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ABSTRACT: As mass spectrometry-based metabolomics becomes
more widely used in biomedical research, it is important to revisit
existing data analysis paradigms. Existing data preprocessing efforts
have largely focused on methods which start by extracting features
separately from each sample, followed by a subsequent attempt to
group features across samples to facilitate comparisons. We show
that this preprocessing approach leads to unnecessary variability in
peak quantifications that adversely impacts downstream analysis. We
present a new method, bakedpi, for the preprocessing of both
centroid and profile mode metabolomics data that relies on an
intensity-weighted bivariate kernel density estimation on a pooling
of all samples to detect peaks. This new method reduces this unnecessary quantification variability and increases power in
downstream differential analysis.

As mass spectrometry-based metabolomics becomes a more
mature and popular means of scientific investigation,1−3 it

is important to revisit existing data analysis paradigms. Existing
approaches to preprocessing metabolomics data focus on a two-
step approach which starts by extracting features (peaks)
separately from each sample, followed by a subsequent attempt
to group features across samples to facilitate comparisons.4 In
particular, there has been considerable attention in the
literature on individual stages of preprocessing, including
peak detection5−14 and alignment.15−18 Additional work has
been done on specific issues with downstream differential
analysis such as missing information or dependence struc-
tures.19−21 Single sample processing methods tend to focus on
reducing bias. The bias-variance trade-off22 shows that the
overall performance of a method also depends on its noise and
experience from gene expression studies suggests that noise can
be removed by processing samples jointly.
In this work, we investigate the consequences of traditional

sample-specific preprocessing on the quality of differential
analysis. We show that the retention time (RT) bounds that
arise from preprocessing samples individually cause unneces-
sary variability in peak quantifications (based on integrated
peak area) which leads to under-powered differential analysis.
We propose a relative quantification method, called bakedpi,
which addresses this shortcoming by jointly detecting and
bounding peaks in the two-dimensional m/z-RT space, across
all samples simultaneously. The backbone of our method is an

intensity-weighted bivariate kernel density estimation that is
computed on a pooling of all samples. We show that this
approach reduces unnecessary quantification variability and
increases power in downstream differential analysis. Our
method is open source and freely available as part of the
yamss package through the Bioconductor project under Artistic
License 2.0.

■ RESULTS AND DISCUSSION

Excess Variability with Sample-Specific Processing.
To demonstrate issues with sample specific detection and
bounding of peaks, we consider the widely used software
packages XCMS23 and MZmine2.24 Output for one peak from
a QTOF data set with two sample groups is shown in Figure 1
(additional examples from other data sets in Supplementary
Figures S1 and S2). The shape, width, and location of this peak
do not appear to vary across samples. Despite this, the XCMS
and MZmine2 RT bounds for this peak, indicated by blue and
purple rectangles respectively, are highly heterogeneous
between samples (Figure 1c). To a first approximation, the
retention time (RT) bounds can be grouped into narrow and
wide bounds; this grouping is not associated with the two
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sample groups (light and dark rectangles). As a consequence,
the integrated peak area is completely determined by whether
the RT bounds are narrow or wide (Figure 1d,e), and this leads
to high variability in the peak quantifications (Figure 1f). If
instead, we use the same RT bound across all samples (Figure
1c, orange rectangle), we substantially reduce the between-
sample variability in the peak quantifications (Figure 1f). Excess
variability results in loss of power in a differential analysis.

Joint Sample Processing with bakedpi. To address the
problem of excess variability, we propose a method which
jointly detects and bounds peaks across all samples in an
experiment (see Methods); an important feature of our method
is the use of homogeneous RT bounds across all samples. We
pool the data from all samples into a single metasample, on
which we detect and bound peaks (Figure 2a,b). To do this, we
use intensity-weighted bivariate kernel density estimation in the

Figure 1. Problems with sample-specific processing in XCMS and MZmine2. Peak detection and bounding for a single peak in the MTBLS2_rep1
data set. (a) The m/z-RT space surrounding this peak for a single sample, color is used to depict intensity (red is high). (b) Overlaid extracted ion
chromatograms from all 8 samples in the experiment. Different colors denote different samples. (c) The peak bounds for all samples for XCMS
(blue), MZmine2 (purple) and bakedpi (orange; all samples have same bounds). This experiment compares two groups of samples indicated with
different color shades. (d) XCMS peak quantification vs peak width. (e) Like part d but for MZmine. (f) Distribution of peak quantifications, based
on the peak bounds in part c. Substantial heterogeneity in the sample-specific bounds leads to excess variability in the quantifications; this is
addressed by using the same RT bound for all samples.

