interaction strength differ between proteins that bind

small chemical ligands and those that bind DNA/RNA.

Developing a more thorough understanding of how dif-

ferent sets of atomic interactions determine a protein’s

affinity for different types of ligands is expected to

deepen our understanding of the structural basis of

molecular function while providing new avenues for pre-

dicting—and ultimately modulating—protein function.

METHODS

Structural data sets and feature extraction

The X-ray structures of protein-ligand complexes and

their associated experimental binding affinity measure-

ments (-log10-transformed dissociation constants, pKds)

were obtained from PDBbind,47 BindingDB48 and a

recent large-scale study of protein2protein interac-

tions.49 Complexes with ambiguous ligand information

were excluded, as were complexes with multiple ligands

or mulitimeric proteins. For proteins bound to DNA or

RNA, we removed any complexes with DNA/RNA

strands >1000 nucleotides. Enzyme commission (EC)

numbers were extracted from PDB-to-EC mapping data-

bases,50,51 and transmembrane proteins were identified

using the Protein Data Bank of Transmembrane Proteins

(PDBTM).52 From each protein2ligand complex, we

extracted a suite of non-redundant atom-atom interac-

tions thought to potentially correlate with ligand binding

affinity9 (see Fig. 1). We included only those atomic

interactions that could be determined entirely from

atomic coordinates and atom types in a standard PDB

file.

Hydrogen bonds (HBs)

A hydrogen bond is a noncovalent interaction between

two negatively charged atoms, in which hydrogen is

covalently bound to one atom (the donor, D) and inter-

acts with the other negatively charged atom (the

acceptor, A) through electrostatic attraction. To extract

the hydrogen bonding parameter (HB), we used a func-

tion that relates the distance between potential hydrogen

donors and acceptors as well as the angles among them

and their root atoms, to the presence or absence of a

hydrogen bond [see Fig. 1(A)]. Potential hydrogen

donors (D) and acceptors (A) were determined from

negatively charged nitrogen, sulfur, and oxygen atoms.

The acceptor root (AR) and donor root (DR) atoms

were determined from the atoms covalently bound to

acceptors and donors, respectively. We related these

atomic types and coordinates to hydrogen bonding via

the function:

HB5
Xn

i;j51

f di;j ; a1i;j ; a2i;j

� �

where i and j are potential hydrogen donors and accept-

ors in the protein and ligand, respectively; a1 is the angle

among AR, A, and D, and a2 is the angle among A, D,

and DR [see Fig. 1(A)]. The distance and angle functions

were adapted from Ref. 24, and acceptable bond angle

parameters were obtained from Ref. 53. The summation

was performed over all potential hydrogen donor-

acceptor pairs bridging the protein and its ligand.
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Hydrophobic contacts (HCs)

Hydrophobic contacts are noncovalent interactions

between two nonpolar atoms from different molecules.

For extracting this parameter from the 3D coordinates of

a structural complex, we use the following equation:

HC5
Xn

i;j

f HCi;j

� �
; where

HCi;j5 1=1:5ð Þ� ri1rj12:0
� �2

-di;j
2

h i
f HCi;j

� �
5HCi;j if ri1rj10:5

� �
< di;j � ri1rj12:0

� �� �
51 if di;j � ri1rj10:5

� �� �
50 if di;j > ri1rj12:0

� �� �
where r is the van der Waals radius of a given hydropho-

bic atom (i or j), and di,j is the distance between hydro-

phobic atoms i and j [see Fig. 1(B)]. Again, we sum over

all pairs of potential hydrophobic contacts between the

protein receptor (i) and its ligand (j).

van der Waals interactions (VDWs)

The van der Waals interaction parameter (VDW) is

obtained by summing the attractive and repulsive

forces between protein and ligand atoms, excluding

those due to covalent bonds and hydrogen bonds.

These attractive or repulsive forces are estimated from

a function that uses the van der Waals radii of two

interacting atoms and the distance between them

(equation adapted from Ref. 31, van der Waals radii

obtained from Ref. 54):

VDW 5
Xn

i;j

f
ri-rj

di;j

� �8

-2x
ri-rj

di;j

� �4
" #

where i and j are atoms in the protein and ligand,

respectively; r is the van der Waals radius of a specified

atom, and di,j is the distance between atoms i and j [see

Fig. 1(C)]. To minimize the over-estimation of strong

attractive forces, we set f(i,j)5100 if the calculated value

was >100.

Deformation effect (DE)

The deformation effect (DE) represents the number and

extent of distortions in the root atoms (of hydrogen bond

donor and acceptor or hydrophobic atoms) that occur in

order to form intermolecular interactions. DE was calcu-

lated using the equation (adapted from Ref. 53):

Figure 1
Atomic interactions potentially underlying protein2ligand binding can be extracted from three-dimensional atomic coordinates. We modified exist-

ing approaches to extract a wide variety of atomic interactions from crystalized protein2ligand complexes (see Methods). A: Hydrogen bonding
(HB) can be calculated by examining the distance, d, between a hydrogen atom (white sphere) covalently bound to a hydrogen donor (blue) and a

potential hydrogen acceptor (red), as well as the angles formed across the hydrogen donor (a2) or acceptor (a1) and its respective root atoms
(gray). B: Deformation effect (DEF) and hydrophobic contacts (HC) are calculated by examining the distance, d, between two hydrophobic atoms

