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Abstract

Type 2 diabetes (T2D) has earned widespread recognition as a primary cause of death, dis-

ability, and increasing healthcare costs. There is compelling evidence that hereditary factors

contribute to the development of T2D. Clinical trials in T2D have mostly focused on genes

and single nucleotide polymorphisms (SNPs) in protein-coding areas. Recently, it was

revealed that SNPs located in noncoding areas also play a significant impact on disease

vulnerability. It is required for cell type-specific gene expression. However, the precise

mechanism by which T2D risk genes and SNPs work remains unknown. We integrated risk

genes and SNPs from genome-wide association studies (GWASs) and performed compre-

hensive bioinformatics analyses to further investigate the functional significance of these

genes and SNPs. We identified four intriguing transcription factors (TFs) associated with

T2D. The analysis revealed that the SNPs are engaged in chromatin interaction regulation

and/or may have an effect on TF binding affinity. The Gene Ontology (GO) study revealed

high enrichment in a number of well-characterized signaling pathways and regulatory pro-

cesses, including the STAT3 and JAK signaling pathways, which are both involved in T2D

metabolism. Additionally, a detailed KEGG pathway analysis identified two major T2D

genes and their prospective therapeutic targets. Our findings underscored the potential

functional significance of T2D risk genes and SNPs, which may provide unique insights into

the disease’s pathophysiology.

Introduction

Type 2 diabetes mellitus (T2DM) is a devastating global disease and one of the most prevalent

metabolic disorders [1, 2]. T2DM has a convoluted etiology that involves both unchangeable

risk factors such as age, genetics, race, and ethnicity and modifiable risk factors including

physical activity, smoking, and diet. Diabetic patients are fast rising in number as a result of an

increase in the incidence and prevalence of obesity, which is mostly attributed to western cui-

sine and other lifestyle choices [3]. Patient numbers have quadrupled in the last three decades,
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making it a significant global public health concern [4]. Increases in the incidence of risk fac-

tors such obesity, hypertension, cardiovascular disease and prediabetes, as well as an aging

population, are assumed to be contributing to the rising prevalence of diabetes [5, 6]. Increased

screening, as well as changes in diagnostic criteria, may lead to increased diabetes prevalence,

along with changes in risk factor prevalence. Worldwide, 425 million persons (1 in 11) have

diabetes, 90% of which is type 2. (T2DM) [7, 8].

T2D has gained notoriety as a leading cause of death, disability, and rising healthcare

expenses. There is strong evidence that genetic factors have a role in the development of T2D

[9]. Several strong T2D single nucleotide polymorphisms (SNPs) were found in recent waves

of genome-wide association studies (GWASs) across the European and Asian regions, even

though these SNPs explained only a small percentage of T2D heritability in aggregate [10–12].

Because of their effect on the expression of their target genes, SNPs in the protein-coding

region have been related to hundreds of diseases. Furthermore, noncoding regions account for

more than 90% of variants discovered in GWAS [13], and the mechanisms through which

these SNPs contribute to illness risk are mysterious. The role of SNP-related genes connected

to type 2 diabetes in Asian people, is still unknown. Additionally, genes and transcription fac-

tors are a critical component in the pathophysiology of T2D. According to research, transcrip-

tion factors may influence pancreatic cell growth, β-cell function, and T2D-related signaling

pathways [14, 15]. Previous studies have demonstrated that various genes associated with type

2 diabetes are found in the leptin signaling pathways, including signal transducer and activator

of transcription 3 (STAT3), which acts as a regulator of the signal transduction of various cyto-

kines, growth factors, and hormones involved in the regulation of body growth and immune

responses. Additionally, STAT3 is a well-known regulator of insulin resistance [16, 17]. While

research into the pathophysiology of diabetes is progressing, we still need to understand the

critical genetic features that directly regulate T2D.

The purpose of this study was to select the genes and SNPs linked with T2D risk in the

Asian region using GWAS data and to estimate their molecular and biological function in

T2D pathogenesis. We employed bioinformatics analysis to further explain the potential func-

tional importance of T2D-associated SNPs in the etiology of T2D by combining T2D-associ-

ated SNPs and their target genes from GWAS data for the Asian region. Additionally, we also

investigated the possible risk gene pathway and genes-drugs interaction. Our findings may

shed new light on the genetic origins of type 2 diabetes and their possible function in T2D

pathogenesis.

