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Abstract: Human beings are exposed to microorganisms every day. Among those, diverse commensals
and potential pathogens including Staphylococcus aureus (S. aureus) compose a significant part of the
respiratory tract microbiota. Remarkably, bacterial colonization is supposed to affect the outcome of
viral respiratory tract infections, including those caused by influenza viruses (IV). Since 30% of the
world’s population is already colonized with S. aureus that can develop metabolically inactive dormant
phenotypes and seasonal IV circulate every year, super-infections are likely to occur. Although IV and
S. aureus super-infections are widely described in the literature, the interactions of these pathogens
with each other and the host cell are only scarcely understood. Especially, the effect of quasi-dormant
bacterial subpopulations on IV infections is barely investigated. In the present study, we aimed to
investigate the impact of S. aureus small colony variants on the cell intrinsic immune response during
a subsequent IV infection in vitro. In fact, we observed a significant impact on the regulation of
pro-inflammatory factors, contributing to a synergistic effect on cell intrinsic innate immune response
and induction of harmful cell death. Interestingly, the cytopathic effect, which was observed in
presence of both pathogens, was not due to an increased pathogen load.

Keywords: Staphylococcus aureus; small colony variants; influenza virus; super-infection;
pro-inflammatory response

1. Introduction

The respiratory tract is a major portal for microorganisms, through which virus infections can cause
non-symptomatic, mild, and self-limiting but also severe diseases, sometimes with fatal outcomes [1].
A growing body of evidence shows that the human respiratory tract contains a highly adapted
microbiota including commensal and opportunistic pathogens. Among those, Staphylococcus aureus
(S. aureus) is of special importance, forming quasi-dormant subpopulations characterized by increased
fitness compared to other phenotypes [2]. Colonization of S. aureus could either be persistent or

Microorganisms 2020, 8, 1998; doi:10.3390/microorganisms8121998 www.mdpi.com/journal/microorganisms

http://www.mdpi.com/journal/microorganisms
http://www.mdpi.com
https://orcid.org/0000-0003-4925-3933
https://orcid.org/0000-0003-4490-3052
https://orcid.org/0000-0002-8879-6087
http://www.mdpi.com/2076-2607/8/12/1998?type=check_update&version=1
http://dx.doi.org/10.3390/microorganisms8121998
http://www.mdpi.com/journal/microorganisms


Microorganisms 2020, 8, 1998 2 of 20

non-persistent, whereby nasal colonization appears to be the most prominent localization [3]. S. aureus
as a community-acquired pathogen is already colonized on approximately 30% of the human population,
some without causing any symptoms [4]. During long-term colonization or infection, S. aureus can
change phenotypes to so-called small colony variants (SCVs), which adapt in their metabolic and
phenotypic characteristics, allowing them to evade the host’s immune system. SCVs can be localized
intracellularly and are characterized by a slow growth rate, non-pigmentation, less hemolytic activity,
and decreased antibiotic susceptibility [5–7] but often enhanced surface presentation of adhesion
molecules [8]. SCVs are often misdiagnosed [9]. Due to their slow growth, they often get overgrown by
other bacteria, and an initially effective antibiotic treatment results in the development of resistances
accompanied by chronic and relapsing infections [5,6,8,10,11]. The clinical relevance of colonizing
SCVs gets obvious in patients with chronic respiratory diseases, such as chronic obstructive pulmonary
disease (COPD) or cystic fibrosis (CF) [5]. Patients who are colonized with bacteria are more likely to
suffer from recurring infections [12], as the phenotype can revert to the pathogenic phenotype.

Besides, simultaneous occurrence of different pathogens can induce or even exacerbate
a pathological effect in the lung. Super-infections with influenza viruses (IV) and with the
community-acquired S. aureus are known to be harmful and lead to increased inflammatory lung
damage [13]. Due to their quick adaptation and genomic changes, both pathogens can evade the
host’s immune response, causing the tedious development of effective medications. Concerning
super-infections, most studies describe infections with a primary viral infection that paves the path for
a secondary bacterial infection [14–17]. However, there is evidence that primary bacterial colonization
also occurs prior to viral infections [18].

However, the influence of colonizing S. aureus SCVs on subsequent IV infection is largely
unexplored. Thus, in the present study, we aimed to investigate the effect of the bacterial strain S. aureus
3878SCV on cell intrinsic immune responses to a subsequent IV infection, in vitro. Here, we observed
that the response of anti-viral gene expression was barely changed. However, pro-inflammatory genes
were highly upregulated upon super-infection, resulting in an induction of necrotic cell death. Thus,
we were able to show that colonizing SCVs could enhance severity of subsequent viral infection.

