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Objectives: We hypothesize that the combined use of MRI corti-
cal thickness measurement and subcortical gray matter volumetry 
could provide an early and accurate in vivo assessment of the 
structural impact of cardiac arrest and therefore could be used for 
long-term neuroprognostication in this setting.
Design: Prospective cohort study.
Setting: Five Intensive Critical Care Units affiliated to the Uni-
versity in Toulouse (France), Paris (France), Clermont-Ferrand 
(France), Liège (Belgium), and Monza (Italy).
Patients: High-resolution anatomical T1-weighted images were 
acquired in 126 anoxic coma patients (“learning” sample) 16 ± 8 
days after cardiac arrest and 70 matched controls. An additional 
sample of 18 anoxic coma patients, recruited in Toulouse, was 
used to test predictive model generalization (“test” sample). All 
patients were followed up 1 year after cardiac arrest.
Interventions: None.
Measurements and Main Results: Cortical thickness was computed 
on the whole cortical ribbon, and deep gray matter volumetry was 
performed after automatic segmentation. Brain morphometric data 
were employed to create multivariate predictive models using learning 
machine techniques. Patients displayed significantly extensive cortical 
and subcortical brain volumes atrophy compared with controls. The 
accuracy of a predictive classifier, encompassing cortical and sub-
cortical components, has a significant discriminative power (learning 
area under the curve = 0.87; test area under the curve = 0.96). The 
anatomical regions which volume changes were significantly related 
to patient’s outcome were frontal cortex, posterior cingulate cortex, 
thalamus, putamen, pallidum, caudate, hippocampus, and brain stem.
Conclusions: These findings are consistent with the hypothesis 
of pathologic disruption of a striatopallidal-thalamo-cortical meso-
circuit induced by cardiac arrest and pave the way for the use 
of combined brain quantitative morphometry in this setting. (Crit 
Care Med ; 45:e763–e771)
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Many comatose post cardiac arrest (CA) patients die 
or survive with severe disability after a prolonged 
ICU stay associated with important cost burden. 

Conversely, the potential for premature withdrawal of life 
support from patients who may have a chance of functional 
recovery represents an additional ethical dilemma. Thus, 
finding accurate prognostic indicators that can reliably iden-
tify patients who have a likelihood of meaningful neurologic 
recovery is a very important healthcare issue (1). Lately, 
important advances have been made in clinical evaluation, 
electrophysiology and neuroimaging, providing insights into 
the underlying pathophysiologic mechanisms of brain injury 
induced by CA, as well as prognosis (2). Nevertheless, it is 
worth noting that studies in this field (2, 3) have been prone 
to substantial biases as: 1) self-fulfilling prophecies of early 
withdrawal of life-sustaining therapies (i.e., treating physi-
cians were not blinded to the results of prognostic test), 2) 
small sample size and heterogeneity of patients populations, 
and 3)poorly described outcome measures, generally focused 
on short-term prognostication.

Regarding the brain structural impact of CA, it has been 
suggested by histological and animal studies that anoxic/
hypoxic encephalopathy is related to diffuse and severe 
structural damages encompassing brain swelling, cortical 
laminar necrosis, and basal ganglia necrosis (4). Gray mat-
ter seems to have far greater vulnerability to hypoxia when 
compared with white matter, particularly in brain regions 
showing high basal metabolic levels (5). Nevertheless, brain 
gray matter architectural changes induced by CA have not 
yet been systematically explored in CA survivors, prob-
ably because conventional MRI sequences, as T1-weighted 
sequences, are currently considered not precise enough to 
detect brain structural anomalies in this setting and are sup-
posed to fail to accurately predict outcome when they are 
used alone in patients with anoxic/hypoxic encephalopa-
thy (2). However, neuroimaging analysis techniques have 
greatly advanced over the years, and innovative neuroimag-
ing methods hold the promise for providing in vivo insight 
into these pathophysiologic processes. For example, cortical 
thickness measurement and deep gray matter quantitative 
volumetry have been recently used to allow a fine-grained 
assessment of brain volumes atrophy related to neurode-
generative disorders (6, 7).