Materials and methods

T2D GWAS datasets and associated gene and SNPs selection

We retrieved potential genes and SNPs associated with type 2 diabetes in Asian ancestry from

publicly available GWAS datasets (https://www.ebi.ac.uk/gwas/) and GWAS studies done by

Spracklen et al., [12] and Kooner et al., [10] and these two studies represent the summery of

GWAS study in Asian region. We have selected potential SNPs using the GWAS significance

threshold (p-value < 5×E-5). Following that, we used proxy SNAP (https://www.broadinsti

tute.org/mpg/snap/ldsearch.php) to identify SNPs in linkage disequilibrium (LD) that were

associated with T2D SNPs retrieved for east and south Asian previously. The inclusion criteria

for LD SNPs were as follows: a distance of 500 KB from the query SNP with a pairwise LD

coefficient of>0.8 [10, 12]. Finally, a total of 22 genes and 23 potential SNPs were selected and

further used for their functional prediction and possible underlying molecular mechanism

related to T2D in Asian population.
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Functional prediction of T2D associated SNPs

To investigate the functional consequences of T2D associated SNPs, we used HaploReg v4.1, a

comprehensive resource that incorporates data from Roadmap Epigenomics, ENCODE, and

the Genotype-Tissue Expression Project (GTEx), among others, to examine the effect of T2D

associated SNPs on gene expression (eQTLs) and regulatory motif alterations within sets of

genetically linked T2D risk SNPs. Additionally, we conducted a transcription factor enrich-

ment study using the SNP2TFBS (http://ccg.vital-it.ch/snp2tfbs/) program, which allows users

to choose and display variations affecting single or many transcription factors [18].

Gene ontology (GO) analysis

To get a better understanding of the targeted gene’s biological significance and to decipher bio-

logical networks, we ran a gene ontology (GO) enrichment study. ToppGene (https://toppg

ene.cchmc.org/) was used to presume key molecular activities and biological processes that

may provide light on the pathogenesis of the disease under investigation. For this study, the

ToppGene Suite portal’s default settings were used, which means that the FDR was adjusted

and P<0.05 was considered statistically significant [19, 20].

Protein-protein interaction networks

STRING v11.0 (https://string-db.org/) is a database of recognized and anticipated protein

interactions, including associations of physical and functional properties. It combines interac-

tion data statistically obtained from the genetic context, high-throughput studies, co-expres-

sion, and prior information. To investigate the functional association and interaction of T2D-

associated SNPs, we created gene (protein) interaction networks using the STRING v11.0 data-

base’s default settings (observed interaction, 70; expected interaction, 8.83; Benjamini adjust

p-value < 1×E-10; proteins,76) [21, 22]. We used the Markov Clustering Algorithm (MCL) to

identify clusters of proteins in the STRING augmented and extended networks. The algorithm

was executed using an inflation parameter of 2 to obtain a reasonable level of granularity in the

protein clusters [23].

KEGG pathway analysis

The Kyoto Encyclopedia of Genes and Genomes (KEGG) is a reference knowledge used to

analyze genomic sequences and other high-throughput data for biological purposes [24]. At

the molecular and higher levels, KEGG provides functional meaning to genes and genomes.

We used The Database for Annotation, Visualization, and Integrated Discovery (DAVID) to

obtain the pathways and which allows for a comprehensive analysis of high-throughput gene

functions [25].

Key gene-drug interaction network analysis

The Comparative Toxicogenomic Database was used to design the key gene-drug interaction

network for chemotherapeutic drugs that maybe reduce or elevate the mRNA or protein

expression levels of the key genes [26]. The CTD attempts to develop an understanding of the

interactions between environmental chemicals and genes, along with their impact on human

health. Basically, the CTD systematic search was conducted for PAX4 and HNF4A key genes,

and the gene-drug interaction networks were visualized using Cytoscape version 3.8.2 [27].
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Results

Functional prediction of T2D associated SNPs

We began our investigation by identifying 22 candidate genes and 23 related SNPs from a

GWAS study conducted in the Asian area (S1 Table in S1 File) and identified candidate SNPs

based on their GWAS significance (p-value<5×E-5). To ascertain the possible functional con-

sequences of selected T2D risk SNPs, we examined their influence on regulatory motifs and

gene expression. Following annotation, it was discovered that 23 T2D risk SNPs altered the

transcription factor binding motif, highlighting the significant regulatory potential of T2D risk

SNPs (Table 1). Additionally, the analysis highlighted 16 T2D risk SNPs that were associated

with eQTL evidence.

However, the effect of T2D risk SNPs on the transcription binding affinity was determined

and analysis results reported top four enrichment transcription factors and these are Rfx1,

Nkx2-5, NR2C2 and MZF1_5–13 (Fig 1A). Fig 1A shows the 25 transcription factors that

interact with identified SNPs. According to p-values, these SNPs were substantially enriched

for disruption of four TFs, including Rfx1 (P = 0.008), Nkx2-5 (P = 0.01), NR2C2 (P = 0.022),

and MZF1_5–13 (P = 0.027) (S2 Table in S1 File). The analysis showed that these four tran-

scription factors (TF) are highly significant for T2D risk genes and SNPs. Instead, other TFs

are poorly associated with T2D risk genes and SNPs.

GO analysis of T2D associated SNPs target genes

In order to thoroughly explore if the specific T2D-related SNPs are specifically correlated with

T2D, we performed a GO analysis. Interestingly, we observed a significant molecular functions

Table 1. Functional prediction of type 2 diabetes associated SNPs in Asian populations.