Figure 2. Weighted bivariate kernel density estimation. We depict a selected rectangle in m/z-RT space for (a) one sample and (b) the pooled
metasample. m/z values with higher intensity are shown in red, lower with blue. (c) The weighted bivariate density estimate.
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two-dimensional m/z-RT space. By using the intensities as
weights, we differentiate between groups of detected m/z values
(data points) with high and low intensities. The output is a
smooth density in the m/z-RT space, where peaks in the
density correspond to clusters of high-intensity points (Figure
2c). To detect and bound peaks, we slice the density using a
single global threshold and form a set of contiguous regions
based on the density slices. By performing this procedure on a
single metasample, we ensure the same peak bounds across all
samples. Like XCMS and MZmine2, we quantify the peaks by
integrating the extracted ion chromatogram (EIC) for each
sample across the peak’s RT bounds. We can optionally
perform RT alignment prior to density estimation. Our method
has 3 parameters: 2 of these parameters control the bandwidth
in the m/z and RT domains and are easy to set based on the
resolution of the instrument. The last parameter, the only
significant tuning parameter, is the global density threshold. We
call our method bakedpi for bivariate approximate kernel
density estimation for peak identification.
Joint Sample Processing Reduces Excess Variability.

We applied bakedpi to 10 different data sets from 7 different
experiments. Features of these data sets are summarized in
Table 1. All data sets were subset (if necessary) to only contain

two sample groups, to keep the experimental design simple and
constant. For the Orbitrap data set (MTLS216) we expect little
to no differences between the sample groups, based on the
design of the experiment.25 We ran XCMS, MZmine2, and
bakedpi on the 10 data sets. XCMS parameters were optimized
using the IPO package available on Bioconductor26 using
recommended starting values for most data sets (Methods).
MZmine2 parameters were set based on optimized XCMS
parameters where possible (Methods). When running bakedpi,
we use the higher of a fixed quantile cutoff and a data-driven
cutoff to set the global tuning parameter (Methods).
To compare the quantification variability between bakedpi

and XCMS and between bakedpi and MZmine2, we first
identified peaks which overlapped between bakedpi and XCMS

and between bakedpi and MZmine2. We will call these shared
peaks. The number of peaks detected by both methods as well
as the percentage of peaks that are common to both methods
are shown in Supplementary Figure S3; for many data sets the
overlap is around 60−80% of the peaks. On these overlapping
peaks, we computed the residual standard deviation of the log-
abundances to assess their variability. We used residual standard
deviation to avoid being influenced by changes in the log-
abundances between the two sample groups in the different
experiments. Figure 3 shows the distribution of differences in

residual standard deviation (XCMS or MZmine2 minus
bakedpi) for each data set. Values greater than zero indicate
that bakedpi has smaller variability than the other method. For
all data sets examined, more than half of the peaks detected by
both methods had lower variability when quantified by bakedpi;
for some data sets it was substantially higher.