(green) and the relative angles formed across them and their root atoms (gray). C: van der Waals (VDW) and repulsive interactions (RIs) are calcu-

lated by examining the distance, d, between two hydrophobic atoms (green), relative to the van der Waals radii of the two interacting atoms (r1

and r2, respectively). D: The accessible to solvent area (ASA) is estimated as the area surrounding a group of covalently bound atoms (yellow

spheres) that is not occluded by any other atoms in the group, taking into account the van der Waals radii of each atom (r).
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DE5
Xn

i;j

f a1i-1;i;j ; a2i;j;j-1

� �
; where :

f a1i-1;i;j ; a2i;j;j-1

� �
51 if a1i-1;i;j � 60�

� �
and a2i;j;j-1 � 60�

� �� �
f a1i-1;i;j ; a2i;j;j-1

� �
5 0 if a1i-1;i;j < 60�

� �
or a2i;j;j-1 < 60�
� �� �

where i 2 1 is the root atom of the interacting atom i;

j 2 1 is the root atom of the interacting atom j; a1 is the

angle among the atoms i 2 1,i,j; and a2 is the angle

among the atoms i,j,j 2 1 [see Fig. 1(B)]. If there were

more than one root atom for a given interacting atom,

the root was considered as the geometric center of the

coordinates of all root atoms.

Repulsive interactions (RIs)

The repulsive interaction (RI) parameter is the sum of

all repulsive atomic contacts between two molecules,

excluding contacts due to hydrogen bonds or hydropho-

bic interactions [see Fig. 1(C)]. This parameter was cal-

culated as:

RI5
Xn

i;j

f RIi;j

� �
; where :

f RIi;j

� �
51 if di;j � ri1rj

� �
�

�
f RIi;j

� �
50 if di;j > ri1rj

� �
�

�
where di,j is the distance between atoms i and j in the

protein receptor and its ligand, respectively; ri is the van

der Waals radius of atom i, and rj is the radius of atom

j. The sum is over all potential interacting atom pairs: i,j.

Accessible to solvent area (ASA)

The accessible to solvent area (ASA) is the area of a

molecule’s surface that is exposed to solvent and therefore

available for interacting directly with other molecules. We

calculated the accessible to solvent area of the protein and

its ligand using the algorithm of Shrake and Rupley,55

which generates a spherical mesh of equidistant points

around every atom in a given molecule and counts the

number of points that are not occluded by other atoms in

the molecule and therefore available to interact with sol-

vent [see Fig. 1(D)]. The algorithm was adapted from

code available at (https://github.com/boscoh/pdbremix/

blob/master/pdbremix/asa.py) . The van der Walls radii

were altered to the values provided by Ref. 54, and the

number of sphere points was increased to 960.

We determined the extent to which each type of

atomic interaction was correlated with experimental

binding affinity by calculating the Spearman correlation

between the atomic interaction term measured in this

section and the experimental binding affinity in pKd

units [pKd 5 2log(Kd)], obtained from binding affinity

databases.47–49

Statistical modeling, model selection and
Cross-validation

We used three types of regression methods to identify

sets of atom2atom interactions—and their statistical

interaction terms—correlating with experimentally deter-

mined binding affinity (pKd).56–58 We used generalized

linear models (GLMs, implemented in the GLMULTI

package in R),56 assuming a Gaussian error distribution

with logarithmic link function, which provided the best fit

to our data. We also used single-layer and double-layer

support vector regression (SLSVR and DLSVR, respec-

tively), implemented using the approach developed by Li

et al.57 For each type of statistical regression, we used the

GLMULTI genetic algorithm to generate 500 candidate

models (default parameters, except population size 5 500,

level 5 2, and marginality enabled) and selected the top

100 best-fit models using either Akaike or Bayesian infor-

mation criteria (AIC or BIC, respectively).

We used replicate cross-validation to evaluate the

potential accuracy with which generated models can pre-

dict binding affinity of unseen data sets (see Fig. 2). For

each replicate analysis, we randomly partitioned the

structural data into a testing data set of size n 5 1, 10,

30, 50, or 100 complexes, with the remaining complexes

being used to train the regression model. On each testing

data set, we calculated the Pearson correlation (r2) and

root mean squared deviation (RMSD) between predicted

and experimentally determined binding affinity (pKd).

We repeated each cross-validation analysis 100 times and

report the average r2 and RMSD. Differences in accuracy

between models were assessed using the parametric two-

sample t test, assuming unequal variances, and the non-

parametric Mann-Whitney U test.

We performed the same cross-validation analyses using

other binding affinity estimation tools: X-Score v1.2,31

Drugscore v0.88,22 and Fastcontact,59 assuming default

parameters. We restricted our comparative analyses to

freely available tools that use only atomic interactions

that can be extracted from the 3D coordinates of bound

complexes.

We performed mixed model analysis using the Lme4

v1.1.7 package for fitting linear and generalized linear

mixed-effects models.58,60 One mixed model was gener-

ated for each data set by adding random effects to the

best-fit GLM obtained from cross-validation analysis (see

above). Mixed models were fit and validated using the

same input data and cross-validation method applied to

simple GLMs.