Chr Pos (hg38) Variant Motifs Changed Selected eQTL Hits GENCODE Genes dbSNP Functional Annotation

15 62104190 rs7172432 7 altered motifs 1 33kb 3’ of C2CD4A -

3 64062621 rs831571 PLZF - 5.3kb 5’ of RP11-129B22.1 -

4 1316113 rs6815464 6 altered motifs - MAEA intronic

6 38139068 rs9470794 Ascl2,BHLHE40,Myf 1 ZFAND3 intronic

6 39316274 rs1535500 5 altered motifs 9 KCNK16 missense

7 127524904 rs6467136 5 altered motifs 1 39kb 3’ of AC000124.1 -

9 4287466 rs7041847 Osr - GLIS3 intronic

19 33402102 rs3786897 LF-A1,SP1,SZF1-1 4 PEPD intronic

20 44318326 rs6017317 CEBPA,Mef2,STAT 4 7.2kb 5’ of FITM2 -

8 41661944 rs515071 4 altered motifs 3 RP11-930P14.1 intronic

10 119389891 rs10886471 - - GRK5 intronic

15 38530704 rs7403531 Hmbox1 22 RP11-275I4.1 intronic

7 127606849 rs10229583 KAP1,Maf,TCF12 1 3.4kb 3’ of PAX4 -

9 136357696 rs11787792 Pax-5,TCF12,ZNF263 13 GPSM1 intronic

17 7037074 rs312457 4 altered motifs - SLC16A13 intronic

3 186948673 rs16861329 RXRA,TBX5 - ST6GAL1 intronic

10 69171718 rs1802295 5 altered motifs 9 VPS26A 3’-UTR

15 77454848 rs7178572 THAP1 4 HMG20A intronic

15 89831025 rs2028299 Egr-1,Ets,Znf143 30 AP3S2 3’-UTR

20 44360627 rs4812829 Mef2,Nkx2 2 HNF4A intronic

13 23290518 rs9552911 6 altered motifs - SGCG intronic

2 134722410 rs6723108 Foxp3,Pou5f1,STAT 10 3.4kb 5’ of TMEM163 -

2 164645339 rs3923113 HEN1 1 8.3kb 3’ of COBLL1 -

https://doi.org/10.1371/journal.pone.0268826.t001
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Fig 1. Functional prediction and protein-protein interaction of T2D risk genes and SNPs. (A) Transcription

factors (TF) enrichment, TFs are sorted based on their enrichment. (B) Protein-protein interaction of T2D risk genes.

In protein-protein interaction, connections are based on co-expression and experimental evidence. Each filled node

denotes a gene; edges between nodes indicate protein-protein interactions between protein products of the

corresponding genes. Different edge colors represent the types of evidence for the association.

https://doi.org/10.1371/journal.pone.0268826.g001
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and biological processes (Table 2). The GO term beta-adrenergic receptor kinase activity, zinc

ion binding, beta-adrenergic receptor kinase activity, transition metal ion binding, and Long-

chain fatty acyl-CoA binding may have a crucial role in T2D pathogenesis. In this study, GO

analysis reported that SNPs are may responsible for binding more stearic acid in serum and

impaired beta cell function.

In biological function, GO analysis shows that selected SNPs may negatively regulate the

activation of Janus kinase activity (JAK) and meiotic cell cycle process involved in oocyte mat-

uration (Table 2). Study results also stated that T2D-associated SNPs may regulate endocrine

pancreas development and more studies are needed to describe the underlying function of risk

SNPs to pancreas development. Insulin signaling (IS) is very crucial for glucose homeostasis

Table 2. The most significant gene ontology (GO) terms for type 2 diabetes associated SNPs target genes.

ID Name p-value Genes from Input Genes in Annotation

Molecular

Functions

GO:0102009 Proline dipeptidase activity 9.80E-

04

1 1

GO:0102010 Beta-galactoside alpha-2,6-sialyltransferase activity 1.96E-

03

1 2

GO:0102011 Stearic acid binding 1.96E-

03

1 2

GO:0102012 Transition metal ion binding 3.88E-

03

5 1130

GO:0102013 Beta-adrenergic receptor kinase activity 3.91E-

03

1 4

GO:0102014 G protein-coupled receptor kinase activity 6.83E-

03

1 7

GO:0102015 Long-chain fatty acyl-CoA binding 7.80E-

03

1 8

GO:0102016 Arachidonic acid binding 7.80E-

03

1 8

GO:0102017 Zinc ion binding 8.32E-

03

4 849

GO:0102018 Icosatetraenoic acid binding 8.78E-

03

1 9

Biological Processes GO:1904145 Negative regulation of meiotic cell cycle process involved in oocyte

maturation

9.90E-

04

1 1

GO:0031018 Endocrine pancreas development 1.75E-

03

2 63

GO:1902569 Negative regulation of activation of Janus kinase activity 1.98E-

03

1 2

GO:0062111 Zinc ion import into organelle 1.98E-

03

1 2

GO:0099180 Zinc ion import into synaptic vesicle 1.98E-

03

1 2

GO:1903537 Meiotic cell cycle process involved in oocyte maturation 2.97E-

03

1 3

GO:1903538 Regulation of meiotic cell cycle process involved in oocyte maturation 2.97E-

03

1 3

GO:0002528 Regulation of vascular permeability involved in acute inflammatory

response

3.95E-

03

1 4

GO:0031016 Pancreas development 4.26E-

03

2 99

GO:0006520 Cellular amino acid metabolic process 4.53E-

03

3 349

https://doi.org/10.1371/journal.pone.0268826.t002
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and its directly regulated oocyte growth and maturation [28]. On the other hand, GO analysis

reported that the risk SNPs are negatively regulated of meiotic cell cycle process involved in

oocyte maturation. Other interesting GO terms, for instance proline dipeptidase activity, long

chain fatty acyl-CoA binding, and cellular amino acid metabolic process, may have a potential

function in the T2D pathogenesis.

