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While there are many online data dashboards on COVID-19, there are few analytics
available to the public and non-epidemiologists to help them gain a deeper insight into the
COVID-19 pandemic and evaluate the effectiveness of social intervention measures. To
address the issue, this study describes the methods underlying the development of a real-
time, data-driven online Epidemic Calculator for tracking COVID-19 growth parameters.
From publicly available infection case and death data, the calculator is used to estimate the
effective reproduction number, final epidemic size, and death toll. As a case study, we
analyzed the results for Singapore during the "Circuit Breaker” period from April 7, 2020 to
the end of May 2020. The calculator shows that the stringent measures imposed have an
immediate effect of rapidly slowing down the spread of the coronavirus. After about two
weeks, the effective reproduction number reduced to about 1.0. Since then, the number
has been fluctuating around 1.0 for more than a month.
The COVID-19 Epidemic Calculator is available in the form of an online Google Sheet and
the results are presented as Tableau Public dashboards at www.cv19.one. By making the
calculator readily accessible online, the public can have a tool to assess the effectiveness of
measures to control the pandemic meaningfully.
© 2021 The Authors. Publishing services by Elsevier B.V. on behalf of KeAi Communications

Co. Ltd. This is an open access article under the CC BY-NC-ND license (http://
creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

As countries worldwide take drastic measures to contain the COVID-19 pandemic, people need to understand the
effectiveness of such interventions. Making sense of epidemiological data can be challenging, given confusing and over-
lapping terminology. Raw data and statistics on infection numbers (e.g., Fig. 1) do not directly help answer the following
questions: (1) Are social distancing measures working? (2) How much longer does it take to flatten the curve? (3) What will
be the final death toll? Data analysts in other disciplines such as social sciences, economics, and management could explore
how epidemiological trends impact their own areas.
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Fig. 1. Total confirmed cases in Singapore (D-19 situation report).
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This paper describes the methods underlying an online COVID-19 Epidemic Calculator for tracking and estimating COVID-
19 growth parameters, including reproduction number, final epidemic size, and death toll. These methods are illustrated
using the case example of Singapore. We demonstrate how the calculator can reveal the effect of imposing strict social
distancing measures (“Circuit breaker”) from April 7, 2020 that is not apparent from just looking at infection numbers.

While our methodology is similar in certain aspects to several freely available software packages and programming codes
for calculating the effective reproduction number (e.g. (Kevin; Cori et al., 2013; Epiforecasts [Internet].; Boelle and Obadia,
2015)), we differ from those work because we implement real-time, data-driven calculations in the widely used Excel
spreadsheet, with sub-minute execution time, even for calculating a 4-month, 100-country data set. Furthermore, this
calculator is readily available as an online spreadsheet (D-19 Epidemic Calcula) to facilitate sharing and collaboration. The
input data for the calculator is obtained from publicly available sources (Our World in Data. Corona; Theracking Projec; Data
on the geographic di) and is automatically updated daily.
1.1. Introduction to terminology

Fig. 2 identifies the different overlapping terms used in epidemiology and illustrates the timeline for the various stages of
infection. These terms and variables will be used for calculating parameters that can help us understand and monitor the
spread of the COVID-19 infection in a country. Exposed is the state at which an individual first becomes infected but is not yet
contagious. The latent period is the time from being infected (exposed) to becoming contagious. An infected person can be
contagious even before the onset of symptoms. Data suggests that some people could have infected others 1e3 days before
they developed symptoms (Wei et al., 2020; World Health Organization, 2020).

The incubation period is the time from exposed to the onset of symptoms. The mean incubation period for COVID-19 is
estimated to be 5 days (Bi et al., 2020; Lauer et al., 2020). The infectious period is the time between becoming contagious to
the time of removal or recovery. Hence, it is the difference between the time of removal and the latent period (Tremoved e

Tlatent).
In Singapore, the 14-day average time from the onset of symptoms to removal ranges from 1.5 to 6 days after the start of

the Circuit breaker on April 7, 2020 (Fig. 3).
The serial interval is the time when a secondary infection is generated. For COVID-19 in Singapore, the serial interval

between transmission pairs ranges between 3 days and 8 days (Pung et al., 2020). Other researchers have reported serial
intervals within the same range (Bi et al., 2020; Du et al., 2020; Li et al., 2020; Nishiura et al., 2020).
Fig. 2. Timeline of infection stages with typical parameter estimates for COVID-19 in Singapore.
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Fig. 3. Average number of days from onset of symptoms to isolation for community unlinked cases in Singapore (D-19 Situation Report).
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1.2. Critical parameters