Empirical analysis examples

We performed docking simulations between SelB and

its native mRNA ligand using Haddock v2.161 and Patch-

dock v1.0,62 generating a total of 100 predicted com-

plexes. We obtained the original protein2ligand

structure of SelB from the Protein Data Bank (PDB ID:
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1WSU)63 and calculated the RMSD (in angstroms)

between the X-ray crystal structure and predicted com-

plexes generated by molecular docking. We considered

docking poses with RMSD< 3.5 Å as near-native, while

poses having RMSD� 3.5 Å were considered decoy com-

plexes. We used the best-fit GLM (see above) to predict

the SelB-mRNA pKd of each generated complex.

CsrA/RsmE-RNA binding affinities were estimated
from NMR strcutures available from the Protein Data
Bank64: RsmE-SL1 (PDB ID: 2MFC), RsmE-SL2

(2MFE), RsmE-SL3 (2MFF), RsmE-SL4 (2MFG) and
RsmE-RsmZ(36–44) RNA (2MFH). Alanine-screening
mutagenesis for CsrA-RNA was simulated by molecular

modeling using Phyre v2.065 and molecular docking
simulations using Haddock v2.1.61

HYL1(HR1)-dsRNA binding affinity was estimated
from the crystal structure of the bound complex (PDB

ID: 3ADI). TRBP2(TR2)-dsRNA and HYL1(HR2)-
dsRNA complexes were inferred by molecular docking
using Haddock v2.1.61 Receptor models of TRBP(TR2)

and HYL1(HR2) were obtained from available crystal
structures (PDB IDs: 3ADL and 3ADJ, respectively), and
the dsRNA ligand model was obtained from the

HYL1(HR1)-dsRNA complex (3ADI).

RESULTS AND DISCUSSION

Protein-DNA/RNA affinity can be predicted
with accuracy similar to protein-small
molecule affinity

To characterize how patterns of atomic interactions

govern protein-small molecule, protein-DNA/RNA and

protein2protein binding affinities, we examined a large

database of> 4700 protein2ligand complexes having

both X-ray crystal structures and empirically determined

binding affinities.47–49 After removing complexes with

ambiguous binding-affinity measurements or multiple

ligands, large multimeric complexes and DNA-packaging

proteins such as histones, our filtered database contained

2342 complexes with a protein bound to a small mole-

cule such as a chemical signal or drug, 300 protein-

DNA/RNA complexes, and 784 protein2protein dimers

(see SI Text S1 for statistical descriptions of the data sets

and the effects of filtering).

From each complex, we extracted a set of nonredun-

dant atomic interactions expected to correlate with

ligand-binding affinity (see Methods, Fig. 1). We fit a

large number of statistical models to these data—repre-

senting different linear combinations of atomic interac-

tions and statistical interaction terms capturing ratios of

simple atom2atom interactions—and selected the best

100 models fitting each type of protein2ligand data set

by Akaike information criterion (AIC). For each statisti-

cal model, we used generalized linear modeling (GLM)

and two types of support vector frameworks to predict

pKd from atomic interactions (see Methods). After train-

ing each model on set-aside training data of different

sizes, we measured the average Pearson correlation (r2)

and root mean squared deviation (RMSD) between pre-

dicted and experimentally determined binding affinities

on multiple replicates of unseen testing data (see Meth-

ods). This approach provides a strong cross-validation

evaluation of each model’s expected accuracy for predict-

ing pKd from novel structural data (Fig. 2).

Figure 2
Replicated cross-validation evaluates expected model accuracy. We used multiple different hierarchical, replicated cross-validation analyses to evalu-

ate the accuracy with which statistical models could predict molecular binding affinities from structural information (see Methods). A: Atomic

interactions (see Fig. 1) were extracted from the atomic coordinates of each protein2ligand complex. B: Statistical models were fit to different por-
tions of these data, with the best-fit models selected by AIC (see Methods). C: Each data set was randomly partitioned into training and testing

data, using 5 different leave-out strategies (see Methods). Each model was fit to the training data, and accuracy was evaluated on the set-aside test-
ing data by calculating Pearson’s correlation (r2) and the root mean squared deviation (RMSD) between predicted and experimentally determined

binding affinities (see Methods). D. The entire cross-validation procedure was repeated 100 times, and we report the mean and standard error in r2

and RMSD across the 100 cross-validation replicates.
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Protein-small molecule binding affinity could be pre-

dicted with average accuracy similar to current state-of-

the-art statistical prediction tools. The best-fit GLM

predicted protein-small molecule pKds on unseen test-

ing data with r2 5 0.79 (RMSD 5 0.94; Fig. 3). These

results were generally robust to different statistical mod-

eling frameworks and cross-validation strategies. RMSD

results were equivalent to GLM using either single-layer

or double-layer support vector regression as the statisti-

cal modeling framework (t test P> 0.78, U test

P> 0.75). Results were also similar across a wide variety

of cross-validation strategies, with average r2 differing

by at most 3% when comparing different testing data

set sizes [Fig. 3(B) and SI Fig. S5, t test P> 0.06 and U

test P> 0.001]. That predictive accuracy does not

depend strongly on a particular statistical modeling

framework or cross-validation scheme suggests that

these results are generally robust, given our structural

data, and that the accuracy we observed may reflect a

reasonable estimate of the extent to which the atomic

interactions we extracted can predict binding affinity. In

our tests, the GLM performed significantly better than

existing tools designed to predict small-molecule affinity

from structural data (XSCORE31 and Drugscore,66

r2 5 0.73 and 0.68, respectively, t test P< 1.5 3 10225, U

test P< 4.7 3 10222), but differences in accuracy were

relatively small.