Protein-protein interaction networks (PPI)

To partially describe the functional relationships and interaction networks among the 22 T2D-

linked SNPs target genes, we analyzed the protein-protein interaction patterns of T2D risk

genes. Fig 1B indicated a substantial correlation between the topological characteristics and

biological function of T2D associated SNPs target genes. ZFAND3, PAX4, HNF4A, PSMD6,

MAEA, KCNK16, GCC1, GLIS3, VPS26A, HMG20A, and AP3S2 are the genes with the

strongest interactions. Importantly, our results described that interactions among the PAXA,

HNF4A, ZFAND3 and GLIS3 proteins are experimentally determined. Furthermore, this net-

work of the 22 T2D-associated proteins had more interactions among themselves than would

be expected for a set of proteins of similar size, randomly selected from the human genome.

Such an enrichment indicates that the proteins are functionally connected as a group. Interest-

ingly, these proteins are implicated in the energy reserve metabolic process, glucose homeosta-

sis, and negative regulation of pancreatic cell apoptosis, indicating that they may have a role in

the etiology of T2D [29, 30].

KEGG pathway analysis

To elucidate the important genes, the KEGG pathways of these 22 genes were investigated.

Several genes were found to be enriched, however hepatocyte nuclear factor 4 alpha (HNF4A)

and paired box 4 (PAX4) were found to be strongly related to the diabetes onset pathway (Fig

2A). Additionally, the results reveal the presence of another subset of HNF1A, however this

gene is not as significantly vulnerable as HNF4A. Additionally, HNF4A is associated with two

molecular factors (Pklr and Glut2) involved in the pathophysiology of T2D. In comparison,

the critical molecular component for PAX4 remains unknown.

Interaction analysis of the key genes and drugs

The key gene-drug interaction network was established using to investigate the interaction

between key genes and their interaction with chemical compounds for therapeutic targets of

T2D. A variety of drugs, as depicted in Fig 2B and 2C, may affect the expression of these two

key genes, PAX4 and HNF4A. These major transcription factor-drug interaction networks not

only reveal which chemicals inhibit these key transcription factors and essential genes, but also

how these genes may increase or reduce chemotherapeutic drug susceptibility.

Titanium dioxide, glutathione, and bis (4-hydroxyphenyl) sulfone all have the potential to

promote HNF4A expression, whilst the remaining medicines have the potential to reduce

HNF4A expression (Fig 2B). All of the medications or compounds in Fig 2C decrease PAX4

expression, with the exception of titanium dioxide, which increases it.

Discussion

There are far more genetic variants in noncoding regions of the human genome than in pro-

tein-coding regions. There are several critical functional regulatory elements, such as SNPs,

that may be critical in disease metabolism. In this study, we used publicly available GWAS

datasets to identify 22 candidate genes and 23 single nucleotide polymorphisms (SNPs)
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associated with type 2 diabetes in Asians. Additionally, we examined the functional conse-

quences of these SNPs and their target genes, conducted transcription factor enrichment anal-

ysis, GO and protein-protein interaction network studies, and examined pathways and

significant gene-drug interaction networks.

Fig 2. Key genes pathway identification and potential drug design. (A) KEGG pathway enrichment. PAX4 and HNF4A genes were significantly enriched in the

maturity onset diabetes of the young. (B and C) HNF4A and PAX4 are each linked to different potential drugs. Green node: the drug decreases the key gene expression;

and red node: the drug increases the expression of the key gene.

https://doi.org/10.1371/journal.pone.0268826.g002
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Our findings demonstrated the probable function of 22 genes and 23 SNPs associated with

type 2 diabetes in Asians. Intriguingly, functional prediction analysis revealed that 22 SNPs

associated with type 2 diabetes altered the transcription factor binding motif, indicating the

enormous regulatory potential of T2D risk SNPs (Table 1). Additionally, the research identi-

fied sixteen SNPs related to T2D risk that were connected with eQTL evidence. Additionally,

the results suggested that the potential genes based on eQTL hits. KCNK16, HNF4A, AP3S2,

VPS26A, TMEM163, GPSM1, RP11, and HMG20A are all potential genes. Recent research

indicates that mutations in the HNF4A gene are involved in progressive β-cell dysfunction and

hyperinsulinism, which can result in the establishment of early diabetes [31]. Additionally, the

study discovered that the KCNK16 mutation is connected with beta cell activity and enhances

TALK-1’s functional potential. TALK-1 inhibits glucose-induced depolarization of the mem-

brane potential and Ca2+ influx [32]. AP3S2 and GPSM1 have also associated to diabetes and

other metabolic disorder by impairing the function of Golgi vesicles formation and trafficking

to lysosomes and cell signaling respectively [15]. Another interesting HMG20A gene was also

reported as a risk gene for T2D. The mutation of this gene may regulate transcription factor;

histone methylation [15].