The rate of infection growth in a population can be estimated using the effective reproduction number. The effective
reproduction number is the number of secondary cases directly being infected by a primary case in a population. Social
distancing measures should reduce the spread of infection and this would be reflected by a reduction in the effective
reproduction number. Hence, monitoring the effective reproduction number over time will allow us to evaluate if social
distancing measures or any other interventions are working. Wewill demonstrate how to estimate the effective reproduction
number using a Bayesian approach. Wewill also show how to derive estimates of dates of actual symptom onset and dates of
being exposed which are important for our estimation of the effective reproduction number.

Estimating the time needed to flatten an epidemic curve is an important part of forecasting the scope of an infectious
disease outbreak. When new cases are significantly reduced, social distancing restrictions can be relaxed and other less
intrusive measures can be put in place. In this study, we will show how logistic and Gompertz models can be used for
forecasting the future number of cases and deaths over time using only publicly available data. These numbers will allow us to
gauge the vulnerability of the population and quantify the direct health impact of COVID-19.

Since these parameters could help non-epidemiologists understand the spread of COVID-19 in their countries and other
countries and regions, the objective of this research study is to develop a readily available online COVID-19 Epidemic
Calculator to provide estimates of the critical parameters described here. The interested public can access this online
calculator to gain a deeper insight into the COVID-19 pandemic and evaluate the effectiveness of a range of public health and
social intervention measures.
2. Methodology

2.1. Method for calculating the effective reproduction number for estimating how fast COVID-19 is spreading in a country

Step 1 Deriving symptom onset dates from confirmation dates

The daily number of reported cases is partly dependent on the number of tests conducted, which may be variable due to
factors such as testing capacity and the day of week. To account for this variation, we perform a running 7-day average of test
cases. Other methods of applying a smoothing filter to the time series may be used if appropriate.

Another issue is the delay between the onset of symptoms and case confirmation (removal or isolation). Case onset dates
can be derived if records of onset-to-confirmation dates are available for every individual (e.g. see Fig. 3). Otherwise, case
onset dates can be estimated by using the following procedure.

i) For each date, distribute case counts back in time according to a Poisson distribution with a mean of 3 days (symptom
onset to removal) as illustrated in Fig. 4.

ii) Sum the back distributed case counts for each date to derive the onset curve as shown in Fig. 5.

iii) Distributing reported cases back in time and recreating the onset curve result in a “right-censored” time series. This
means that there are onset cases close to the present date that are yet to be reported. We correct this by estimating the
percentage of onset cases on Day (t-a) that have not yet been reported by today (Day t). We can use the cumulative
distribution function of the Poisson “onset-to-removed” distribution to adjust for the number of onset cases, thus
removing right censoring.
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Fig. 4. Distributing case counts back in time.

Fig. 5. The onset curve estimates the cases during the onset of symptoms.
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Adjusted onset ¼ Onset
PðDelay � Days from present dateÞ (1)
Consider an example illustrated in Fig. 6. Three days ago, there were 470 reported onset cases. This represents the fraction
of the actual number reported over the next 3 days. This fraction is equal to the value of the cumulative distribution function
of our Poisson distribution at Day 3, which is 65%. Hence, the current count of onset on that day represents 65% of the actual
total. After adjustment, the actual total is estimated to be (1/0.65) of 470, which is 723. Fig. 7 shows the adjusted onset curve.

Step 2 Deriving infection (exposed) dates from onset dates

A similar procedure as in Step 1 can be applied to the onset counts to derive the infection (exposed) time series. Fig. 8
shows the adjusted exposed time series where the incubation period (from exposed to symptom onset) follows a Poisson
distribution with a mean of 5 days.

Step 3 Estimating the effective reproduction number, R(t)

The basic reproduction number, R0, is the expected number of infections directly generated by one case given that all
individuals are equally susceptible. As the infection spreads, the susceptibility of the population decreases. The effective
reproduction number, R(t), is related to the basic reproduction number, R0, by RðtÞ ¼ R0SðtÞ, where S(t) is the average
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Fig. 6. Adjusting for right-censoring.