Protein-DNA/RNA binding affinity could be predicted

with accuracy similar to that achievable for small-

molecule affinity [Fig. 3(B), SI Fig. S5]. The GLM trained

on protein-DNA/RNA data had mean r2 between pre-

dicted and experimental pKd of 0.75 on unseen testing

data, marginally less than what we observed for protein-

small molecule interactions (r2 5 0.79, t test P 5 9.0 3

10212, U test P 5 8.5 3 10211). The DNA/RNA and

small-molecule predictors had equivalent RMSDs on their

Figure 3
Statistical models predict protein-small molecule and protein-DNA/RNA binding affinities with high accuracy. We trained and cross-validated sta-

tistical models to predict experimental binding affinity (pKd) from atomic interactions (see Methods, Figs. 1 and 2). A. For each type of molecular
interaction, we plot the experimentally determined (x axis) vs. predicted (y axis) pKd of each complex. Dark line indicates best-fit linear regression;

dotted lines indicate standard error of regression line. Results are shown for the best-fit generalized linear model (GLM). B: We plot the mean and

standard error in Pearson’s correlation (r2) between each model’s predicted pKd and experimental pKd [mt]100 replicates of leave-100-out cross-
validation (see Methods). Results are shown for the GLM, single-layer and double-layer support vector regression (SLSVR and DLSVR, respectively)

and a number of existing binding-prediction algorithms (see also SI Fig. S4). C: We plot the mean and standard error in root mean square devia-
tion (RMSD) between each model’s predicted pKd and experimental pKd [mt]100 replicates of leave-100-out cross-validation.
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respective data sets (1.04 for DNA/RNA vs. 0.94 for small-

molecule, t test P 5 0.24, U test P 5 0.23).

As with the small-molecule data set, results for DNA/

RNA binding prediction were generally robust to differ-

ent statistical modeling frameworks (Fig. 3, SI Fig. S5, t

test P> 0.53 U test P> 0.66) and different cross-

validation approaches (SI Fig. S5, t test P> 0.04 and U

test P> 0.006), suggesting that these results likely reflect

the extent to which extracted atomic interactions predict

pKd and are not strongly dependent on a particular sta-

tistical framework or cross-validation strategy. The accu-

racy of our new models was much higher than that of

existing tools on the protein-DNA/RNA data set

[r2 5 0.75 vs. 0.20 for XSCORE and 0.08 for Drugscore, t

test P 5 6.6 3 10294, U test P 5 2.6 3 10234, Fig. 3(B)],

which is not unexpected, given that existing tools were

designed to predict small-molecule binding affinity, not

DNA/RNA affinity.

Protein2protein binding affinity predictions were

much less accurate (Fig. 3). Overall, r2 was <0.6 on the

protein2protein data, �1.2 five-fold less than that of the

small-molecule and DNA/RNA data sets (t test P< 7.3 3

10235, U test P< 2.3 3 10229). Similarly, RMSD was

�1.5-fold greater for the protein2protein data (t test

P< 1.4 3 1023, U test P< 9.6 3 1023). Even though

protein2protein affinity was predicted with reduced

accuracy, predictive accuracy was still fairly robust to dif-

ferent statistical frameworks (t test p> 0.10, U test

p> 0.12) and cross-validation strategies (SI Fig. S5, t test

P> 0.09, U test P> 3.9 3 1023). Our new statistical

models were significantly more accurate than Fastcontact,

an existing tool developed for predicting protein2pro-

tein binding affinity using similar atomic interaction

data59 (Fig. 3, t test P 5 7.2 3 10219, U test P 5 1.5 3

10216). However, the difference in accuracy was relatively

small (r2 5 0.51 for our model vs. 0.41 for Fastcontact).

Analysis of the residuals from each data set suggests that

the potential for fitting bias is low, with no discernible lin-

ear trend (SI Fig. S6A, P 5 0.99) and a generally good fit

to a normal distribution (SI Fig. S6B). Quantile-quantile

plots did exhibit a slight skewing at extreme values, but

this curved trend represented <10% of the validation data

set size (SI Fig. S6C). We did not observe a major change

in accuracy when we removed potential outlier complexes

with pKd �3 or �10 from either the training data (t test

P 5 0.59, U test P 5 0.30 for small molecule; t test

P 5 0.75, U test P 5 0.45 for DNA/RNA; t test P 5 2.0 3

1029, U test P 5 1.6 3 10211 for protein data set), or the

testing data (t test P> 0.10, U test P> 0.16). In all cases,

the change in mean accuracy was <3% (SI Fig. S7).