Likewise, to investigate the effect of T2D risk SNPs on transcription binding affinity

revealed that the top four transcription factors associated with enrichment are Rfx1, Nkx2-5,

NR2C2, and MZF1 5–13. TF Rfx1is playing downstream role on signal transducer and activa-

tor of transcription 3 (STAT3) pathway while the expression of Rfx1 is regulated by interleu-

kin-6 (IL-6)-STAT3 signaling pathway [33], and STAT3 plays an important role in diabetes

pathogenesis [34]. TF Nkx2-5 regulates WNT signaling pathway [35] and interestingly, WNT

signaling is associated with insulin activation [36]. On the other hand, NR2C2 is linked with

insulin resistance [37].

The GO term beta-adrenergic receptor kinase activity has a crucial role in increasing

insulin resistance which may promote diabetes pathogenesis [38]. High stearic acid in serum is

responsible for inducing more lipotoxicity and decreasing insulin production from beta cells

[39]. The GO analysis of T2D risk SNPs target genes confirmed the well-characterized JAK sig-

naling pathways, but also identified numerous additional mechanisms likely involved in T2D

pathogenesis, such as positive regulation of lipid metabolic processes and negative regulation

of inflammatory response. It is well established that JAK signaling is critical for cytokine gener-

ation and immune homeostasis regulation [40]. Additionally, JAK signaling dysregulation

may play a role in the development of obesity and diabetes [41].

A network analysis of protein-protein interactions discovered numerous hub genes that

interacted and were responsible for T2D associations [42]. Then, we analyzed the possible

pathway of T2D-associated genes and found that two key genes (PAX4 and HNF4A) are sig-

nificantly responsible for T2D pathogenesis. PAX4 inhibited the expression of insulin and

glucagon promoters and decreased the amounts of transcripts encoding genes necessary for β-

cell function, proliferation, and survival. The viability of β-cells overexpressing either PAX4

R192H or PAX4 P321H, or both, was reduced under glucotoxicity stress conditions [43].

Thus, these PAX4 gene mutation may raise the risk of T2D by impairing target gene transcrip-

tion control and/or reducing β-cell survival in high glucose conditions. Mutations in the genes

encoding hepatocyte nuclear factor (HNF) 1A and 4A result in a monogenic form of diabetes

called maturity-onset diabetes of the young (MODY). MODY is primarily caused by a defect

in pancreatic β-cells’ glucose-stimulated insulin production, highlighting the critical functions

of HNF1A and HNF4A in -cells [44]. Numerous large-scale genetic investigations have estab-

lished those common variations of the HNF1A and HNF4A genes are also associated with

type 2 diabetes, implying that they play a role in the etiology of both disorders [45, 46]. Recent

experimental research has demonstrated that HNF1A regulates both the activity and
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proliferation of β-cells via the regulation of target genes such as glucose transporter 2, pyruvate

kinase, collectrin, hepatocyte growth factor activator, and HNF4A. In comparison, HNF4A is

primarily involved in regulating the function of β-cells [47].

Furthermore, to gain a better understanding of gene-targeted therapy, we investigated the

interactions of essential genes with commonly used therapeutic agents. The results indicated

that certain medications had the ability to modulate the expression of two critical genes. As

shown in result section, titanium dioxide, glutathione, and bis (4-hydroxyphenyl) sulfone all

have the ability to increase HNF4A expression, whilst the remaining medications have the

potential to decrease it (Fig 2B). Except for titanium dioxide, which promotes PAX4 expres-

sion, all of the drugs or chemicals in Fig 2C inhibit PAX4 expression. Although additional

research is need to unravel the precise gene-drug interactions.

In the current study, we conducted in-depth bioinformatics analysis to establish the

functional significance of the T2D risk SNPs and genes in Asian region. However, our study

highlighted four transcriptional factors, essential signaling pathways and some targeted genes

and possible targeted drugs. Nevertheless, the databases involved in these bioinformatics inves-

tigations are limited; for example, we focus exclusively on genes and SNPs with Minor allele

frequency (MAF > 0.001) from the GWAS study. We acknowledge that the functional predic-

tion analysis overlooked a number of known variations fulfilling the MAF requirement. Fur-

thermore, because functional annotation results are entirely dependent on computationally

anticipated regulatory characteristics, model and algorithm selection is crucial for this type of

research. As a result of the potential overshadowing of the functional significance of these can-

didate T2D risk genes and SNPs, additional experiment validation should be conducted to

establish the functional mechanism of these prospective T2D risk genes and SNPs.