2. Materials and Methods

2.1. Cell Lines, Virus Strains, and Bacteria Strain

All cell lines were cultivated at 37 ◦C and 5% CO2 under sterile conditions. Human lung epithelial
cells A549 (American Type Culture Collection (ATCC), Wesel, Germany) were cultivated in Dulbeccos’s
modified eagle medium (DMEM; Sigma-Aldrich, St. Louis, MO, USA) and Madin-Darby canine kidney
cells II (MDCKII) in minimum essential medium eagle (MEM; Sigma-Aldrich, St. Louis, MO, USA),
supplemented with 10% fetal bovine serum (FBS; Biochrom, Berlin, Germany).

The human IV strains A/Puerto Rico/8/34 (H1N1, PR8-M) and A/Panama/2007/99 (H3N2, Panama)
were taken from the virus stock of the Institute of Virology Muenster, 48149 Muenster, Germany,
subcultured and passaged on MDCKII cells.

The persisting bacterial strain S. aureus 3878SCV, wildtype phenotype strain S. aureus 3878WT,
and the human lung isolate of another SCV phenotype strain S. aureus 814SCV (provided by Karsten
Becker, Institute of Medical Microbiology, Muenster, Germany) were stored at −80 ◦C in a 30%
glycerol/brain-heart infusion (BHI; Merck; Darmstadt, Germany) medium. S. aureus 3878SCV and
S. aureus 3878WT were already characterized and described previously [10,19–21]. Before experiments,
bacteria were plated on blood agar plates to take single clones, which were inoculated in BHI medium
and incubated for 24 h at 37 ◦C and 5% CO2. For bacterial infection, bacterial suspension was washed
with phosphate buffered saline (PBS) (4000 rpm; 4 ◦C; 5 min) and adjusted to an optical density of
OD600nm = 1. Growth kinetics were performed to determine a colony forming unit (CFU) of 2 × 108

CFU/mL at OD600nm = 1 for each bacterial strain used.
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2.2. Super-Infection Protocol

Human lung epithelial cells were seeded in either 6-well plates (0.5 × 106) or 12-well plates
(0.2 × 106) in 2 mL or 1 mL culture medium 24 h before infection. For bacterial infection, the overnight
culture was set to OD600nm = 1 to determine the multiplicity of infection (MOI). Cells were washed
with PBS and infected with S. aureus 3878SCV in invasion media (DMEMINV: DMEM supplemented
with 1% human serum albumin, 25 nmol/L HEPES) for 24 h with a MOI of 0.01. For viral infection,
supernatant was aspirated, cells were washed with PBS and incubated with IV PR8-M (MOI = 0.1)
or IV Panama (MOI = 0.01) in infection PBS (PBSINF: PBS supplemented with 0.2% bovine serum
albumin (BSA), 1 mM MgCl2, 0.9 mM CaCl2, 100 U/mL penicillin, 0.1 mg/mL streptomycin) for 30 min.
Viral suspension was aspirated, and cells were washed with PBS and further incubated in infection
media (DMEMINF: DMEM supplemented with 0.2% bovine serum albumin (BSA), 1 mM MgCl2,
0.9 mM CaCl2) up to 8 hpvi, 24 hpvi, 32 hpvi, 44 hpvi, or 48 hpvi (hours post-viral infection).

2.3. Transfection Protocol

For transfection of the 3×NFκB reporter plasmid construct as described elsewhere [22] (0.1 µg/µL)
A549 cells were seeded in 12-well plates as described above. Cells were transfected with 0.1 µg/µL of
the indicated plasmid for 4 h with Lipofectamine® 2000 (Invitrogen, Carlsbad, CA, USA) corresponding
to the manufacturer’s protocol. Afterwards, cells were washed with PBS and further incubated in cell
culture media up to 24 h. Afterwards transfected cells were infected up to 8 hpvi. Performance of
luciferase assay was done as described elsewhere [23].

2.4. Intra- and Extracellular Bacterial Titer Measurements

Extracellular bacterial titers were determined by collecting the supernatant of infected cells
including the washing with PBS. Cells were lysed via hypotonic shock with 2 mL ddH2O according to
Tuchscherr et al. [7,8] (37 ◦C, 30 min) to determine intracellular bacterial titers, including adherent
bacteria at the cells surface. Bacterial suspensions were centrifuged (4000 rpm, 4 ◦C, 10 min), pellets
were resuspended in 1 mL PBS, and serial dilutions (1:10) were plated on BHI agar plates and incubated
for 32 h at 37 ◦C.