Fig. 7. Onset numbers close to the present date are adjusted for right censoring.
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susceptibility of the population. R(t) is often used as an indicator of the effectiveness of interventions, such as social distancing
measures, to contain the spread of a virus. If R(t) is greater than 1.0, the infection is growing at an exponential rate. If R(t) is at
1.0, the spread is sustained at a linear rate. If R(t) is less than 1.0, the infection is spreading at a slower pace and will eventually
die out.

Although R(t) cannot be measured directly, it can be estimated in different ways. We describe one method that can be
implemented in a spreadsheet without any programming codes.

2.1.1. Bayesian approach
The Bayesian approach allows us to continuously update our estimate of a set of parameters, Q, as more data becomes

available.

PðQjdataÞ¼ PðdatajQÞ,PðQÞ
PðdataÞ (2)
PðQÞ, the prior distribution, represents our prior estimates about the true value of Q.
PðdatajQÞ is the likelihood distribution. It is also oftenwritten as L ðQjdataÞwhich means the probability of observing the

data given Q. For the method to work, it is necessary to calculate the likelihood distribution for all possible values of Q.
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Fig. 8. The Adjusted Exposed curve is derived using a Poisson distribution with a mean incubation period of 5 days.
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PðdataÞ is the model evidence and it is the same for all possible hypotheses (values of Q) being considered.
PðQjdataÞ is the posterior distribution and represents our updated estimate of the value of Q given the observed data.
The main objective of Bayesian inference is to calculate the posterior distribution of our parameters using our prior beliefs

updatedwith our likelihood. From the posterior distribution, we can determine themost likely values ofQ given the observed
data. Since we are usually only interested in relative probabilities of different hypotheses, PðdataÞ can be left out of the
calculation and we write the model form of Bayes’ theorem as

PðQjdataÞf PðdatajQÞ,PðQÞ (3)

where f means “proportional to”. For estimating Rt, the Bayes' theorem that we use is

PðRt jktÞf Pðkt jRtÞ,PðRtÞ (4)

where the data, kt, is the daily number of cases, and the parameter, Rt, is the effective reproduction number.
Equation (4) is updated every day by using yesterday's posterior, PðRt�1jkt�1Þ, to be today's prior PðRtÞ. On day two, the

equation becomes

PðR2jk2Þf Pðk2jR2Þ , Pðk1jR1Þ,PðR1Þ (5)
So generally,

P

 
RT jkT Þf PðR1Þ ,

YT
t¼1

Pðkt jRt
!

(6)
Assuming a uniform starting prior PðR1Þ, this reduces to:

P

 
RT jkT Þf

YT
t¼1

Pðkt jRt
!

(7)
Note that the posterior on any given day is equally influenced by the distant past as much as the recent day. This is fine if
we are estimating a static parameter that does not change with time. However, the value of Rt is dynamic and is more closely
related to recent values than older ones. To address this issue, we can adopt Systrom's approach (Kevin) of only incorporating
the last m days of the likelihood function:

P

 
RT jkT Þf

YT
t¼T�m

Pðkt jRt
!

(8)
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Fig. 9. Variation of l with Rt given kt-1.
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2.1.2. Bettencourt & Ribeiro's likelihood function
To calculate the likelihood function L ðRt jktÞ ¼ Pðkt jRtÞ, we first assume that the number of new infections on any given

day can be described by a Poisson probability distribution with a mean of l. The probability of seeing k new cases is

PðkjlÞ¼ lke�l

k!
(9)
Bettencourt & Ribeiro (Bettencourt and Ribeiro, 2008) has derived an equation relating Rt to l.

l¼ kt�1e
gðRt�1Þ (10)

where g is the reciprocal of the serial interval (see Fig. 2). Fig. 9 shows the variation of l with Rt for some values of kt-1.
Equations (9) and (10) allow us to reformulate the likelihood function as a Poisson distribution, parameterized by fixing k

and varying Rt.

L ðRt jkÞ¼ PðkjRtÞ¼ lke�l

k!
(11)
Fig. 10 shows that as k increases, the peak value of the likelihood function L ðRt jkÞ increases and the distribution becomes
less spread out. This means that as the number of infections increases the confidence of our Rt estimate should improve.