In summary, we identified four major transcription factors associated with diabetes patho-

genesis in the Asian population by predicting the function of T2D risk genes and SNPs. Addi-

tionally, comprehensive bioinformatics study demonstrated that T2D risk genes and SNPs

have significant molecular and biological functions which regulate diabetes pathogenesis.

Furthermore, analysis revealed the two critical genes pathway and their prospective target

medications. While exact mechanisms have to be investigated in vivo and in vitro, our find-

ings provide new insights into how to improve the treatment and prognosis of T2D patients

targeting genetics factors.
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19. Baralić K, JorgovanovićD, Živančević K, AntonijevićMiljaković E, Antonijević B, Buha Djordjevic A,

et al. Safety assessment of drug combinations used in COVID-19 treatment: in silico toxicogenomic

data-mining approach. Toxicol Appl Pharmacol. 2020; 406. https://doi.org/10.1016/j.taap.2020.115237

PMID: 32920000

20. Gupta MK, Behara SK, Vadde R. In silico analysis of differential gene expressions in biliary stricture and

hepatic carcinoma. Gene. 2017; 597: 49–58. https://doi.org/10.1016/j.gene.2016.10.032 PMID:

27777109

21. Mathavan S, Kue CS, Kumar S. Identification of potential candidate genes for lip and oral cavity cancer

using network analysis. Genomics and Informatics. 2021; 19. https://doi.org/10.5808/gi.20062 PMID:

33840168

22. Deng JL, Xu YH, Wang G. Identification of potential crucial genes and key pathways in breast cancer

using bioinformatic analysis. Front Genet. 2019; 10: 1–17. https://doi.org/10.3389/fgene.2019.00695

PMID: 31428132

23. Enright AJ, Van Dongen S, Ouzounis CA. An efficient algorithm for large-scale detection of protein fami-

lies. Nucleic Acids Res. 2002; 30: 1575–1584. https://doi.org/10.1093/nar/30.7.1575 PMID: 11917018

24. Kanehisa M, Sato Y, Furumichi M, Morishima K, Tanabe M. New approach for understanding genome

variations in KEGG. Nucleic Acids Res. 2019; 47: D590–D595. https://doi.org/10.1093/nar/gky962

PMID: 30321428

25. Kanehisa M, Furumichi M, Tanabe M, Sato Y, Morishima K. KEGG: New perspectives on genomes,

pathways, diseases and drugs. Nucleic Acids Res. 2017; 45: D353–D361. https://doi.org/10.1093/nar/

gkw1092 PMID: 27899662

26. Davis AP, Wiegers TC, Johnson RJ, Lay JM, Lennon-Hopkins K, Saraceni-Richards C, et al. Text Min-

ing Effectively Scores and Ranks the Literature for Improving Chemical-Gene-Disease Curation at the

Comparative Toxicogenomics Database. PLoS One. 2013; 8. https://doi.org/10.1371/journal.pone.

0058201 PMID: 23613709

27. Davis AP, King BL, Mockus S, Murphy CG, Saraceni-Richards C, Rosenstein M, et al. The comparative

toxicogenomics database: Update 2011. Nucleic Acids Res. 2011; 39: 1067–1072. https://doi.org/10.

1093/nar/gkq813 PMID: 20864448

28. Das D, Arur S. Conserved insulin signaling in the regulation of oocyte growth, development, and matu-

ration. Mol Reprod Dev. 2017; 84: 444–459. https://doi.org/10.1002/mrd.22806 PMID: 28379636

29. Ndiaye FK, Ortalli A, Canouil M, Huyvaert M, Salazar-Cardozo C, Lecoeur C, et al. Expression and

functional assessment of candidate type 2 diabetes susceptibility genes identify four new genes contrib-

uting to human insulin secretion. Mol Metab. 2017; 6: 459–470. https://doi.org/10.1016/j.molmet.2017.

03.011 PMID: 28580277

30. Xu K, Jiang L, Zhang M, Zheng X, Gu Y, Wang Z, et al. Type 2 diabetes risk allele UBE2E2 is associ-

ated with decreased glucose-stimulated insulin release in elderly Chinese Han individuals. Med (United

States). 2016; 95: 1–6. https://doi.org/10.1097/MD.0000000000003604 PMID: 27175665

31. Vlachopapadopoulou EA, Dikaiakou E, Fotiadou A, Sifianou P, Tatsi EB, Sertedaki A, et al. Detection of

hepatocyte nuclear factor 4A(HNF4A) gene variant as the cause for congenital hyperinsulinism leads to

revision of the diagnosis of the mother. J Pediatr Endocrinol Metab. 2021; 34: 527–530. https://doi.org/

10.1515/jpem-2020-0302 PMID: 33031054

32. Graff SM, Johnson SR, Leo PJ, Dadi PK, Dickerson MT, Nakhe AY, et al. A KCNK16 mutation causing

TALK-1 gain of function is associated with maturity-onset diabetes of the young. JCI Insight. 2021; 6: 1–

13. https://doi.org/10.1172/jci.insight.138057 PMID: 34032641

33. Zhao M, Tan Y, Peng Q, Huang C, Guo Y, Liang G, et al. IL-6/STAT3 pathway induced deficiency of

RFX1 contributes to Th17-dependent autoimmune diseases via epigenetic regulation. Nat Commun.