2.5. Standard Plaque Assay

Infectious virus particles in the supernatant were titrated to determine viral titers. A standard
plaque assay was performed as described earlier [24].

2.6. Quantitative Real-Time PCR (qRT-PCR)

RNA isolation was performed with RNeasy Kit (Qiagen, Hilden, Germany) according to
the manufacturer’s instructions. Reverse transcription was performed with 2 µg of total RNA
with Revert AID H Minus Reverse Transciptase (Thermo Fisher Scientific, Karlsruhe, Germany)
and oligo (dT) primers according to the manufacturer’s protocol. qRT-PCR was performed
using a Roche LightCycler 480 and Brilliant SYBRGreen Mastermix (Agilent, Santa Clara,
CA, USA) according to the manufacturer’s instructions. The following primers were used:
GAPDH: fwd 5′GCAAATTCCATGGCACCGT3′, rev 5′GCCCCACTTGATTTGGAGG3′; IL-6:
fwd 5′AACCTGAACCTTCCAAAGATGG3′, rev 5′TCTGGCTTGTTCCTCACTAGT3′; IL-8: fwd
5′CTTGTTCCACTGTGCCTTGGTT3′, rev 5′GCTTCCACATGTCCTCACAACAT3′; TNFα: fwd
5′-ATGAGCACTGAAAGCATGATC-3′, rev 5′-GAGGGCTGATTAGAGAGAGGT-3′; IL-1β: fwd
5′-CAGCTACGAATCTCCGACCAC-3′, rev 5′-GGCAGGGAACCAGCATCTTC-3′; IFNγ: fwd
5′AAACGAGATGACTTCGAAAAGCTG3′, rev 5′TGTTTAGCTGCTGGCGACAG3′; RIG-I: fwd
5′CCTACCTACATCCTGAGCTACAT3′, rev 5′TCTAGGGCATCCAAAAAGCCA3′; IFNβ: fwd
5′TCTGGCACAACAGGTAGTAGGC3′, rev 5′GAGAAGCACAACAGGAGAGCAA3′; MxA: fwd
5′GTTTCCGAAGTGGACATCGCA3′, rev 5′GAAGGGCAACTCCTGACAGT3′; OAS1: fwd
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5′GATCTCAGAAATACCCCAGCCA3′, rev 5′AGCTACCTCGGAAGCACCTT3′. Relative changes in
expression levels (n-fold) were calculated according to the 2−∆∆Ct method [25].

Bacterial RNA was isolated with the RNeasy Protect Bacteria Mini Kit (Qiagen, Hilden, Germany),
and cDNA synthesis was performed using QuantiTect Reverse Transcription Kit (Qiagen,
Hilden, Germany) according to the manufacturer’s instructions. qRT-PCR was performed using
a Roche LightCycler 480 (Basel, Switzerland) and Brilliant SYBRGreen Mastermix (Agilent, Santa Clara,
CA, USA) according to the manufacturer’s instructions. The primers to determine the gene expression
of gyrB, aroE, arg, hla, sarA, and sigB were already described elsewhere [7].

2.7. RT2 Profiler Array Analysis

For pathway focused gene expression analysis, we used RT2 Profiler PCR Arrays (Qiagen,
Hilden, Germany). RNA isolation, cDNA synthesis and procedure were performed according
to the manufacturer’s protocol and instructions. Analysis of data was accomplished by using the
GeneGlobe Data Analysis Center recommended by Qiagen [26].