In evaluating the posteriors, it is more convenient to use the logarithm of the likelihood function.

lnðL ðRt jkÞ Þ ¼ k½lnðkt�1Þ þ gðRt � 1Þ � � kt�1e
gðRt�1Þ � lnðk!Þ (12)
To perform the Bayesian update, we can do a sum of the log-likelihoods over the lastm days and then exponentiate to get
the likelihood. From equations (8) and (12),

lnðPðRT jkT ÞÞ¼
 XT

t¼T�m

lnðL ðRt jktÞÞ
!
þ constant ¼

 XT
t¼T�m

kt ½lnðkt�1ÞþgðRt �1Þ�� kt�1e
gðRt�1Þ

!
þ constant (13)
From the posterior distribution (Fig. 11) we can also obtain the confidence interval for Rt.

2.2. Method for forecasting the final total number of cases and deaths

When the growth rate is slowing down (Rt < 1), we can project the final total cases and death counts by fitting publicly
available data to a logistic model. The logistic model is often used to describe the shape of the cumulative epidemic curve
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Fig. 10. Variation of L ðRt jkÞ with Rt given k.

Fig. 11. Variation of posterior PðRt jkÞ with Rt.
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(Fig. 12) where the number of infected cases grow exponentially at first, then slows down, and finally flattens to a maximum
limit. The final epidemic size can be estimated based on this slowing growth.

f ðxÞ¼ L
1þ e�kðx�x0Þ
Some research [e.g. Levitt, Scaiewicz, & Zonta, 2020; Ohnishi, Namekawa, & Fukui, 2020; P�erez, Javier, Chinarro, Pino, &
Mouhaffel, 2020; Torrealba-Rodriguez, Conde-Guti�errez, & Hern�andez-Javier, 2020) have also suggested that another para-
metric model that can be used for forecasting COVID-19 case or death count is the Gompertz function, defined as

CðtÞ¼CF

�
C0
CF

�e�gt

(14)
It is a special case of the generalised logistic function. The final value asymptote of the function is approached more slowly
by the curve than the initial value asymptote, unlike the simple logistic function inwhich both asymptotes are approached by
the curve symmetrically. For example, Fig. 13 shows the cumulative death over time for a few countries that clearly illustrate
the asymmetry.

To find the best curve fit to the data and an estimate for CF, we use the maximum likelihood method (Ma, 2020). We
assume that the number of reported cases, xi, at time, ti, follows the Poisson distribution and has a mean of mi, where mi is the
calculated number of cases at time, ti.

PðXi ¼ xiÞ¼
mxi e

�mi

xi!
(15)
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Fig. 12. A logistic function. L ¼ 1, k ¼ 1, x0 ¼ 5.

Fig. 13. Cumulative COVID-19 death for Singapore, UK, Brazil and USA.
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Then, the log-likelihood function to be maximized is

Xn�1

i¼0

�mi þ xi ln mi (16)
We choose the parameter values for CF and r that maximize the log-likelihood function. This can be done by using the
Solver function in Excel. The parameter CF is estimated over a rolling window of, say 60 days, to obtain a moving update. See
Fig. 20.
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Fig. 14. Effective reproduction number Rt.

Fig. 15. Results from EpiEstim.
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3. Results and discussion

3.1. Evaluating the effectiveness of social distancing measures using effective reproduction number

Fig. 14 shows the most likely values of Rt and the confidence interval over time for Singapore during the Circuit breaker
period calculated using the Bayesian method. The serial interval is assumed to be a Gamma distributionwith a mean of 7 days
and a mode of 4 days (standard deviation ¼ 4.6 days). We can see that Rt changes with time and the confidence interval
narrows with more data.

The results generally agree with those calculated using the EpiEstim code (Fig. 15) (Cori et al., 2013; Epiforecasts
[Internet].).

The results clearly show that the Circuit Breaker measures imposed from April 7, 2020 have an immediate effect of rapidly
slowing down the spread of COVID-19. We can also see that Rt settled to around 1.0 after about two weeks. Since then, the
infection rate has remained sustained for more than a month. Given that dormitory residents make up the majority of the
infected individuals, it can be concluded that individuals continue to infect others with a reproductive ratio of approximately
1 to 1 in that setting during the Circuit Breaker period as depicted in Fig. 16.

One problem with the calculation method is that it can only provide a good estimate for the reproduction number up to
abou one to two weeks before the current date. This is due to the time lag between infection and confirmation. As we get
closer to the present day, the calculated mean value of Rt always tends to 1.
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Fig. 16. Effective reproduction number Rt. Started to rise again ter the end of the circuit breaker in Singapore.
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For example, suppose that today is April 10, 2020, and case data is only available up to this date. Fig. 17(a) shows that the
calculated Rt values after April 3 do not reflect the true values as shown in Fig. 16.