We hypothesize that the use of cortical thickness measurement 
and subcortical gray matter quantitative volumetry could provide 
an accurate in vivo assessment of the impact of anoxic/hypoxic 
insult induced by CA. We speculate that cortical and subcortical 
volume atrophy measurements provided by these approaches 
could be used as accurate predictors of long-term neurologic out-
come in this setting. To test this hypothesis, we prospectively stud-
ied a large and multicenter cohort of anoxic comatose patients. 
All patients were prospectively recruited and managed according 
to standard of care recommendations (5) by clinical practitio-
ners blinded to MRI data, to avoid bias related to self-fulfilling 
prophecies. Patients were scanned during the acute phase follow-
ing the CA, exclusively during coma state, in standardized clinical 

conditions. Finally, the prognostic value of neuroimaging record-
ings was assessed against long-term neurologic outcome using a 
validated clinical score (8), 1 year after injury.

MATERIALS AND METHODS

Participants
This prospective, multicenter study was undertaken in five 
Intensive Critical Care Units affiliated to the University in Tou-
louse (France), Paris (France), Clermont-Ferrand (France), 
Liège (Belgium), and Monza (Italy) between October 2011 and 
October 2014. We compared CA survivors who met the strict 
clinical definition of coma (Glasgow Coma Scale at the admis-
sion to hospital < 8 with motor responses < 6) to sex and age-
matched healthy volunteers. In patients, clinical examination 
was repeatedly performed using standardized scales (Glasgow 
Coma Score on the day of scanning and 1 year later using the 
Glasgow Outcome Scale [GOS]-E [8]). All patients were pro-
spectively recruited and managed according to standard of care 
recommendations (5) by clinical practitioners blinded to MRI 
data. The Ethics committee of each recruiting center approved 
this study. Informed consent to participate to the study was 
obtained from the subjects themselves in the case of healthy 
subjects and from the legal surrogate of the patients.

Imaging Procedures
Acquisitions. In all subjects, high-resolution anatomical 
image, using 3D T1-weighted sequence (in plane, 160 contigu-
ous slices) was acquired using 3 T MR scanners. All patients 
were scanned less than 1 month after CA (MRI delay after CA, 
16 ± 8 d). Monitoring of vital variables was performed by a 
senior intensivist throughout the experiment. All patients were 
in coma during the MRI scan.

Analysis. Analysis was performed by investigators who 
were blinded to the clinical information and outcomes data. 
To proceed to cortical thickness measurement, brain volumes 
were resampled to a 1 × 1 × 1 mm resolution and then seg-
mented using Statistical Parametric Mapping 8 (http://www.
fil.ion.ucl.ac.uk/spm/). Cortical thickness was computed 
on the whole cortical ribbon in the native space of the sub-
ject’s brain, using a Laplace’s equation-based algorithm (9). 
The 3D cortical thickness map was registered in a standard-
ized and parcellated into 96 areas (48 Brodmann areas × 2 
hemispheres). To reinforce the robustness of the measures, 
these areas were then grouped into 20 zones (10 zones × 2 
hemispheres) following pathophysiologic criteria (7). A mean 
cortical thickness was computed for each zone of each subject 
(mean between right and left brain hemispheres).

Deep gray matter quantitative volumetry was performed 
using FSL 4.1 (FMRIB, Software Library V5.0, Analysis Group, 
Oxford, United Kingdom; http://www.fmrib.ox.ac.uk/fsl/) and 
in house software developed in Matlab (6). For each subject, 
deep gray matter structures and brain stem were segmented. 
To reduce the effects of interindividual variability in head size, 
individual volume values were multiplied by a normalization 
factor from the corresponding T1-weighted image.

http://www.fil.ion.ucl.ac.uk/spm/
http://www.fil.ion.ucl.ac.uk/spm/
http://www.fmrib.ox.ac.uk/fsl/
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Outcome Assessment
All patients were followed up until death or 1 year after CA in 
survivors. The principal outcome measure was the extended 
version of the GOS-E (8), which was measured by blinded 
assessors. This scale classifies patients into eight categories as 
follows: GOS-E score of 1, death; 2, vegetative state/unrespon-
sive wakefulness syndrome; 3, lower severe disability; 4, upper 
severe disability; 5, lower moderate disability; 6, upper moder-
ate disability; 7, lower good recovery; and 8, upper good recov-
ery. Among survivors, any GOS-E score from 2 to 4 was defined 
as an “unfavorable outcome” (UFO), whereas a score from 5 to 
8 was defined as a “favorable outcome” (FO).

