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ABSTRACT
Although evidence indicates that drug target genes share some common 

evolutionary features, there have been few studies analyzing evolutionary features of 
drug targets from an overall level. Therefore, we conducted an analysis which aimed 
to investigate the evolutionary characteristics of drug target genes. We compared 
the evolutionary conservation between human drug target genes and non-target 
genes by combining both the evolutionary features and network topological properties 
in human protein-protein interaction network. The evolution rate, conservation 
score and the percentage of orthologous genes of 21 species were included in our 
study. Meanwhile, four topological features including the average shortest path 
length, betweenness centrality, clustering coefficient and degree were considered 
for comparison analysis. Then we got four results as following: compared with  
non-drug target genes, 1) drug target genes had lower evolutionary rates; 2) drug 
target genes had higher conservation scores; 3) drug target genes had higher 
percentages of orthologous genes and 4) drug target genes had a tighter network 
structure including higher degrees, betweenness centrality, clustering coefficients 
and lower average shortest path lengths. These results demonstrate that drug target 
genes are more evolutionarily conserved than non-drug target genes. We hope that 
our study will provide valuable information for other researchers who are interested 
in evolutionary conservation of drug targets.

INTRODUCTION

Drug targets, a class of biological targets, are in 
vivo binding sites which include receptors, enzymes, 
ion channels and nucleic acids, etc. Drugs bind to 
their corresponding targets and perform the desirable 
therapeutic effects [1]. To date, thousands of drug targets 
have been identified and stored in databases such as 
DrugBank [2], Therapeutic Target Database (TTD) [3], 
Potential Drug Target Database (PDTD) [4] and TDR 
Targets Database [5].

Previous researches have shown that evolutionary 
features offer fresh views to many important fields that 

are related to drug discovery, including immunology [6], 
physiology [7, 8], epidemiology [9] and neurosciences 
[10]. Wang et al. [11] conducted an analysis and showed 
that some targeted genes shared common evolutionary 
features, which suggested that evolutionary information 
might provide novel insights for characterizing drug 
targets from new perspectives.

However, most of the current studies about 
evolutionary conservation focus on a single gene or 
several genes belonging to a same protein family, rather 
than a large group of genes with same or similar features 
[12–16]. Compared with conventional analyses of 
evolutionary conservation, gene sets with a large number 
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of genes can better reflect the characteristics of evolution. 
In addition, evolution conservation can be not only 
reflected by the general features such as evolutionary rate, 
the percentage of orthologous genes and protein sequence 
identity, but also by the network features [17, 18].  
Therefore, we wondered whether there was difference 
in evolutionary features between drug target genes and 
non-target genes. We hoped to integrate comprehensive 
evolutionary information and investigate the evolutionary 
conservation characteristics of drug target genes from a 
global perspective.

Therefore, we compared the evolutionary features 
between drug target genes and non-target genes combining 
both regular evolutionary features and some network 
features. All the evolutionary features were categorized 
into two groups: (1) evolutionary features of 21 species 
including evolutionary rate, conservation score and the 
percentage of orthologous genes; (2) topological features 
of human protein-protein interaction network including 
the average shortest path length, betweenness centrality, 
clustering coefficient and degree. In this research, we 
hope to explore the evolutionary conservation features of 
drug targets and help to enhance the efficiency of target 
identification.

RESULTS

Drug target genes had lower evolutionary rates 
than non-target genes

For each of the 21 species, we calculated the 
evolutionary rate dN/dS of both the drug target genes and 
non-target genes. We also respectively calculated the median 
dN/dS of drug target genes and non-target genes for each 
species and compared them using a line chart (Figure 1A). 
The results showed that the median dN/dS of drug target 
genes was significantly lower than that of non-target genes 
(P = 6.41E−05). For each species, a box plot was given to 
display the difference of dN/dS between the two groups of 
genes (Figure 1B). The results of box plots and Wilcoxon 
rank sum tests showed that the evolutionary rate of drug 
target genes was lower than that of the non-drug target genes 
for each of the 21 species. Detailed information about the 
dN/dS for each species is given in Table 1.

Drug target genes had higher conservation 
scores than non-target genes

We aligned the protein sequence of both human 
drug target genes and non-target genes to the orthologous 
protein sequence of the other 21 species by using BLAST 
software and got conservation scores from the blast results. 
The median conservation scores of the two gene sets for 
21 species were calculated and displayed by a line chart 
(Figure 2A) showing that the median conservation score 

of drug target genes was higher than that of non-target 
genes. The Wilcoxon signed rank test gave a P-value of 
6.40E-05 confirming that there was significant difference 
in the conservation scores between human drug target 
genes and non-target genes. For each of the 21 species, the 
conservation scores of drug target genes are significantly 
higher than that of the non-target genes (Figure 2B). 
Detailed information about the conservation score for each 
species is given in Table 2.