2.8. FACS Analysis

Determination of secreted proteins in the supernatant was performed with BioLegend’s
LEGENDplex™ (San Diego, CA, USA) according to the manufacturer’s protocol. The human
anti-viral and pro-inflammatory chemokine panels were used. Results were analyzed by BioLegend’s
cloud-based LEGENDplex™ Data Analysis Software. To analyze apoptotic or necrotic cells, infection
was performed as described above until 44 hpvi. Cells were treated with tumor necrosis factor related
apoptosis inducing ligand (TRAIL; Enzo Life Sciences, Farmingdale, NY, USA) (150 ng/mL) 4.5 h
before harvested and used as a positive control for apoptosis. The supernatant was collected for
this purpose, and cells were detached from the wells with trypsin-EDTA and recombined with the
supernatant. Cell suspension was centrifuged at 1000× g at room temperature (RT) for 5 min, and cells
were washed with PBS supplemented with 5% FCS. Afterwards, cells were stained with annexin V
FITC (20 µL) (ImmunoTool, Friesoythe, Germany) and 1:2000 eBioscience™ Fixable Viability Dye
eFluor™ 660 (Thermo Fisher Scientific, Karlsruhe, Germany) in 100 µL 1× annexin V staining buffer
(10× annexin V staining buffer: 0.1 M HEPES, 1.4 M NaCl, and 25 mM CaCl2 (pH 7.5)) for 30 min at
RT in the dark. Further 150 µL of staining buffer were added and the supernatant was removed after
centrifugation. Cells were fixed with 500 µL PBS containing 4% formaldehyde and 1.25 mM CaCl2
for 20 min at RT in the dark. Cells were finally resuspended in 150 µL staining buffer and stored at
4 ◦C until measurement with the FACSCalibur flow cytometer (BD Biosciences, Heidelberg, Germany),
followed by the analysis with FlowJo software (v.10; Flow Jo, Ashland, OR, USA). Three gates were set
as the following: annexin V positive cells (early apoptotic cells) and live/dead marker positive cells
(cells with a membrane rupture tending to necrosis).

2.9. Recording of Cytopathic Effect of Infected Cells

To record the CPE at different time points, cells were visualized with Canon (EOS 500D) by light
microscopy (Axiovert 40C, ZEISS, Jena, Germany) with a 10×magnification.

2.10. SDS-PAGE and Western Blot Analysis

Protein expressions were determined by separating proteins in a polyacrylamide gel and
subsequent transfer on nitrocellulose membranes by western blot analysis as described earlier [27].
The following antibodies were used: pMLKL [(S353) #91689 Cell Signaling, Frankfurt, Germany],
PARP (#611039 BD, Heidelberg, Germany) and ERK1/2 (#4696 Cell Signaling, Frankfurt, Germany).
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2.11. Lactate Dehydrogenase (LDH) Assay

The lactate dehydrogenase assay (CellBiolabs, San Diego, CA, USA) was used to measure the
cell cytotoxicity and was used according to the manufacturer’s instructions. Cells were infected as
described previously, and 90 µL of the supernatant was mixed with 10 µL of the LDH cytotoxicity
reagent in a 96-well plate. This plate was incubated at 37 ◦C and 5% CO2 for 30 min, and the OD450nm

was measured on a Spectromax M2 Instrument (Molecular Devices, Munich, Germany). Triton X-100
used according to the manufacturer’s instructions served as a positive control.

2.12. Quantification and Statistical Analysis

All data represent the means + standard deviation (SD) of three independent experiments.
Statistical significances were determined by unpaired t-test (Figure S4A), one-way ANOVA followed
by Tukey’s, (Figures 4D,E, 5, 6A,B,D,E, Figure S1B,D,E, S2D,E, S3 and S4C–E) or two-way ANOVA
followed by Sidak’s (Figure 2, Figures S1C and S4B) or followed by Tukey’s (Figure 4A–C,F–I and
Figure S2A–C,F–I) multiple comparison test using GraphPad Prism software (v.7.03, GraphPad Prism,
Inc., La Jolla, CA, USA).

3. Results

3.1. Primary S. aureus 3878SCV Infection Provokes a Cytopathic Effect in Presence of IV

Cell death mechanisms induced by S. aureus or IV alone are very well investigated and described [28–33].
With respect to IV and S. aureus super-infection, we recently were able to show a S. aureus-mediated
switch from IV-induced apoptosis to necrosis [27]. It is known that IV infection paves the path for
secondary bacterial infection, resulting in enhanced pathogen-load [15,34], cytokine expression [35,36],
and cell death [27]. Since S. aureus often persist in humans without any harm, we aimed to investigate
the effects of colonizing S. aureus SCVs on secondary IV super-infection.