2018; 9: 1–14. https://doi.org/10.1038/s41467-018-02890-0 PMID: 29422534

34. Abo El- Nasr NME, Saleh DO, Mahmoud SS, Nofal SM, Abdelsalam RM, Safar MM, et al. Olmesartan

attenuates type 2 diabetes-associated liver injury: Cross-talk of AGE/RAGE/JNK, STAT3/SCOS3 and

RAS signaling pathways. Eur J Pharmacol. 2020; 874: 10–11. https://doi.org/10.1016/j.ejphar.2020.

173010 PMID: 32067934

PLOS ONE In silico functional and pathway analysis of risk genes and SNPs for type 2 diabetes in Asian population

PLOS ONE | https://doi.org/10.1371/journal.pone.0268826 August 29, 2022 12 / 13

https://doi.org/10.2337/db16-0867
http://www.ncbi.nlm.nih.gov/pubmed/28073828
https://doi.org/10.1155/2021/6657324
http://www.ncbi.nlm.nih.gov/pubmed/33833859
https://doi.org/10.1371/journal.pone.0192105
http://www.ncbi.nlm.nih.gov/pubmed/29385209
https://doi.org/10.1016/j.taap.2020.115237
http://www.ncbi.nlm.nih.gov/pubmed/32920000
https://doi.org/10.1016/j.gene.2016.10.032
http://www.ncbi.nlm.nih.gov/pubmed/27777109
https://doi.org/10.5808/gi.20062
http://www.ncbi.nlm.nih.gov/pubmed/33840168
https://doi.org/10.3389/fgene.2019.00695
http://www.ncbi.nlm.nih.gov/pubmed/31428132
https://doi.org/10.1093/nar/30.7.1575
http://www.ncbi.nlm.nih.gov/pubmed/11917018
https://doi.org/10.1093/nar/gky962
http://www.ncbi.nlm.nih.gov/pubmed/30321428
https://doi.org/10.1093/nar/gkw1092
https://doi.org/10.1093/nar/gkw1092
http://www.ncbi.nlm.nih.gov/pubmed/27899662
https://doi.org/10.1371/journal.pone.0058201
https://doi.org/10.1371/journal.pone.0058201
http://www.ncbi.nlm.nih.gov/pubmed/23613709
https://doi.org/10.1093/nar/gkq813
https://doi.org/10.1093/nar/gkq813
http://www.ncbi.nlm.nih.gov/pubmed/20864448
https://doi.org/10.1002/mrd.22806
http://www.ncbi.nlm.nih.gov/pubmed/28379636
https://doi.org/10.1016/j.molmet.2017.03.011
https://doi.org/10.1016/j.molmet.2017.03.011
http://www.ncbi.nlm.nih.gov/pubmed/28580277
https://doi.org/10.1097/MD.0000000000003604
http://www.ncbi.nlm.nih.gov/pubmed/27175665
https://doi.org/10.1515/jpem-2020-0302
https://doi.org/10.1515/jpem-2020-0302
http://www.ncbi.nlm.nih.gov/pubmed/33031054
https://doi.org/10.1172/jci.insight.138057
http://www.ncbi.nlm.nih.gov/pubmed/34032641
https://doi.org/10.1038/s41467-018-02890-0
http://www.ncbi.nlm.nih.gov/pubmed/29422534
https://doi.org/10.1016/j.ejphar.2020.173010
https://doi.org/10.1016/j.ejphar.2020.173010
http://www.ncbi.nlm.nih.gov/pubmed/32067934
https://doi.org/10.1371/journal.pone.0268826


35. Cambier L, Plate M, Sucov HM, Pashmforoush M. Nkx2-5 regulates cardiac growth through modulation

of Wnt signaling by R-spondin3. Dev. 2014; 141: 2959–2971. https://doi.org/10.1242/dev.103416

PMID: 25053429

36. Welters HJ, Kulkarni RN. Wnt signaling: relevance to β-cell biology and diabetes. Trends Endocrinol

Metab. 2008; 19: 349–355. https://doi.org/10.1016/j.tem.2008.08.004 PMID: 18926717

37. Kang HS, Okamoto K, Kim YS, Takeda Y, Bortner CD, Dang H, et al. Nuclear orphan receptor TAK1/

TR4-deficient mice are protected against obesity-linked inflammation, hepatic steatosis, and insulin

resistance. Diabetes. 2011; 60: 177–188. https://doi.org/10.2337/db10-0628 PMID: 20864514

38. Wang Q, Liu Y, Fu Q, Xu B, Zhang Y, Kim S, et al. Inhibiting insulin-mediated β 2-adrenergic receptor

activation prevents diabetes-associated cardiac dysfunction. Circulation. 2017; 135: 73–88. https://doi.