Joint Processing Improves Power in a Differential
Analysis. We next sought to determine if the decrease in
residual standard deviation of the peak quantifications leads to
increased power in a differential analysis. We used the limma27

differential analysis pipeline as it has been shown to provide
robust and powerful inference for proteomics data.28 This
method was originally developed to analyze microarray
expression studies and uses empirical Bayes techniques to
shrink feature (adduct)-wise variances toward a common
underlying value to provide more stable inference. The
resulting p-value distributions for the shared peaks in the
timecourse_4 h data set are shown in Figure 4a (additional data
sets in Supplementary Figure S4). For the majority of the data
sets, bakedpi has a p-value distribution that is more peaked
around zero than XCMS and MZmine2, indicating that bakedpi
detects more significant peaks among the overlapping peaks.
When comparing with XCMS, the timecourse_24 h data set is

Table 1. Characteristics of Evaluation Datasetsa

name (source) MS instrument column no. samples (group 1, 2)

ASD_hirisk (C) QTOF 20, 20
HPLC-HILIC

timecourse_4 h (C) QTOF 6, 6
HPLC-HILIC

timecourse_24 h (C) QTOF 6, 6
HPLC-HILIC

MTBLS2_rep1 (M) QTOF 4, 4
UPLC-reverse phase

MTBLS2_rep2 (M) QTOF 4, 4
UPLC-reverse phase

CAMERA_pos (M) QTOF 3, 3
UPLC-reverse phase

CAMERA_neg (M) QTOF 3, 3
UPLC-reverse phase

MTBLS103 (M) QTOF 14, 12
UPLC-HILIC

MTBLS213 (M) QTOF 6, 6
UPLC-reverse phase

MTBLS126 (M) Orbitrap 3, 3
HPLC-HILIC

aC = CAAT, M = Metabolights.

Figure 3. Variability comparison of peak quantifications. (a) For peaks
that are detected both by bakedpi and XCMS, the distribution of the
differences in residual standard deviation for all data sets are shown as
violin plots. Each violin is a mirrored density plot; the median is
indicated by a horizontal red line. (b) Like part a but for MZmine. For
all data sets, the majority of peaks detected by both methods have
quantifications that are less variable when quantified with bakedpi.
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the only one in which XCMS has a taller peak arount zero.
When comparing with MZmine2, only for the CAMERA_pos
data set does MZmine2 have a taller peak around zero.
Higher detection rates alone do not necessarily indicate an

increase in power. To assess power, we also evaluated the type I
error control of the methods. We performed a permutation
experiment in which we shuffled the sample group labels so that
each of the new comparison groups were composed half of
cases and half of controls. For example, in an experiment with
eight cases and eight controls, the new permuted “case” group
would include four true cases and four true controls, as would
the new permuted “control” group. In this way, we created null
data sets in which no abundance differences are expected. With
data sets containing a sufficient number of samples, we
performed 1000 permutations. Otherwise we enumerated all
permutations satisfying the balancing characteristic just
described. We again used limma to perform differential testing.
Results of the permutation experiment for the timecourse_4 h
data set are shown in Figure 4c (additional data sets in
Supplementary Figure S5). For a range of nominal type I error
rates, we computed the median observed error rate over all
permutations. For all 10 data sets, all methods are quite
conservative, showing a markedly lower error rate than the
nominal value for the entire range. For most of the data sets,
bakedpi is the most conservative of the three methods. The
combination of more conservative type I error control and a
higher detection rate indicates that bakedpi has higher power to
detect differences than the sample-by-sample processing
procedures of XCMS and MZmine2.
Retention Time Alignment. It is well established that RT

deviations between experimental runs can complicate the
matching of peaks across samples. We investigated the impact
of correcting RT drift on the variability improvements of our
method using multiple strategies. First, we used the RT warping
function computed by XCMS to align the raw data before
computing the density estimate. Second, we computed local
sample-specific RT shifts that maximized the correlation of the
chromatograms between samples and used these shifts to align
the raw data. Third, we used correlation-optimal shifts to align
peaks already detected from the density estimate before
quantification. None of these RT alignment strategies had a
large impact on the variability of detected features. The
proportion of peaks detected by both bakedpi and XCMS or
MZmine2 that had lower variability with bakedpi did not
change appreciably with these RT corrections (Supplementary
Figure S6).

Parameter Choices. Because the detection of peaks and
their bounds depend on the cutoff applied to the density
estimate, it is important to investigate the sensitivity of method
performance to this cutoff. We performed a sensitivity analysis
by varying the density cutoff and examining the p-value
distribution resulting from the detected peaks (Supplementary
Figures S7 and S8). Raising the cutoff to be more stringent or
lowering the cutoff to be more inclusive generally does not have
a substantial impact on the global pattern of inference as
assessed by p-value distributions.