Although the results of examining residuals and out-

liers argue against model over fitting, concerns have been

raised that AIC can be biased toward selecting overly

complex models in some cases.67,68 Bayesian model

selection strategies—such as the Bayesian Information

Criterion (BIC)—provide a more conservative approach,

although they can be biased in favor of too-simple mod-

els.69 As expected, we observed a general decrease in the

complexity of best-fit models when we used BIC for

model selection instead of AIC (t test P< 2.3 3 10242,

U test P< 1.2 3 10230, SI Fig. S8A). However, no differ-

ences were observed in the predictive accuracy of models

selected by BIC vs. AIC (t test P> 0.30, U test P> 0.60,

SI Fig. S8B,C). Overall, these results suggest that the

accuracy of inferred models is unlikely to be affected by

over fitting bias and that our results are generally robust

to different modeling frameworks, cross-validation strat-

egies and model-selection procedures.

Although average predictive accuracy across a data

set is an important component of assessing model per-

formance, we wanted to examine whether affinity pre-

diction accuracy was strongly affected by features that

might differ across complexes in each data set, such as

specific metabolic pathways, receptor or ligand flexibil-

ity, or structural similarity. Clustering structural com-

plexes by metabolic pathway (using KEGG KOBAS

v2.030) revealed no increase in accuracy for over-

represented pathways (SI Fig. S9A; Spearman correlation

between the number of representatives in a pathway

and RMSD 5 0.32, P 5 0.01 for small molecule; 0.71,

P 5 2.69 3 1025 for DNA/RNA; 20.08, P 5 0.58 for

the protein data set). Similarly, there was no strong cor-

relation between affinity prediction accuracy and recep-

tor or ligand flexibility in any of the data sets

examined (SI Fig. S9B,C; Spearman correlation between

receptor flexibility and prediction error 5 20.01,

P 5 0.60 for small molecule; 20.04, P 5 0.46 for DNA/

RNA; and 0.10, P 5 0.01 for the protein data set. Spear-

man correlation between ligand flexibility and predic-

tion error 5 0.05, P 5 0.02 for small molecule; 0.06,

P 5 0.28 for DNA/RNA; and 0.08, P 5 0.03 for the pro-

tein data set). Finally, we observed only minimal

changes in predictive accuracy when receptors in each

data set were clustered by 90% sequence similarity (SI

Fig. S9D). Together, these results suggest that affinity

prediction accuracy is not confined to particular meta-

bolic pathways, is not strongly affected by receptor or

ligand flexibility, and is not particular to specific types

of similar molecular structures.

Using a mixed modeling strategy to statistically charac-

terize heterogeneity within each data set identified a

number of atomic interaction types exhibiting significant

heterogeneity in all three data sets (SI Fig. S10A). How-

ever, incorporating this heterogeneity in the statistical

model did not improve predictive accuracy, compared to

simpler homogeneous models (SI Fig. S10B), although

we did observe a �twofold decrease in the variance of

predictive accuracy in the protein2protein data set (var-

5 0.03 for the mixed-model GLMM vs. 0.06 for GLM,

0.07 for SLSVR and 0.06 for DLSVR, f-test p< 0.02).

Overall, mixed model analyses suggest that heterogeneity

is unlikely to strongly affect our results.
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Statistical models trained on one type of
ligand do not predict affinity for other ligand
types

To evaluate the extent to which the atomic interactions

predicting ligand-binding affinity are different among

protein-small molecule, protein-DNA/RNA and pro-

tein2protein data sets, we determined the accuracy with

which statistical models trained on each data set pre-

dicted pKds on the other data sets [Fig. 4(A)]. In all

cases, we observed that models trained on one data set

exhibited dramatically reduced accuracy when predicting

pKds of different data sets. The model trained using

protein-small molecule complexes showed the greatest

specificity, decreasing in accuracy �1fivefold when tested

on protein-DNA/RNA data (r2 5 0.79 on small-molecule

vs. 0.05 on DNA/RNA, t test P 5 8.22113, U test P 5 2.6

3 10234) and �4-fold when tested on protein2protein

data (r2 5 0.18, t test P 5 2.2 3 102131, U test P 5 2.6 3

10234). Models trained using protein2protein data

showed the highest generalizability to other data sets, but

accuracy was still significantly reduced in cross-

prediction tests (r2 5 0.51 for protein2protein data vs.

0.36 for small-molecule and 20.17 for DNA/RNA, t test

P< 5.8 3 10267, U test P< 2.6 3 10234). These results

suggest that how particular atomic interactions correlate

with binding affinity is generally different for different

types of macromolecular interactions.

Further supporting this conclusion, we observed that a

“general” model trained on the combined small-mole-

cule1DNA/RNA1 protein2protein data exhibited

reduced accuracy when used to analyze each particular

data set [Fig. 4(B), t test P< 0.02, U test P< 0.03]. The

largest reduction in accuracy occurred for the protein-

DNA/RNA data, for which the use of the general model

decreased accuracy 1.27-fold (r2 5 0.59), compared to the

model trained on the DNA/RNA data (r2 5 0.75, t test

P 5 1.8 3 10258, U test P 5 1.9 3 10232). Additionally,

RMSD increased substantially when the general model

was applied to each specific data set [Fig. 4(C), t test

P< 2.9 3 1024, U test P< 2.7 3 1024]. This was partic-

ularly noticeable for the protein2protein data set, for

which RMSD increased �1.2-fold, from 1.47 to 1.91 (t

test P 5 1.1 3 1024, U test P 5 7.8 3 1025). Together,

these results suggest that the combinations of atomic

interactions governing ligand-binding affinity differ

markedly among proteins that bind small-molecules,

those that bind DNA/RNA and those that interact with

other proteins.