Statistical Analysis
Normally distributed variables were expressed as mean ± sd 
and nonnormally distributed variables as median (interquar-
tile range, 25–75). FO patients were compared with UFO 
patients. Continuous variables were compared using Student 
t test or the Mann-Whitney U test, as appropriate. A Student-
Newman-Keuls post hoc analysis was used to identify sample 
means that are significantly different from each other. Categor-
ical variables were compared using the chi-square test.

To examine the potential relationship between cortical and 
subcortical morphometric changes induced by hypoxic/anoxic 
insult, a cross-correlation matrix and a principal component 
analysis (PCA) were applied to the whole dataset.

To specifically address the prognosis value of cortical thick-
ness measurement and subcortical gray matter quantitative 
volumetry, we used a supervised learning machine approach 
to elaborate and validate a mathematical model trained on 
labeled examples. To do so, two independent patients sample 
were used: 1) a learning sample was employed to establish the 
best classification model and then was tested using a repeated 
10-fold cross-validation procedure and 2) a validation sam-
ple, which was not used during the previous phase and was 
employed to test degeneralization of the model.

Normalized cortical and subcortical morphometric data 
were used as independent variables and employed to estimate 
partial least square (PLS) regression (10) (e-text1, Supplemental 
Digital Content 1, http://links.lww.com/CCM/C459) to predict 
two final diagnoses (FO and UFO) using a unique linear multi-
variate model. Nonsurvivors patients (GOS-E score of 1) were 
not included in this predictive analysis. Actually, patient’s mor-
tality during the early phase after CA resuscitation is frequently 
related to multiple organ failures, which could not be directly 
related to CA-induced structural brain injury and consequently 
to patient’s potential of neurologic recovery. Furthermore, deci-
sions of early withdrawal of life-sustaining therapies constitute 
a potential confounder in this setting and justify taking into 
account this possible source of bias (2).

PLS latent variables were calculated from the largest covari-
ance between the independent and dependent variables (MRI 
data and outcome, respectively). PLS components with an eigen-
value superior to one were included in the model. To avoid over-
fitting risk, the data of the validation set were used to evaluate 
the predictive abilities of the obtained model. The standardized 

coefficients and 95% CIs of each variable were determined using 
a bootstrap procedure (100,000 permutations). Finally, a binary 
logistic regression was performed on the PLS components to 
convert PLS values of each observation into a probability score.

Receiver operating characteristic (ROC) (11) curves were 
calculated for the predictive model, and the highest sum of 
sensitivity and specificity was considered as being the opti-
mal threshold. Positive and negative likelihood ratios were 
also estimated from this optimal threshold. All p values were 
two-tailed, and statistical significance was defined as a p value 
of less than 0.05. Analyses were performed using SPSS (SPSS, 
Chicago, IL), Statistica (Statsoft, Tulsa, OK), and Tanagra 
1.4.50 (Rakotomalala, Lyon University, France) softwares.

RESULTS

Participants
We compared 126 CA survivors who met the clinical definition 
of coma (sex ratio, 0.8; age range, 23–51) to 70 sex and age-
matched healthy volunteers (sex ratio, 0.7; age range; 24–45). 
e-table 1 (Supplemental Digital Content 2, http://links.lww.
com/CCM/C460) and e-fig. 6 (Supplemental Digital Content 9, 
http://links.lww.com/CCM/C467  —legend, Supplemental Digi-
tal Content 10, http://links.lww.com/CCM/C46) report  demo-
graphic and clinical characteristics of the patients. To predict 
outcome in 1-year survivors (37 from the initial 126 patients), 
data from these patients were used to constitute a learning sample 
aiming to elaborate a predictive model using machine-learning 
techniques. Additionally, a validation sample of CA patients in 
coma, exclusively recruited in Toulouse (18 CA patients in coma, 
sex ratio, 0.9; age range, 22–57) and which was not used during 
the previous phase, was used to test the model generalization.

CA Impact on Brain Volumes
Whole brain mean cortical thickness significantly differed 
between patients and controls (Fig. 1). Furthermore, a New-
man-Keuls post hoc analysis showed that all cortical zones 
significantly differed in terms of cortical thickness between 
both groups (interaction group × anatomical region, F = 10.9;  
p < 0.0001).

Regarding subcortical morphometric changes induced by 
CA, results showed that the global measurement of basal gan-
glia, thalamus, and brain stem volumes was significantly dif-
ferent between coma patients and controls (Fig.  1). In sum, 
anoxic comatose patients displayed significantly extensive 
cortical and subcortical brain volumes atrophy compared with 
sex- and age-matched controls.