Method-Specific Peaks. There are a number of peaks that
are detected only by one method (Supplementary Figure S3).
As comprehensive gold standard information on the true peaks
corresponding to compounds was not available, we examined
the characteristics of these method-specific peaks to assess their
quality (Supplementary Figures S9−S12). For more than half
of the data sets, XCMS-specific peaks tend to have more
extreme t-statistics and lower p-values. For half the data sets,
MZmine2 peaks have higher p-values than bakedpi. For nearly
all data sets, bakedpi-specific peaks have greater peak heights
than XCMS- and MZmine2-specific peaks with comparable
peak widths. Peaks specific to bakedpi are also more likely to be
supported by all samples in the experiment. The last two
observations are sensible given that bakedpi relies on an
intensity-weighted density estimation; a peak is more likely to
be detected when a large number of high-intensity points are
close together. Based on observations about t-statistics and p-
values, it is not clear that one of the two sets of methods-
specific peaks is best. If peaks with greater heights or greater
numbers of samples supporting them are more likely to be of
scientific interest, then bakedpi-specific peaks seem to be of
higher quality than XCMS- or MZmine2-specific peaks. Given
the lack of gold standard data on peak identities, evaluation of
method-specific peaks is less clear than evaluation of peaks
common to multiple methods. On peaks common to both
bakedpi and MZmine2 or XCMS, bakedpi shows a clear
reduction in quantification variability and an increase in
statistical power.

■ CONCLUSIONS
We have proposed a method for the joint processing of
metabolomics data across samples, which reduces variability in
peak quantification across samples, leading to increased power
in a differential analysis. We take the position that the most
important task in metabolomics is the identification of
differentially abundant peaks, in contrast to, e.g., identifying
all peaks in a sample. Our method compares favorably to
XCMS and MZmine2 across 10 data sets and will be useful for
drawing better and more substantiated inferences from
untargeted metabolomics studies. We do note that the
commercial software Progenesis CoMet also uses the idea of
pooling samples into a metasample for processing. However,
details on CoMet method are not available, making it
impossible to comment further on differences between the
two approaches.
A limitation of our approach is that peaks that are only truly

present in a small fraction of the samples are unlikely to be
detected. Such metabolites may be of interest but are by
definition less well supported by the observed data. In
developing bakedpi, we have chosen to focus on peaks with
sufficient information across all samples and on obtaining for
those peaks the best quality quantifications for the purposes of
differential analysis.

Figure 4. Comparison of differential analysis quality and type I error
control in the timecourse_4 h data set. (a) Distribution of p-values for
peaks detected by both bakedpi and XCMS. (b) Like part a but for
MZmine, (c) median error rate over null permutations as a function of
the nominal error rate.
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It is important to note that the benefit of our method is
dependent on using peak areas for quantification rather than
peak height. As we show, the variability in quantification of a
particular peak across samples is driven entirely by the
variability in peak width. If peak height is used instead of
peak area, our method will show the same quantification as
XCMS and MZMine2, provided the sample-specific RT bounds
contain the mode of the peak; this is true for two of our three
examples.
In our evaluation of bakedpi, we have used both centroid-

mode and profile-mode data sets with fairly stable chromatog-
raphy. The RT drift we observe in these data sets is not so large
that corresponding peaks from different samples do not
overlap. However, stable chromatography is not required for
bakedpi to work because we do implement RT alignment
procedures. Our evaluation data sets also come from mass
spectrometers with a range of mass accuracies from 5 ppm on
Q-TOF instruments to less than 1 ppm on the Orbitrap, so
bakedpi is able to handle data from a representative range of
instruments. We expect lower mass accuracy to make peak
merging more likely and to cause peak m/z bounds to be wider
than necessary, but this is mostly a feature of low mass accuracy
in general. Currently, our method is implemented as the
standalone yamss package as part of the Bioconductor project.