Figure 4
Binding affinity prediction is specific to each interaction type. For each type of molecular interaction (protein-small molecule, protein-DNA/RNA,

and protein2protein), we fit a statistical model using cross-validation (see Methods, Fig. 2) and evaluated each model’s accuracy on set-aside test-
ing data of either the same interaction type or a different interaction type. A: We plot the mean and standard error in Pearson’s correlation (r2)

between predicted and experimental pKd, showing how the statistical models trained using each type of training data predicted pKds on testing

data of either the same or different type. B: We plot the mean and standard error in r2 between predicted and experimental pKd, comparing a gen-
eral statistical model trained on all data sets (gray) to specific models (white) trained on each data set, respectively. C: We show the mean and

standard error in root mean square deviation (RMSD) between predicted and experimental pKd, comparing a general statistical model (gray)
trained on all data sets to specific models (white) trained on each data set.
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Different combinations of atomic
interactions predict affinities for different
ligands

Predicting molecular binding affinity is important for

applications such as structure-based drug development,

but statistical analyses of protein2ligand complexes can

also be used to directly investigate the general principles

governing ligand binding. Statistical model selection is

an objective, systematic way of examining how combina-

tions of different atom-atom interactions—as well as sta-

tistical “interaction terms” combining ratios of atomic

interactions—correlate with ligand affinity.70 As such,

the specific models selected as best fitting observed data

provide some information about how patterns of atomic

interactions might impact ligand affinity.

Across the three different ligand types, we observed

strong differences in (1) which specific atomic interac-

tions correlated with ligand affinity and (2) the extent to

which single atomic interactions correlated with binding

affinity (see SI Text S2 for details). In general, single

atomic interaction terms were more correlated with

binding affinity in the protein-small molecule data set

(43% average correlation) than in the protein-DNA/RNA

(25% average correlation) or protein2protein (21% cor-

relation) data sets [Fig. 5(A)]. We also observed differen-

ces in the size and sign of coefficients applied to each

atomic interaction term in the models that best fit each

data set,71 further suggesting that there are marked dif-

ferences in how atom-atom interactions translate into

macromolecular affinity among proteins that bind small

Figure 5
Combinations among atomic interactions contribute differentially to binding affinity prediction in different data sets. We determined the 100 best-

fit statistical models for each data set and identified the statistical interaction terms present in at least 95 of the models in any data set (see Meth-

ods, SI Fig. S12). A: We plot the Spearman correlation between each statistical interaction term and experimental binding affinity (pKd). Bars indi-
cate standard error. B: We generated reduced models by excluding one statistical interaction term from each data set’s best-fit complete statistical

model including all atomic interactions and statistical interaction terms. The plot shows the difference in the Pearson correlation (r2) between pre-
dicted and experimental binding affinities, comparing each complete model to the best-fit reduced model obtained by removing the indicated inter-

action term.
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molecules, DNA/RNA and other proteins [see Fig. 5(B)

and SI Text S2 for details].

We directly assessed the importance of each atomic

interaction term for predictive accuracy by comparing the

accuracy of the best-fit model including that term to the

accuracy of the best-fit model without the term (SI Fig.

S11C). As expected, excluding hydrogen bonding informa-

tion from the protein-DNA/RNA models substantially

reduced mean predictive accuracy (by 12%, William’s test

P 5 2.5 3 1029). In contrast, eliminating hydrogen bond-

ing information had only modest effects on the accuracy

of small-molecule and protein2protein binding affinity

prediction (difference in r2 5 0.81% and 5.60%, William’s

test P 5 6.0 3 1026 and 0.01, respectively).

Eliminating hydrophobic contact information had the

largest effect on predictive accuracy for the protein2pro-

tein data set, changing the accuracy of the best-fit model

from r2 5 0.52 to 0.40 (William’s test P 5 3.1 3 1024).

Eliminating hydrophobic contact information also had a

modest effect on the accuracy of protein-small molecule

prediction (3.1%, William’s test P 5 1.7 3 10218) but

had little effect on the accuracy of protein-DNA/RNA

affinity prediction (1.5%, William’s test P 5 0.03).

Overall, the effect of removing single statistical interac-

tion terms on predictive accuracy was small (< 2.5%

change in r2, Fig. 5). However, we did observe a 2.29-

fold larger effect on protein-DNA/RNA accuracy than on

that of the small-molecule data set. On average, remov-

ing a single statistical interaction term reduced the accu-

racy of protein-DNA/RNA affinity prediction by 0.48%,

whereas the effect on protein-small molecule affinity pre-

diction was only 0.21% (t test P 5 3.0 3 1023, U test

p 5 1.0 3 1023).

Our results support the conclusion that different com-

binations of atomic interactions are important for deter-

mining macromolecular binding affinity in protein-small

molecule, protein-DNA/RNA, and protein2protein inter-

actions. However, the generally low accuracy of pro-

tein2protein predictions limits our conclusions

regarding the atomic interactions important for predict-

ing protein2protein affinity. In general, we would expect

protein-small molecule interactions to have simpler

structural bases than protein-DNA/RNA and protein2-

protein complexes, to be more highly determined by a

small number of atomic interactions, and to be easier to

predict; our results support this general conclusion.