Drug target genes had higher percentages of 
orthologous genes than non-target genes

We calculated the percentage of orthologous genes 
of drug target genes and non-target genes for each species 
and displayed the line chart of this evolutionary feature in 
Figure 3, which showed that the drug target genes had a 
higher percentage of orthologous genes than the non-target 
genes. The P-value of Wilcoxon signed rank test was 
9.54E-07 confirming that there was significant difference 
in the percentage of orthologous genes between the two 
groups of genes.

Drug target genes had a tighter network 
topology structure than non-target genes

We further analyzed the topological properties of the 
human protein-protein interaction network downloaded 
from HPRD and extracted the network features of both drug 
target genes and non-target genes. Then we compared these 
features between drug target genes and non-target genes. 
These following results were obtained: 1) The average 
shortest path length of drug target genes was significantly 
smaller than that of non-target genes (Figure 4A) and 2) 
The betweenness centrality, clustering coefficient and 
degree of drug target genes were significantly higher than 
those of non-target genes (Figure 4B–4D). These results 
showed that drug target genes had a tighter topological 
structure than non-target genes in the human protein-protein 
interaction network.

DISCUSSION

It is an important task to investigate the evolutionary 
conservation of drug target genes, which helps to well 
characterize drug targets. In this study we analyzed 
the evolutionary conservation of drug target genes by 
comparing multiple evolutionary characteristics including 
both classical features (evolutionary rate, conservation 
score and percentage of orthologous genes) and network 
topological properties (average shortest path length, 
betweenness centrality, clustering coefficient and degree). 
Through comprehensive analyses, we got consistent 
results supporting that drug target genes were more 
evolutionarily conserved during the evolutionary history.
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Figure 1: Evolutionary rates (dN/dS ratios) for the drug target genes and non-target genes. (A) Line chart of the drug target 
genes and non-target genes. (B) Box plots of the drug target genes against non-target genes for each of the 21 species.
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Previous studies about drug targets have identified 
genes or genome regions with higher evolutionary 
conservation as potential or candidate drug targets. For 
instance, the nucleoprotein (NP) of the influenza A virus 
which is a protein of high conservation was identified 
as a potential target of universally effective antivirals 
[19]. Heat shock proteins (HSPs), a ubiquitous group 
of evolutionary conserved proteins, which are involved 
in binding antigens and presenting them to the immune 
system, were determined as possible therapeutic targets  
[20]. Nonstructural proteins (NS3) are components of 
flavivirus polyprotein. Shiryaev et al. [21] performed 
a study focusing on the structural and functional 
characteristics of flaviviral protease. They found that the 
N-terminal and C-terminal parts of NS3 were composed 
by serine protease and the RNA helicase. Individual 
virus proteins were produced and a new progeny would 
be assembled if the polyprotein was cleaved by protease 
or RNA helicase. Since both the protease and the RNA 
helicase were conserved among flaviviruses, NS3 
was identified as a promising drug target in flaviviral 
infections.

Furthermore, some genes or proteins involved 
in conserved cellular progress such as DNA replication 
and apoptosis during evolution can also be identified as 
potential drug targets. For instance, Robinson et al. [22] 
explored the architecture and conservation of the bacterial 
DNA replication machinery and found that genes or 
proteins involved in maintaining the machinery of DNA 
replication had the greatest potential as drug targets. 
The mitochondrial permeability transition (mPT) is a 
mechanism that enables the secretion of Cytochrome-c 
(Cyt-c), Apoptosis Inducing Factor (AIF) and other pro-
apoptotic proteins which initiate and promote apoptosis. 
A research conducted by Hellebrand et al. [23] suggested 
that some mPT inhibitory agents might become promising 
drug targets against apoptosis. 

With the rapid development of computer technology 
and machine learning theory, evolution information has 
been used to identify and prioritize drug targets. Ludin et al. 
[24] predicted antimalarial drug target candidates by 
utilizing evolution information and found 40 candidate 
drug targets with high evolution conservation. Another 
study about drug target identification and prioritization 