■ METHODS
Data. Also see Table 1.
ASD_hirisk: Prenatal serum samples from 40 mothers

participating in the EARLI study whose infants had the highest
(n = 20) and lowest (n = 20) Autism Observation Scale for
Infants (AOSI) at the time of the experiment.29

timecourse_4h, timecourse_24 h: Six MCF-7 cell line
samples exposed to estradiol (E2) and six control samples
unexposed to E2 for up to 72 h.30

MTBLS2: Four wild-type and four cyp79b2 cyp79b3
knockout Arabidopsis thaliana leaves exposed to silver
nitrate.31,32

CAMERA: Spike-ins of 39 known compounds at varying
concentrations on methanolic extracts of Arabidopsis thaliana
leaves.33 Three samples with a spike-in concentration of 20 μM
were compared to three samples with a spike-in concentration
of 5 μM in both positive and negative ion modes.
MTBLS103: Serum profiling of 12 adolescent girls with

hyperinsulinaemic androgen excess and 14 healthy controls
matched on age, weight, and ethnicity.34

MTBLS213: Human retinal pigment epithelium cell line
(ARPE-19) batches grown labeled and unlabeled glucose
media.35

MTBLS126: Liver concentrations of resveratrol (RESV)
metabolites after application of a mixture of RESV in
hydrophilic ointment to mouse skin (3 samples) compared to
liver concentrations of resveratrol (RESV) metabolites after
application of hydrophilic ointment without RESV to mouse
skin (3 samples).25

Processing with XCMS and MZmine2. XCMS parame-
ters were optimized using the IPO package available on
Bioconductor26 using recommended starting values for most
data sets. Because optimization for the MTBLS2 and
MTBLS213 data sets required significant computational time
(we terminated the optimization after 11 days), we either fixed
parameters that could be reasonably inferred beforehand (such
as ppm) or set a smaller range of values over which to optimize.
MZmine2 parameters were set based on optimized XCMS

parameters where possible. In particular, the “prefilter”,
“mzdiff”, minimum and maximum peakwidth, and ppm
parameters from XCMS had near equivalents in MZmine2
parameters. For XCMS, we used the “centWave” algorithm9 for
the nine centroid-mode data sets and the “matchedFilter”
algorithm23 for the profile-mode MTBLS126 data set. We used
the density method for peak grouping, the obiwarp method for
retention time alignment, and the fillPeaks method to fill in
information for peaks missing from certain samples. For
MZmine2, we used the GridMass module for peak detection,36

the join aligner for retention time alignment, and the same-
range gap filler module. Details on optimization and parameter
settings for XCMS and MZmine2 are provided in the
Supporting Information.

Processing Workflow. Our processing procedure consists
of three steps. First is background correction which increases
the signal-to-noise ratio of true peaks. Second is RT alignment,
which aligns the raw data to correct for drifts in compound
elution times between samples; this is optional. Third is density
estimation to detect peaks.

Background Correction. Background correction is per-
formed on each sample separately. We divide the m/z-RT space
into bins and estimate background separately for each bin; this
is arbitrarily done for bins of width 10 m/z units and 40 scans
in the RT domain. We observe that each grid region exhibits a
multimodal intensity distribution with 2 or more modes
(Supplementary Figure S13) and reason that the lowest mode
is background. We estimate the location of the mode with the
first peak of the kernel density estimate of the intensity
distribution and subtract this value from all observations in the
grid region.

Retention Time Alignment. We investigated two RT
alignment procedures that could be applied to the raw data
before peak detection and one procedure that could be applied
after peak detection. The first prepeak detection approach was
to use the sample-specific corrected RTs reported by XCMS to
define a RT warping function that could be applied to the raw
data to yield aligned RTs. In the second approach, we found
tentative m/z regions containing peaks using univariate kernel
density estimation and computed EICs in these regions for all
samples. For each region and sample, we then found the shift
that would maximize the correlation between the EICs in each
sample and a reference sample (the sample with the largest area
beneath the EIC). These local and sample-specific shifts were
applied to the raw data to yield aligned RTs. We also
investigated a correction procedure that could be applied to
peaks that had already been detected. For each detected peak,
we computed the sample-specific shifts that would maximize
the correlation between the EICs in each sample and a
reference sample (the sample with the largest area beneath the
EIC). We then recomputed the peak quantifications using the
original RT bounds and shifted EICs.