Protein-DNA/RNA affinity prediction can
differentiate near-native from decoy SelB-
mRNA complexes

That DNA/RNA binding affinity can be rapidly pre-

dicted with average accuracy approaching that of small-

molecule binding prediction suggests that these models

could be useful for “virtual screening” of DNA- and

RNA-binding proteins to predict the affinity with which

two molecules interact as well as the structure of the

interacting complex.72,73 Virtual screening is widely

used in drug discovery to predict binding affinities

between a protein ‘target’ and a (possibly very large)

number of candidate compounds.24,28,74 Although vir-

tual screening is widely used to predict protein-small

molecule affinity, to date there are no approaches that

are both fast and accurate enough to enable virtual

screening of protein-DNA/RNA complexes.

To determine the potential suitability of our protein-

DNA/RNA affinity prediction models for virtual-

screening applications, we evaluated the ability of our

model to predict the native SelB-mRNA complex, given a

large set of near-native and “decoy” structural com-

plexes33 (see Methods). In the native conformation, the

a5-a6 winged-helix domain of SelB binds a characteristic

mRNA hairpin to regulate gene expression72,75,76 [see

Fig. 6(A)]. We used structural docking algorithms to

generate 50 SelB-mRNA complexes similar to the native

complex (RMSD<3.5 Å) and 50 complexes with >3.5 Å

RMSD to the native SelB-mRNA complex. Our protein-

DNA/RNA affinity prediction model was used to screen

each complex, and we measured the correlation between

predicted binding affinity and how different the pre-

dicted complex was from the native complex.

We found that our scoring function was able to confi-

dently identify the complexes that were most similar to
the experimentally determined structure [Fig. 6(B)].

There was a strong inverse correlation between RMSD

and predicted pKd (r2 5 20.91, Spearman
correlation 5 20.81, P 5 2.9 3 10240). Complexes very

similar to the native complex (RMSD< 3.4 Å) tended to

have high predicted binding affinities (mean pKd 5 5.7),

while decoy complexes (mean RMSD 5 14.97 Å) had sig-
nificantly lower affinity estimates [mean pKd 5 3.57, t

test P 5 9.6 3 10267, U test P 5 7.1 3 10218, Fig. 6(C)].

These results suggest that our protein-DNA/RNA affinity
model has the potential to differentiate near-native from

decoy complexes, which is suggestive of possible suitabil-

ity for virtual screening protocols.

It is important to note that the SelB-mRNA complex

was not in the original data set used to train our predic-

tive model, and although the majority of training com-

plexes had DNA ligands (80%), this result reinforces that

the model may also accurately predict binding affinity

for RNA ligands. However, this result suggests the possi-

ble suitability of our model for virtual screening and

does not represent a large-scale validation supporting its

use in this application.

Protein-DNA/RNA affinity prediction can
identify the native ligand and mutations that
knock down binding affinity in a CsrA-RNA
complex

The identification of native ligands and mutations that

strongly affect ligand-binding affinity are major goals in
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molecular biology. The carbon storage regulator protein

(CsrA) is an RNA-binding protein that regulates a large

number of metabolic processes in many bacteria.13,38,77

A recent study measured binding affinities and generated

NMR structures of the Pseudomonas fluorescens CsrA

ortholog (RsmE) complexed with 5 different stem-loop

structures of the RsmZ regulatory RNA, with the goal of

identifying the precise CsrA ligand.38 The authors con-

cluded that the SL2 region of RsmZ exhibited the highest

affinity for CsrA and was most likely the primary native

ligand [see Fig. 7(A)]. A related study using alanine-

scanning mutagenesis of CsrA identified R44 as a pri-

mary contributor to CsrA-RNA binding affinity [see Fig.

7(B)].39

We found that our protein-DNA/RNA affinity predic-

tion model was able to correctly identify the highest-

and lowest-affinity RsmZ ligand from available structural

data [Fig. 7(A)]. Similarly, when we performed in silico

site-directed mutagenesis of CsrA by structural modeling

(see Methods), our statistical model correctly identified

wild-type CsrA as having the highest RNA affinity and

the R44A mutant as having the strongest impact on RNA

affinity [Fig. 7(B)]. Although in both cases,

intermediate-effect differences in affinity were not always

Figure 6
Protein-DNA/RNA affinity prediction differentiates near-native complexes from docking decoys. Using molecular docking simulations, near-native
poses and docking decoys were generated for a case study of a protein-DNA/RNA complex (SelB-mRNA complex, PDB ID: 1WSU). A: Crystal

Structure of SelB-mRNA complex. Hydrogen bonds between SelB and its mRNA ligand are indicated by dashed lines, and alpha helices are num-

bered. B: Predicted binding affinity (y axis) is plotted against the root mean square deviation (RMSD, in angstroms, x axis) between each generated
complex and the SelB-mRNA crystal structure. Dotted line indicates the best-fit polynomial regression. C: We separated generated SelB-mRNA

docking complexes into near-native poses (RMSD� 3.4 Å) and docking decoys (RMSD� 3.4 Å). The plot shows the mean predicted binding affin-
ity of complexes in each group (dark gray, left y axis) and mean RMSD between generated complexes and the experimentally determined SelB-

mRNA structure (light gray, right y axis). Bars indicate standard error.
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correctly ordered by our prediction model, compared to

experimental results, these results suggest that the pro-

tein-DNA/RNA prediction model may be a useful tool

for guiding experimental investigations of protein-DNA/

RNA interactions.