org/10.1161/CIRCULATIONAHA.116.022281 PMID: 27815373

39. Lu H, Hao L, Li S, Lin S, Lv L, Chen Y, et al. Elevated circulating stearic acid leads to a major lipotoxic

effect on mouse pancreatic beta cells in hyperlipidaemia via a miR-34a-5p-mediated PERK/p53-depen-

dent pathway. Diabetologia. 2016; 59: 1247–1257. https://doi.org/10.1007/s00125-016-3900-0 PMID:

26969487

40. Hammarén HM, Virtanen AT, Raivola J, Silvennoinen O. The regulation of JAKs in cytokine signaling

and its breakdown in disease. Cytokine. 2019; 118: 48–63. https://doi.org/10.1016/j.cyto.2018.03.041

PMID: 29685781

41. Gurzov EN, Stanley WJ, Pappas EG, Thomas HE, Gough DJ. The JAK/STAT pathway in obesity and

diabetes. FEBS J. 2016; 283: 3002–3015. https://doi.org/10.1111/febs.13709 PMID: 26972840

42. Gupta MK, Vadde R. Identification and characterization of differentially expressed genes in Type 2 Dia-

betes using in silico approach. Comput Biol Chem. 2019; 79: 24–35. https://doi.org/10.1016/j.

compbiolchem.2019.01.010 PMID: 30708140

43. Sujjitjoon J, Kooptiwut S, Chongjaroen N, Semprasert N, Hanchang W, Chanprasert K, et al. PAX4

R192H and P321H polymorphisms in type 2 diabetes and their functional defects. J Hum Genet. 2016;

61: 943–949. https://doi.org/10.1038/jhg.2016.80 PMID: 27334367

44. Maestro M, Cardalda C, Boj S, Luco R, Servitja J, Ferrer J. Distinct roles of HNF1β, HNF1α, and

HNF4α in regulating pancreas development, β-cell function and growth. Endocr Dev. 2007; 12: 33–45.

https://doi.org/10.1159/000109603 PMID: 17923767

45. Wei S, Zhang M, Yu Y, Lan X, Yao F, Yan X, et al. Berberine attenuates development of the hepatic glu-

coneogenesis and lipid metabolism disorder in type 2 diabetic mice and in palmitate-incubated HepG2

cells through suppression of the HNF-4αMIR122 pathway. PLoS ONE. 2016. https://doi.org/10.1371/

journal.pone.0152097 PMID: 27011261

46. Du JE, You YA, Kwon EJ, Kim SM, Lee J, Han KH, et al. Maternal malnutrition affects hepatic metabo-

lism through decreased hepatic taurine levels and changes in hnf4a methylation. Int J Mol Sci. 2020;

21: 1–14. https://doi.org/10.3390/ijms21239060 PMID: 33260590

47. Yamagata K. Roles of HNF1α and HNF4α in pancreatic β-cells: Lessons from a monogenic form of dia-

betes (MODY). Vitamins and Hormones. 2014. pp. 407–423. https://doi.org/10.1016/B978-0-12-

800174-5.00016-8

PLOS ONE In silico functional and pathway analysis of risk genes and SNPs for type 2 diabetes in Asian population

PLOS ONE | https://doi.org/10.1371/journal.pone.0268826 August 29, 2022 13 / 13

https://doi.org/10.1242/dev.103416
http://www.ncbi.nlm.nih.gov/pubmed/25053429
https://doi.org/10.1016/j.tem.2008.08.004
http://www.ncbi.nlm.nih.gov/pubmed/18926717
https://doi.org/10.2337/db10-0628
http://www.ncbi.nlm.nih.gov/pubmed/20864514
https://doi.org/10.1161/CIRCULATIONAHA.116.022281
https://doi.org/10.1161/CIRCULATIONAHA.116.022281
http://www.ncbi.nlm.nih.gov/pubmed/27815373
https://doi.org/10.1007/s00125-016-3900-0
http://www.ncbi.nlm.nih.gov/pubmed/26969487
https://doi.org/10.1016/j.cyto.2018.03.041
http://www.ncbi.nlm.nih.gov/pubmed/29685781
https://doi.org/10.1111/febs.13709
http://www.ncbi.nlm.nih.gov/pubmed/26972840
https://doi.org/10.1016/j.compbiolchem.2019.01.010
https://doi.org/10.1016/j.compbiolchem.2019.01.010
http://www.ncbi.nlm.nih.gov/pubmed/30708140
https://doi.org/10.1038/jhg.2016.80
http://www.ncbi.nlm.nih.gov/pubmed/27334367
https://doi.org/10.1159/000109603
http://www.ncbi.nlm.nih.gov/pubmed/17923767
https://doi.org/10.1371/journal.pone.0152097
https://doi.org/10.1371/journal.pone.0152097
http://www.ncbi.nlm.nih.gov/pubmed/27011261
https://doi.org/10.3390/ijms21239060
http://www.ncbi.nlm.nih.gov/pubmed/33260590
https://doi.org/10.1016/B978-0-12-800174-5.00016-8
https://doi.org/10.1016/B978-0-12-800174-5.00016-8
https://doi.org/10.1371/journal.pone.0268826