Since the calculation cannot provide reliable estimates for current Rt based on real time data, it somewhat limits the
metric's usefulness for tracking infection spread. To alleviate this limitation, we do an exponential regression on the latest
week's case data and project the trend forward by one week (Fig. 18). The results, shown in Fig. 17(b), give a much better
estimate for the current values of Rt.

Rt values also reflect the effectiveness of vaccination programmes and the rise of new variants. For example, Fig. 19 shows
the Rt history for Israel. Israel launched its COVID-19 vaccination campaign on 20 December 2020. As of June 1, 2021, 60% of
the population has had at least one dose. The Delta variant cases started to surge in June 2021 until social restrictionmeasures
were reinstated.

3.2. How much longer does it take to flatten the curve? Forecasting final case and death counts

Fig. 20 shows the projected cases for Singapore calculated according to the method described in 2.2 and using a two-
month data set.

Table 1 shows the 3-month forecasts for a few countries including Singapore and how they compare with the projections
by the Institute for Health Metrics and Evaluation (IHME) (Institute for Health Metr) at University of Washington Medicine,
and the actual death toll. The projections by the IHME are based on more complex analytics and consider factors such as
changes in social distancing measures, diagnostic capability, and hospital capacity. Even though we did not directly account
Fig. 17. (a) Rt. tends to 1 as it approaches the current date (b) Rt. adjusted by extrapolating next week's cases from this week's data.
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Fig. 19. Effective reproduction number for Israel.

Fig. 18. An exponential trend line is used to project new cases forward by one week.

Fig. 20. Projected cases for Singapore based on a two-month dataset.

Table 1
A comparison of the projected total deaths from the COVID-19 calculator as at July 25, 2020, using data from the last twomonths, and the Institute for Health
Metrics and Evaluation (IHME).

Country D0, initial death count on May 20, 2020 Total death for Nov 1, 2020 by Gompertz function fit IHME projection for Nov 1, 2020 Actual

Singapore 22 28 27 28
USA 97,222 186,285 219,864 (141,969e284,123) 240,265
UK 35,704 47,105 51,274 (48,025e60,078) 46,781
Brazil 18,894 134,781 177,235 (81,623e191,443) 160,104

F.F. Yap, M. Yong Infectious Disease Modelling 6 (2021) 1159e1172
for these factors, our forecasts of the total number of deaths were within 20% of the actual numbers. This demonstrates
concurrent validity of our model. Assuming current prevailing conditions in the populations, results from the COVID-19
1170



Fig. 21. A visualization of the effective reproduction number for countries on a map. The size of each circle is proportional to the total number of infections. The
color of the rings within a circle varies over time from red (R > 0) to white (R ¼ 0) to blue (R < 0), reflecting the rate of growth of the virus.
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Epidemic Calculator are likely to be realistic estimates. Our simpler model is more accessible to non-epidemiologists and data
analysts in other fields who might want to incorporate it in their own analytics.

4. Conclusion

This paper describes the methods underlying the online COVID-19 Epidemic Calculator for tracking COVID-19 growth
parameters. From publicly available data, the calculator is used to estimate the distributions at time of symptom-onset and
infection, effective reproduction number, final epidemic size, and death toll for Singapore and other countries.

The calculator and the associated graphs clearly show that the Circuit Breaker measures imposed from April 7, 2020 in
Singapore had an immediate effect of rapidly slowing down the spread of the COVID-19. Additionally, the results also reveal
that the effective reproduction number has settled to around 1.0 after about two weeks. Since then, it has remained at that
level for more than amonth. This indicates that the infection rate among the dormitory residents is sustained and not likely to
be reduced until this group become less susceptible.

The COVID-19 Epidemic Calculator is available in the form of an online spreadsheet (D-19 Epidemic Calcula) that imports
daily infection data from publicly available sources (OurWorld in Data. Corona; Theracking Projec; Data on the geographic di).
The results are presented online as dashboards on Tableau Public (Global Covid19 Reproduction) (Fig. 21). It has the advantage
of fast execution time without the need for any specialized software package or programming script. Users can also interact
with the models by changing the parameters. Comparing over eighteen months of data with other similar work, our
parameter estimates are in good agreement with those estimated using different models and software. Bymaking the COVID-
19 Epidemic Calculator readily accessible online, it is hoped that the public and interested analysts from non-epidemiological
disciplines have the tool to assess our effort in fighting COVID-19 meaningfully.
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