Protein-DNA/RNA affinity prediction can
differentiate high-affinity from low-affinity
dsRNA binding domains in A. thaliana HYL1

Arabidopsis thaliana hyponastic leaves 1 (HYL1) is a

double-stranded RNA (dsRNA) binding protein involved

in microRNA processing.35–37 The HYL1 protein con-

sists of two homologous functional domains, HR1 and

HR2, which have recently been shown to differ in their

capacity to bind dsRNA.40 Both HR1 and the homolo-

gous TR2 domain of human TRBP2 exhibit high affinity

for dsRNA, whereas the HR2 domain does not (see Fig.

8).

Although quantitative affinity measurements of HYL1-

RNA and TRBP2-RNA are not available, we found that

our protein-DNA/RNA prediction model assigned high

affinity for dsRNA to human TRBP2(TR2) and A. thali-

ana HYL1(HR1) domains, but much lower affinity to

HYL1(HR2), consistent with experimental and structural

results (�two-fold difference in affinity between HR1/

TR2 and HR2; Fig. 8). This result suggests that our

model may be useful for examining functional differences

among homologous protein domains involved in pro-

tein-DNA/RNA interactions.

SOFTWARE AVAILABILITY

Best-fit prediction models obtained for each data set

were implemented in ANSI C11. Source code, tutorials

and data sets are available at https://github.com/Klab-

Bioinfo-Tools/GLM-Score. Prediction models were gener-

ated using R’s GLMULTI package; source code imple-

menting our machine learning protocols is available at

https://github.com/Klab-Bioinfo-Tools/GLM-Score/R.

Figure 7
Protein-DNA/RNA affinity prediction can identify native ligands and mutations of large effect on RNA binding. A: We used the our protein-DNA/

RNA model to predict binding affinities between Pseudomonas RmsE (a CsrA ortholog) and a set of 5 potential RNA ligands derived from the
RmsZ regulatory RNA from experimentally determined NMR structures.38 Next to each structure, we identify the experimentally determined pKd

and the rank order in RNA affinity (in parentheses). Table compares experimentally determined and predicted pKd values (in parentheses), with
integers indicating rank order of RNA affinity inferred from each analysis. B: We use molecular modeling and docking to simulate the CsrA

alanine-screening mutagenesis performed by Mercadante et al.39 Mutations examined are indicated in red on the CsrA structure. Table compares

experimentally determined and predicted pKd values (in parentheses) of wild-type CsrA and each mutant protein, with integers indicating inferred
rank order of RNA affinity.
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CONCLUSIONS

Understanding the general principles by which molec-

ular structure determines ligand-binding affinity is an

important and long-standing goal of structural biochem-

istry. Although considerable progress has been made

toward the fast and accurate prediction of protein-small

molecule affinity, few attempts have been made to extend

these approaches to prediction of other types of molecu-

lar interactions, and—to our knowledge—no studies

have explicitly set out to quantify how patterns of atom-

atom interactions impact macromolecular binding across

the range of interactions likely to be of biological

importance.

Here we collected and curated available X-ray crystal

structures capturing the atomic interactions of interact-

ing protein-small molecule, protein-DNA/RNA and pro-

tein2protein pairs and combined this information with

experimentally determined binding affinity measurements

of each complex. Using cross-validated statistical

machine learning, we quantified how atomic interactions

inferred by the structural complex contributed to binding

affinity. We found that there were significant and consist-

ent differences across ligand types in the particular com-

binations of atomic interaction features that were most

important for determining binding affinity. The specific

features we identified will likely form a basis for further

understanding the general principles through which

molecular structure impacts function.

We found that protein-DNA/RNA interactions—

which had a more complex structural basis that was

more strongly influenced by statistical interactions

among and combinations of simple atom-atom inter-

actions—could be predicted with accuracy similar to

that currently obtained for simpler protein-small mol-

ecule interactions, even though the amount of avail-

able structural data was much more limited in the

case of protein-DNA/RNA complexes. That protein-

DNA/RNA binding affinity can be predicted quickly

and accurately suggests that high-throughput “virtual

screening” techniques might be viable for examining

protein-DNA/RNA interactions and guiding labora-

tory experiments.

However, given the available structural data, pro-

tein2protein binding affinity could not be accurately

predicted. Protein2protein binding may involve sec-

ondary structure segmentation, conformational changes

and changes in system free energy during complex for-

mation and cooperative folding, none of which are

likely to be captured in a static image of the bound

complex.24,43,46 Considering how structures change

during complex formation may be important for accu-

rately predicting protein2protein affinity.31 Leveraging

existing sequence and structural data to predict binding

affinities based on similarity to experimentally charac-

terized systems is an alternative approach that could

prove both fast and accurate.32
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