Cortical and Subcortical Specific Vulnerability
To examine the potential relationship between cortical and 
subcortical morphometric changes induced by hypoxic/anoxic 
insult, a cross-correlation matrix (Fig. 2A) and a PCA were 
applied to the whole dataset (Fig. 2B). It is worth noting that 
the whole brain morphometric correlation matrix suggests a 
dissociated cortical and subcortical pattern of structural sus-
ceptibility (Fig. 2A). Congruently, the distribution of the PCA 

http://links.lww.com/CCM/C459
http://links.lww.com/CCM/C460
http://links.lww.com/CCM/C460
http://links.lww.com/CCM/C467


Silva et al

e766	 www.ccmjournal.org	 August 2017 • Volume 45 • Number 8

values (Fig. 2B) with the two first components uncovers the 
fact that the cortical atrophy observed in all the defined brain 
zones significantly correlates to principal component 1 and 
that the volume decrease, which has been identified in subcor-
tical structures (i.e., basal ganglia, thalamus, and brain stem) in 
patients compared with controls, seems to be independent of 
the degree of cortical atrophy, as suggested by their significant 
correlation with the principal component 2.

To summarize, the impact of CA on subcortical and cortical 
gray matter morphometry seemed to be dissociated. A specific 
pattern of atrophy was observed among cortical regions and 
between the whole set of subcortical structures. In other words, 
regarding CA-induced gray matter volume reductions, corti-
cal and subcortical structures behave as independent groups: 
the volumetric change of each gray matter structures seems 
to be specifically correlated with the degree of atrophy that 
is observed in structures of the same group (i.e., cortical vs 
subcortical).

Predictive Value
Admission characteristics of the patients according to their out-
come are presented in e-table 1 (Supplemental Digital Content 
2, http://links.lww.com/CCM/C460); there were no significant 
demographic differences between survivors’ comatose patients 
with favorable (GOS-E, 5–8) and UFO (GOS-E, 2–4). No dif-
ference was found in the timing of MRI scan between FO and 
UFO patients. Nevertheless, patients with FO differed from 
patients with UFO by a significant and specific decrease of cor-
tical thickness in the frontal cortex (p < 0.001) and the volume 
reduction at the level of the thalamus, putamen, and pallidum 
(p < 0.001, p < 0.01, and p < 0.008, respectively) (Table 1).

Additionally, we investigated using machine-learning meth-
ods the accuracy of a predictive classifier built on the whole 
dataset of cortical thickness and subcortical volumes mea-
surements. One model was tested using morphometric data 
(e-fig. 1, Supplemental Digital Content 4, http://links.lww.
com/CCM/C462 —legend, Supplemental Digital Content 10,  

Figure 1. Quantitative cortical (A) and subcortical (B and C) morphometric differences between patients and controls. Normalized 3D cortical thickness 
maps (mm) and subcortical volumes (mm3) were obtained and compared between coma patients and sex and age-matched controls (false discovery rate 
corrected p values for multiple comparisons, p < 0.05). Accub = accumbens nucleus, Amyg = amygdala, Audit = auditory cortex, Caud = caudate nucleus, 
CingAnt = anterior cingulate cortex, CingPost = posterior congulate cortex, Frontal = frontal cortex, Hipp = hippocampus, Insula = insula, Occip = occipital 
cortex, Pariet = parietal cortex, Pall = pallidum, Puta = putamen, SenMot = sensory motor cortex, TempLat = lateral temporal cortex, TempMed = medial 
temporal cortex, Thal = thalamus.

http://links.lww.com/CCM/C460
http://links.lww.com/CCM/C462
http://links.lww.com/CCM/C462
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http://links.lww.com/CCM/C468; and e-fig. 2, Supplemental 
Digital Content 5, http://links.lww.com/CCM/C463 —legend, 
Supplemental Digital Content 10, http://links.lww.com/CCM/
C468). During the learning phase, area under the ROC (area 
under the curve [AUC]) values showed that a composite model 
encompassing cortical and subcortical components has the 
optimal discriminative power (AUC = 0.87; Fig. 3) (e-table 2, 
Supplemental Digital Content 3, http://links.lww.com/CCM/
C461). Data obtained during the validation phase confirm the 
accuracy and robustness of the predictive model (AUC = 0.96; 
Fig. 3) (e-table 2, Supplemental Digital Content 3, http://links.
lww.com/CCM/C461; e-fig. 3, Supplemental Digital Content 
6, http://links.lww.com/CCM/C464 —legend, Supplemental 
Digital Content 10, http://links.lww.com/CCM/C468; and e-fig. 
5, Supplemental Digital Content 8, http://links.lww.com/CCM/
C466 —legend, Supplemental Digital Content 10, http://links.
lww.com/CCM/C468). It must be highlighted that the anatomi-
cal regions which volume changes were significantly related to 
patient’s outcome in the combined predictive model were fron-
tal cortex, posterior cingulate cortex, thalamus, putamen, pal-
lidum, caudate and brain stem (Fig. 4). Finally, to illustrate the 
potential bedside use of this approach for neuroprognostica-
tion, the cross-validated predictive model described in the cur-
rent study was integrated in an open-source application which 