Bivariate Density Estimation. To detect peaks, we pool
all samples into a single metasample by concatenating the
spectral information from all of the samples. For example, the
spectral information for the first scan of the metasample is
formed by concatenating the first scan’s spectral information
from the individual samples. We use this metasample to
estimate a two-dimensional density in the m/z-RT space. We
represent the input data as a set of data points (Mj, Tj, Ij),
where Mj is the mass over charge (m/z) of the jth data point
(all samples are pooled), Tj is the scan number (RT in seconds
divided by number of scans per second), and Ij is the intensity.
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Per sample, T typically has up to a few thousand unique values
depending on the scan rate of the mass spectrometer and the
duration of the experiment, and M has on the order of one
hundred observations per scan in centroid-mode data and
several hundred in profile-mode data. Thus, the data consists of
tens of thousands of data points such triples for each sample.
The bivariate intensity-weighted density estimator using a

Gaussian kernel at a point (m, t) in m/z-RT space is given by
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bivariate Gaussian density. The density estimate is not highly
sensitive to the RT bandwidth, and a default of bandwidth of 10
scans is recommended. The m/z bandwidth should be set based
on the type of mass spectrometer used and is recommended to
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We do this because our focus is on identifying regions of
interest rather than on highly exact estimation of the density.37

Second, we use a simple binning strategy38 where the m/z-RT
space is binned and a single representative value for each bin is
chosen. In the RT domain, the default bin width is 1 scan, and
in the m/z domain the default bin width is set to be equal to
the bandwidth (0.005 for TOF and 0.002 for Orbitrap). Third,
we use a Gaussian kernel truncated at ±3, effectively only
including points close to (m, t) in the summation.38 Fourth, in
our implementation, we make use of sparse linear algebra as
well as efficient data structures for selecting points close to (m,
t) as implemented in the data.table package.39

After obtaining the density estimate, we select a cutoff using
information from the strongest (most intense) features in the
data. The m/z domain is divided into bins of a default width of
2 m/z. Within each bin, the most intense data point is selected.
We assume that this data point belongs to a true feature and
use local univariate density estimation in the m/z and RT
domains to define a m/z and RT window for this feature. We
compute quantiles of the density estimate values in these
regions and compute the mode of this quantile distribution for
various quantile values. For example, we compute the 99th
percentile for each of the approximately 500 strong feature
regions and compute the mode of this distribution. We repeat
this for a wide range of percentiles. We then order these modes
and select the first mode substantially different from zero as a
cutoff. To ensure reasonable peak bounds, we enforce that this
cutoff should be greater than or equal to the 99th percentile of
nonzero density values. Applying the cutoff to the density
estimate matrix yields a binary matrix that denotes peak and
nonpeak regions. In order to obtain m/z and RT bounds for
these peak regions, we use a connected components labeling
algorithm.40

Software Availability. Our method is implemented in the
yamss package, available from the Bioconductor project at
https://www.bioconductor.org/packages/yamss.

■ ASSOCIATED CONTENT
*S Supporting Information
The Supporting Information is available free of charge on the
ACS Publications website at DOI: 10.1021/acs.anal-
chem.6b04719.

Additional details on parameter settings for XCMS and
MZmine2 as well as additional figures of data analysis
(PDF)

■ AUTHOR INFORMATION
Corresponding Author
*E-mail: khansen@jhsph.edu.
ORCID
Thomas Hartung: 0000-0003-1359-7689
Kasper D. Hansen: 0000-0003-0086-0687
Funding
Research reported in this publication was supported by
National Institute of Environmental Health Sciences of the
National Institutes of Health under Award Number
R01ES020750 and the National Cancer Institute of the
National Institutes of Health under Award Number
U24CA180996. This research was supported by a Johns
Hopkins Bloomberg School of Public Health Faculty
Innovation Fund award. The EARLI study was funded by
Grant R01ES016443 and Autism Speaks Grant 9502. Some
EARLI participants were recruited with the assistance of the
Interactive Autism Network (IAN) database at the Kennedy
Krieger Institute, Baltimore MD.
Notes
Disclaimer: The content is solely the responsibility of the
authors and does not necessarily represent the official views of
the National Institutes of Health.
The authors declare no competing financial interest.