Table 1: Summary statistics for the comparisons of dn/ds in species

Species
dn/ds of Approved Drug Target Genes dn/ds of Non-Target Genes Wilcoxon 

Rank Sum 
test P-valueMedian Upper 

Quartile
Lower 

Quartile Median Upper 
Quartile

Lower 
Quartile

amel 0.1104 0.1831 0.0555 0.1280 0.2426 0.0608 7.03E–07
btau 0.1028 0.1851 0.0535 0.1246 0.2344 0.0564 7.93E–06
cfam 0.1057 0.1857 0.0576 0.1270 0.2408 0.0591 2.94E–06
cjac 0.1584 0.2733 0.0779 0.1893 0.3575 0.0838 9.80E–07
cpor 0.1026 0.1800 0.0534 0.1211 0.2247 0.0578 3.11E–06
ecab 0.1177 0.1984 0.0613 0.1352 0.2528 0.0595 5.50E–05
itri 0.1027 0.1817 0.0538 0.1181 0.2212 0.0487 0.0063
lafr 0.1173 0.1990 0.0645 0.1400 0.2551 0.0684 4.43E–07
mdom 0.0757 0.1308 0.0425 0.0943 0.1692 0.0451 3.08E–08
mfur 0.0975 0.1736 0.0502 0.1233 0.2235 0.0537 5.02E–07
mluc 0.1281 0.2104 0.0684 0.1407 0.2547 0.0693 0.00172
mmul 0.1578 0.2966 0.0709 0.1970 0.3870 0.0730 2.12E–06
mmus 0.0910 0.1558 0.0479 0.1125 0.2100 0.0497 4.12E–09
nleu 0.1735 0.3260 0.0781 0.2235 0.4261 0.0881 1.94E–08
ocun 0.1014 0.1662 0.0510 0.1178 0.2184 0.0570 1.84E–07
ogar 0.1163 0.1950 0.0604 0.1395 0.2482 0.0593 5.43E–06
pabe 0.1561 0.3096 0.0743 0.2022 0.4018 0.0792 1.70E–07
ptro 0.1718 0.3559 0.0578 0.2184 0.4715 0.0574 2.73E–06
rnor 0.0931 0.1616 0.0487 0.1159 0.2105 0.0521 6.80E–08
shar 0.0756 0.1326 0.0426 0.0938 0.1676 0.0451 4.92E–08
sscr 0.1130 0.1944 0.0585 0.1321 0.2378 0.0595 0.0006
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also indicated that many potential drug target genes could 
be predicted by orthologues information [25].

The comparison analysis results obtained in our 
study and the previous studies focusing on evolutionary 
conservation of drug targets or drug target identification 
based on evolution information suggest that drug targets are 

closely correlated with evolution conservation and they are 
characterized by higher evolutionary conservation during 
evolution process compared with non-target genes. This 
indicates that the results in our study are quite reliable and 
they might have the potential to expand the understanding 
of evolutionary characteristics of drug target genes. 

Figure 2: Conservation scores for the drug target genes and non-target genes. (A) Line chart of the drug target genes and 
non-target genes. (B) Box plots of the drug target genes against non-target genes for each of the 21 species.
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Table 2: Summary statistics for the comparisons of conservation score in species

Species

Sequence Identity of Approved drug 
Target Genes Sequence Identity of Non-Target Genes Wilcoxon 

Rank Sum 
test P-valueMedian Upper 

Quartile
Lower 

Quartile Median Upper 
Quartile

Lower 
Quartile

amel 838.00 1213.00 548.00 613.00 957.00 361.00 2.44E–34

btau 840.00 1257.50 571.50 615.00 965.00 373.50 6.18E–38

cfam 859.00 1279.00 557.25 622.00 988.00 371.00 1.11E–34

cjac 905.00 1299.50 620.00 655.00 1054.25 394.00 3.59E–37

cpor 828.00 1221.00 545.00 587.00 919.50 352.00 1.83E–40

ecab 845.00 1228.00 552.50 608.00 952.00 360.25 3.47E–36

itri 817.50 1153.00 553.25 594.00 909.00 367.50 1.47E–36

lafr 831.50 1205.25 555.00 591.50 926.00 359.00 9.60E–41

mdom 773.00 1135.75 472.00 514.50 808.25 314.00 1.37E–41

mfur 856.50 1238.75 576.00 636.00 981.25 389.00 5.23E–33

mluc 823.50 1197.00 525.00 582.00 925.00 354.00 4.33E–32

mmul 895.00 1315.75 613.00 644.00 1023.50 390.00 1.04E–41

mmus 852.00 1271.50 565.00 602.00 932.00 361.00 1.81E–46

nleu 900.00 1290.50 610.00 669.00 1064.00 403.00 2.05E–31

ocun 845.00 1233.25 568.50 608.00 949.75 360.00 1.31E–37

ogar 863.00 1272.25 580.00 628.00 974.00 382.00 8.81E–40

pabe 877.00 1257.50 595.50 655.00 1038.00 399.00 3.41E–32

ptro 925.50 1332.00 611.00 682.00 1087.00 410.00 1.47E–33

rnor 804.00 1141.00 541.50 569.00 876.00 343.00 8.96E–38

shar 701.00 1007.00 432.50 499.00 796.00 305.00 3.34E–28

sscr 768.50 1098.75 482.25 565.00 876.00 328.00 2.25E–28
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Figure 4: Network topological properties for the drug target genes and non-target genes.