permits the individual estimation of 1-year outcome of CA sur-
vivors patients in coma, using MRI gray matter morphometric 
data (e-fig. 4, Supplemental Digital Content 7, http://links.lww.
com/CCM/C465 —legend, Supplemental Digital Content 10, 
http://links.lww.com/CCM/C468).

DISCUSSION
Neuroimaging shows promise for determining early prognosis 
based on structural brain injury (2). Nevertheless, conventional 
MRI sequences, as T1-weighted sequences, are presently con-
sidered not precise enough to detect brain structural anomalies 
induced by CA (2). The current study suggests that the use of gray 
matter morphometry, obtained from standard brain T1-weighted 
acquisition, enables an accurate in vivo evaluation of the structural 
impact of anoxic/ischemic brain injury in this challenging setting.

Remarkably, our data suggest that the prognostic value of 
gray matter morphometry in CA survivors is not related to the 
total amount of cortical or subcortical global atrophy induced 
by CA, but to the specific structural impairment of the fron-
tal cortex, the posterior cingulate cortex, the hippocampus, the 
brain stem, the thalamus, and the striatopallidal system. All these 
cortical and subcortical structures are believed to underlie con-
scious processing (12) and willful behavior (13). Indeed, both 

Figure 2. A, Whole brain morphometric correlation matrix. Table showing the Pearson correlation (r) coefficients between cortical and subcortical gray 
matter morphometric data. Direction and strength of the linear relationship between the variables (whether causal or not) is represented by r values 
(ranging from –1 to +1, coded in blue to red, respectively). A correlation matrix is symmetric because the correlation between Xi and Xj is the same 
as the correlation between Xj and Xi. It is worth noting that volumetric changes in subcortical regions are mainly correlated with anatomical changes 
in others subcortical structures (i.e., left and upper part of the matrix). As a counterpart, the degree of cortical atrophy induced by CA seems to be 
specifically correlated with the volumetric changes observed in other cortical regions (i.e., right and lower part of the matrix). B, Principal component 
analysis (PCA) of cortical thickness and subcortical volumes measured in patients (82% of the variability is accounted on the component 1/component 
2 plane). PCA is a statistical procedure that uses an orthogonal transformation to convert a set of observations of possibly correlated variables into a set 
of values of linearly uncorrelated variables called “principal components.” PCA is mostly used as a tool in exploratory data analysis and can be thought 
of as revealing the internal structure of the data in a way that best explains the variance in the data. In this case, PCA method permits to identify that 
the morphometric changes induced by CA are significantly correlated among cortical regions (i.e., correlation with component 1) and within the set of 
subcortical volumes (i.e., correlation with component 2) but are largely independent between them (i.e., orthogonal components). Accub = accumbens 
nucleus, Amyg = amygdala, Audit = auditory cortex, BS = brain stem, Caud = caudate nucleus, CingAnt = anterior cingulate cortex, CingPost = posterior 
congulate cortex, Frontal = frontal cortex, Hipp = hippocampus, Insula = insula, Occip = occipital cortex, Pall = pallidum, Pariet = parietal cortex, 
Puta = putamen, SenMot = sensory motor cortex, TempLat = lateral temporal cortex, TempMed = medial temporal cortex, Thal = thalamus.

http://links.lww.com/CCM/C468
http://links.lww.com/CCM/C463
http://links.lww.com/CCM/C468
http://links.lww.com/CCM/C468
http://links.lww.com/CCM/C461
http://links.lww.com/CCM/C461
http://links.lww.com/CCM/C461
http://links.lww.com/CCM/C461
http://links.lww.com/CCM/C464
http://links.lww.com/CCM/C466
http://links.lww.com/CCM/C466
http://links.lww.com/CCM/C468
http://links.lww.com/CCM/C468
http://links.lww.com/CCM/C465
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TABLE 1. Patients Outcome and Brain Quantitative Morphometry