■ REFERENCES
(1) Bouhifd, M.; Hartung, T.; Hogberg, H. T.; Kleensang, A.; Zhao,
L. J. Appl. Toxicol. 2013, 33, 1365−1383.
(2) Bouhifd, M.; et al. ALTEX 2015, 32, 319−326.
(3) Ramirez, T.; et al. ALTEX 2013, 30, 209−225.
(4) Aberg, K. M.; Alm, E.; Torgrip, R. J. O. Anal. Bioanal. Chem.
2009, 394, 151−162.
(5) Hastings, C. A.; Norton, S. M.; Roy, S. Rapid Commun. Mass
Spectrom. 2002, 16, 462−467.
(6) Vivo-́Truyols, G.; Torres-Lapasio,́ J. R.; van Nederkassel, A. M.;
Vander Heyden, Y.; Massart, D. L. J. Chromatogr. A 2005, 1096, 133−
145.
(7) Du, P.; Kibbe, W. A.; Lin, S. M. Bioinformatics 2006, 22, 2059−
2065.
(8) Noy, K.; Fasulo, D. Bioinformatics 2007, 23, 2528−2535.
(9) Tautenhahn, R.; Böttcher, C.; Neumann, S. BMC Bioinf. 2008, 9,
504.
(10) Chen, S.; Li, M.; Hong, D.; Billheimer, D.; Li, H.; Xu, B. J.; Shyr,
Y. Bioinformatics 2009, 25, 808−814.
(11) Nguyen, N.; Huang, H.; Oraintara, S.; Vo, A. Bioinformatics
2010, 26, i659−i665.
(12) Shalliker, R. A.; Stevenson, P. G.; Shock, D.; Mnatsakanyan, M.;
Dasgupta, P. K.; Guiochon, G. J. Chromatogr. A 2010, 1217, 5693−
5699.
(13) Vivo-́Truyols, G. Anal. Chem. 2012, 84, 2622−2630.
(14) Fu, H.-Y.; Guo, J.-W.; Yu, Y.-J.; Li, H.-D.; Cui, H.-P.; Liu, P.-P.;
Wang, B.; Wang, S.; Lu, P. J. Chromatogr. A 2016, 1452, 1−9.
(15) Tomasi, G.; van den Berg, F.; Andersson, C. J. Chemom. 2004,
18, 231−241.

Analytical Chemistry Article

DOI: 10.1021/acs.analchem.6b04719
Anal. Chem. 2017, 89, 3517−3523

3522

https://www.bioconductor.org/packages/yamss
http://pubs.acs.org
http://pubs.acs.org/doi/abs/10.1021/acs.analchem.6b04719
http://pubs.acs.org/doi/abs/10.1021/acs.analchem.6b04719
http://pubs.acs.org/doi/suppl/10.1021/acs.analchem.6b04719/suppl_file/ac6b04719_si_001.pdf
mailto:khansen@jhsph.edu
http://orcid.org/0000-0003-1359-7689
http://orcid.org/0000-0003-0086-0687
http://dx.doi.org/10.1021/acs.analchem.6b04719


(16) Podwojski, K.; Fritsch, A.; Chamrad, D. C.; Paul, W.; Sitek, B.;
Stühler, K.; Mutzel, P.; Stephan, C.; Meyer, H. E.; Urfer, W.; Ickstadt,
K.; Rahnenführer, J. Bioinformatics 2009, 25, 758−764.
(17) Hoffmann, N.; Keck, M.; Neuweger, H.; Wilhelm, M.; Högy, P.;
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