Figure 3: Line chart of the percentage of orthologous genes for the drug target genes and non-target genes.
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MATERIALS AND METHODS

Human drug target genes

The human drug target gene set used in our study 
came from the DrugBank database that is a unique 
bioinformatics and cheminformatics resource combing 
detailed drug data with comprehensive drug target 
information [2]. We downloaded the data of Food and 
Drug Administration (FDA) approved drugs and the 
corresponding drug targets, which contained a total of 1857 
terms for multiple species. We then extracted the human 
drug targets from the original data and finally obtained 1347 
FDA-approved drug target genes for the following analyses. 

Non-target genes

With the purpose of getting non-target gene set, we 
downloaded protein family data from Pfam database (ftp://
ftp.sanger.ac.uk/pub/databases/Pfam/releases/Pfam27.0/), a 
collection of protein families, each represented by multiple 
sequence alignments and hidden Markov models (HMMs) 
[26], and obtained the human protein family information. After 
filtering out the protein families to which drug targets belonged, 
we got the non-target gene set containing 4181 non-redundant 
genes. It’s worth noting that non-targets refer to those proteins 
that do not have similar domains with target proteins.

Calculation of evolutionary rate, percentage of 
orthologous genes and conservation score

We downloaded the orthologous gene data which 
included 21 species from the Ensembl database [27–29] (ftp://
ftp.ensembl.org/pub/release-69/mysql/ensembl_mart_69). The 
full names and abbreviations of the 21 species can be found 
in Table 3. Then we extracted one-to-one ortholog genes [30] 
with non-null dN (rate of non-synonymous substitutions) and 
dS (rate of synonymous substitutions) values and calculated 
the evolutionary rate as the ratio of dN/dS.

For both drug target genes and non-target genes, we 
counted the numbers of one-to-one orthologous genes in 
each of the 21 species and then calculated the percentage 
of orthologsous genes for each species.

Conservation score is defined as a score assigned 
to each orthologous gene by sequence alignment between 
species to determine how conserved a gene is. Here 
the sequence conservation score is used to evaluate the 
degree of similarity between a human sequence and 
another species sequence for the orthologous gene. The 
higher scores indicate the higher degree of conservation. 
To compute the sequence conservation score, we 
downloaded the pair-wise protein sequences of human 
and other species from BioMart [31] (http://www.ensembl.

org/biomart/martview) and performed alignment using 
BLASTP program and the BLOSUM62 matrix [32]. 

Calculation of topological properties of human 
protein-protein interaction network

We downloaded the protein-protein interaction (PPI) 
network data containing 39240 interaction pairs from the 
Human Protein Reference Database (HPRD) [33]. In the 
PPI network, a node denotes a protein and a path denotes 
a finite sequence of edges which connect proteins. Then 
we calculated 4 topological properties which included 
the average shortest path length, betweenness centrality, 
clustering coefficient and degree [34] by using MCODE, 
a plug-in of Cytoscape software [35]. The average shortest 
path length reflecting how tight one node is connected to 
the other nodes in a network is defined as the average 
length of all shortest paths passing through a certain 
node. The normalized betweenness centrality of node v 

is defined as Bv
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σ ij  is the number of shortest paths from node i to node j 

and  is the number of shortest paths passing through node 
v out of σ ivj . The betweenness centrality is an indicator 
used to measure a node’s centrality in a network. The 
clustering coefficient in an undirected network is defined 
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 where n is the number of edges 

connecting the k direct neighbors of node v and Ck
2  is 

the max possible number of edges between k nodes. The 
clustering coefficient represents the degree to which nodes 
in a network tend to cluster together. The degree of node v 
is the number of nodes directly connecting with node v. To 
compare the network features of the drug target genes and 
non-target genes, we extracted the topological properties 
for the two gene sets.

Statistical analysis

We used the Wilcoxon rank sum test to evaluate the 
statistical significance of the difference in an evolutionary 
feature or a network feature between the drug target genes 
and non-target genes. We used the Wilcoxon signed rank 
test to check whether the median of an evolutionary 
feature of drug target genes was significantly different 
from that of the non-target genes for each species. In 
our study, Perl scripts were used for data processing  
(http://www.activestate.com/activeperl) and R scripts 
were used for statistical graphics and calculations  
(http://cran.r-project.org).
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