Gray Matter  
Morphometry 

Favorable Outcome (n = 11) Unfavorable Outcome (n = 26)

pMedian IQR (25–75) Median IQR (25–75)

Cortical thickness (mm)      

  Frontal 4.2 3.7–4.5 3.5 3.2–4 0.001

  Sensorimotor 3.3 3–3.4 2.7 2.3–3.5 0.2

  Medial temporal 5.5 4.7–5.8 4.8 4.7–5.7 0.3

  Lateral temporal 6.1 5.5–6.5 5.3 4.6–6.1 0.3

  Parietal 3.9 3.7–4.2 3.3 3–4.6 0.1

  Anterior cingulate 5 4.5–5.5 4.3 3.6–5.7 0.09

  Posterior cingulate 6.2 5.3–6.9 5 4.8–6.9 0.06

  Auditory 4.7 4.1–5.4 3.9 3.3–5.2 0.3

  Insula 3.4 2.9–3.6 2.9 2.5–3.3 0.5

  Occipital 5.4 5–6.3 4.4 3.5–6.2 0.2

  All regions 4.8 4.3–5 4 3.5–5 0.01

Subcortical structures volumes (mm3)      

  Thalamus 18,952 17,630–19,779 17,689 14,179–18,150 0.001

  Caudate 8,563 7,484–9,048 8,210 6,752–8,743 0.06

  Putamen 12,122 11,698–13,149 10,351 8,028–10,689 0.01

  Pallidum 4,592 4,435–4,708 3,786 3,155–4,416 0.008

  Amygdala 2,419 2,001–2,833 2,206 1,499–3,072 0.08

  Accumbens 746 571–968 627 574–911 0.4

  All structures 8,563 7,484–9,048 8,210 6,752–8,743 0.04

Brainstem volume (mm3) 26,839 23,608–29,398 22,832 21,280–27,311 0.07

IQR = interquartile range.
Results are expressed as median (interquartile range, 25–75). Favorable outcome = Glasgow Outcome Scale Extended (GOS-E), 5–8; Unfavorable  
outcome = GOS-E, 2–4. Patient’s outcome was assessed 1 yr after cardiac arrest.
Boldface font indicates significant p values (p < 0.05).

Figure 3. Predictive value. Receiver operating characteristic curves depicting the relationship between the proportion of true-positive findings and the 
proportion of false-positive findings. Estimation performances on outcome prediction of the combined morphometric cortical and subcortical partial last 
square model (favorable outcome vs unfavorable outcome) are represented as areas under the curve (AUC). Learning sample AUC = 0.87 (0.67–0.95); 
test sample AUC test = 0.96 (0.88–1).



Online Clinical Investigations

Critical Care Medicine	 www.ccmjournal.org	 e769

the frontal cortex and the posterior cingulate cortex have dense 
structural and functional connections suggesting a role as corti-
cal hubs (14), an essential property for complex cognitive process 
(15). A selective hypometabolism in these cortical structures has 
been reported in a wide range of altered conscious states such 
as sleep (16), drug-induced anesthesia (17), or acquired disor-
ders of consciousness induced by brain injury (18, 19). The brain 
stem, encompassing the ascending reticular activation system, is 
located at a critical juncture in the inflow of sensory informa-
tion and can modulate wakefulness and awareness. It is worth 
noting that a significant impairment of functional connectivity 
has been described in anoxic/ischaemic patient with chronic dis-
orders of consciousness, between the brain stem and the poste-
rior cingulate cortex/précuneus (20) or the hippocampus (21). 

Finally, thalamic and striatopal-
lidal structures are intercon-
nected in large-scale loops that 
are involved in forebrain func-
tion (22). Corticothalamic and 
corticostriatal dynamic con-
nectivity seems to be crucial for 
high-level cognitive processing 
including attentional focus (23), 
volition (24), and motor control 
(25). The integrity of these cor-
tico-subcortical networks has 
been related to the severity of a 
patient’s disorder of conscious-
ness on acute (26) and chronic 
setting (27). Overall, these find-
ings are consistent with the 
idea that functional/structural 
impairment within a cortico-
striatopallidal-thalamo-cortical 
mesocircuit is characteristic 
of disorder of consciousness 
observed in severe brain injury 
patients (28).

Additionally, our data sug-
gest that gray matter quanti-
tative morphometry could be 
useful to improve our under-
standing of the underlying 
pathophysiology of hypoxic/
anoxic encephalopathy. 
Actually, we identified early 
after CA, a specific pattern of 
atrophy of gray matter vol-
umes, suggesting a dissoci-
ated vulnerability to primary 
hypoxic/anoxic injury (29) or 
secondary brain insults (5), 
of cortical regions compared 
with subcortical structures. 
Alternatively, this dissociated 
pattern of anatomical cou-

pling between cortical/subcortical structures after CA could 
be interpreted as the consequence of massive anatomical (30) 
and functional (18) long-range disconnections between these 
structures, in agreement with theoretical models conscious 
processing (13, 31).

Studies in the challenging field of neuroprognostica-
tion of hypoxic-ischaemic coma are prone to substantial 
biases (2, 32). The present multicenter prospective study was 
designed to limit the impact of inherent biases as the sample 
size, the heterogeneity of the studied population, the tim-
ing of patient’s assessment, and circular reasoning (i.e., self-
fulfilling prophecy) (33). Nevertheless, our study has several 
limitations. As a variant with previous neuroimaging studies 
of disorders of consciousness (34), we controlled potential 

Figure 4. Model components. Cortical and subcortical morphometric data were used as independent variables 
and then employed to estimate partial last square (PLS) regression to predict final outcome. PLS components 
with an eigenvalue superior to 1 were included in the multivariate predictive model (favorable outcome vs 
unfavorable outcome). Normalized PLS coefficients, obtained by a bootstrap procedure (100,000 permutations), 
are depicted as whisker box plots (median, interquartile range, 95% CI). The bottom illustrates the topography 
of the cortical (red) and subcortical (blue) structures, whose structural changes were significantly associated 
with 1-year patients outcome. Accub = accumbens nucleus, Amyg = amygdala, Audit = auditory cortex, 
Caud = caudate nucleus, CingAnt = anterior cingulate cortex, CingPost = posterior congulate cortex, 
Frontal = frontal cortex, Hipp = hippocampus, Insula = insula, Pall = pallidum, Puta = putamen, Occip = occipital 
cortex, Pariet = parietal cortex, SenMot = sensory motor cortex, TempLat = lateral temporal cortex, 
TempMed = medial temporal cortex, Thal = thalamus.
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confounding factors, by a sex and age match between patients 
and healthy volunteers. Nevertheless, it could be argued that 
additional factors, such as comorbid conditions (7) or socio-
cultural level (35), could potentially contribute to brain atro-
phy. This point needs to be addressed in future studies in the 
field. Furthermore, the current study was designed to pro-
vide a snapshot of the impact of CA on brain gray matter 
volumes, and the timing of neuroimaging acquisitions was 
decided to obtain the best balance between clinical relevance 
and study feasibility. Several points must be highlighted that 
justify the level standardization and consistency in the timing 
of MRI of the current study: 1) to avoid confounding fac-
tors, all patient MRI assessments were conducted at least 2 
days (4 ± 2 d) after a complete withdrawal of sedative drugs 
therapies and under normothermic conditions, 2) to guar-
antee patients management according to standard of care 
recommendations, patients transfer to the imaging centers 
was exclusively performed after achievement of clinical sta-
bility, and 3) to specifically address the impact of cortical and 
subcortical gray matter atrophy induced by CA, we focused 
the MRI assessment during the consistent acute period that 
follows early brain edema development. Future longitudinal 
neuroimaging studies will need to focus on repeated brain 
scan acquisitions after CA, aiming to disentangle the dynamic 
structural signatures of brain injury in this setting and ulti-
mately identify the best timing to use such neuroimaging bio-
markers for neuroprognostication.

We do not anticipate that the brain cortical and subcortical 
quantitative morphometry will be used in isolation as a prog-
nosticator for post CA patients, but rather in conjunction with 
other prognostic variables (2, 36). Clinicians should continue 
to use all the available tools to provide accurate prognostic 
advice in this challenging setting. Eventually, we suggest that 
a quantitative prognostic outcome model incorporating serial 
neurologic assessment, multimodal MRI (encompassing struc-
tural and functional data) with variables such as electrophysio-
logic measurement, is likely to prove most powerful in assisting 
in decision making regarding continuation or withdrawal of 
life support in these patients.
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