In a first set of experiments, we focused on the cell morphology of A549 human lung epithelial
cells in absence and presence of S. aureus 3878SCV and IV. For this reason, A549 human lung epithelial
cells were infected with S. aureus 3878SCV, which is a well described SCV patient isolate [10,37],
for 24 h followed by infection with IV strain A/Puerto Rico/8/34 (PR8-M; H1N1) for the indicated
points in time. The morphology of single- and super-infected cells was analyzed by light microscopy
in comparison to uninfected control (mock) (Figure 1). While the cell monolayer is still intact in
un-, single-, and super-infected cells up to 32 hpvi (hours post-viral infection), first changes in the
cell morphology were visible 48 hpvi in single virus-infected and super-infected cells. Pictures of
virus-infected cells showed a less confluent cell monolayer compared to uninfected cells, and in
super-infected samples a clear cytopathic effect was observed, indicated by cell monolayer disruption
and floating cells. To be able to ascribe these findings to the SCV phenotype, we additionally specified
the pathological difference between S. aureus wildtype phenotype and SCV phenotype (S. aureus
3878WT and S. aureus 3878SCV) by infecting A549 human lung epithelial cells. Cell morphology was
monitored by light-microscopy (Supplementary Figure S1A) and cell viability was quantified by
lactate dehydrogenase assay (LDH) assay (Supplementary Figure S1B). Both assays indicate a massive
destruction of the cell monolayer 8 h post bacterial infection (hpbi) with S. aureus 3878WT in comparison
to S. aureus 3878SCV. Further, the determination of the expression of distinct bacterial genes, which are
involved in the virulence of the pathogens, verified the reduced virulence of S. aureus 3878SCV in
comparison to the S. aureus 3878WT (Supplementary Figure S1C). Based on these results, S. aureus
3878WT was not used in the following experiments. The analysis of cell viability at 32 hpvi and 48 hpvi
confirmed the cell disturbance in presence of S. aureus 3878SCV and IV infection (Supplementary
Figure S1D,E).
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of viruses or bacteria, respectively (Figure 2). 
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A/Panama/2007/99 (Panama; H3N2)].  

Figure 1. S. aureus 3878SCV colonization and subsequent influenza virus infection provokes a cytopathic
effect. A549 human lung epithelial cells were infected with S. aureus 3878SCV (multiplicity of infection
(MOI) = 0.01) for 24 h at 37 ◦C and 5% CO2. Afterwards, cells were infected with influenza viruses (IV)
Puerto Rico/8 (PR8)-M (MOI = 0.1) until the indicated points in time (hours post-viral infection, hpvi).
Cells were visualized by light microscopy with a 10×magnification. Shown are representative images
of three independent experiments (n = 3).

These results point to an altered cell culture environment and/or cellular signaling upon
super-infection with S. aureus 3878SCV and IV, which could be triggered by increased pathogen
load or cell intrinsic signaling changes in presence of both pathogens.

3.2. Primary Infection with S. aureus 3878SCV Followed by IV Infection Had No Impact on Bacterial or
Viral Titers

First, we analyzed whether the observed cytotoxicity of co-infected A549 human lung epithelial
cells with S. aureus 3878SCV and IV was due to increased pathogen load. For this, we infected A549
cells with S. aureus 3878SCV for 24 h and super-infected with two different IV strains for the indicated
points in time to determine the amount of plaque forming units (PFU) or colony forming units (CFU)
of viruses or bacteria, respectively (Figure 2).

In general, titers of IV and SCVs increased with time, but neither viral (Figure 2A,B) nor bacterial
titers (Figure 2C–F) were significantly changed upon super-infection compared to single-infected
cells, a phenomenon independent of the virus strain used [PR8-M (H1N1), A/Panama/2007/99
(Panama; H3N2)].

Thus, these data indicate that the disruption of the cell monolayer upon super-infection is not
induced by increased amounts of pathogens but by a different mechanism that is altered by the presence
of both pathogens.
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different signaling cascades by use of a RT2 profiler Array (Qiagen, Hilden, Germany) in a single 
experiment to gain a first insight in the complexity of cellular signaling (Figure 3). This enables a 
quick analysis of expression levels of different genes that are organized by their function to be able 
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Figure 2. Pathogen load is not affected during S. aureus 3878SCV colonization and subsequent influenza
virus infection. A549 human lung epithelial cells were infected with S. aureus 3878SCV (MOI = 0.01) for
24 h and/or super-infected with (A,C,E) IV PR8-M (H1N1; MOI = 0.1) or (B,D,F) IV Panama (H3N2;
MOI = 0.01) for 8 hpvi, 24 hpvi, or 32 hpvi. At the indicated times post-viral infection, supernatants
were collected to determine viral and extracellular bacterial titers. Afterwards, cells were lysed via
hypotonic shock to analyze intracellular bacterial titers. Means + SD of three independent experiments
with technical duplicates are shown (n = 3). Statistical significance (compared to single-IV infection
(A,B) or single-bacteria infection (C–F) was analyzed by a two-way ANOVA, followed by Sidak’s
multiple comparison test; (hpvi = hours post-viral infection; ns = not significant).

3.3. Pro-Inflammatory Gene Expression Is Highly Upregulated after Super-Infection of S. aureus 3878SCV
and IV

Given the observation that super-infection of S. aureus 3878SCV and IV PR8-M induced a cytopathic
effect (Figure 1), which was not caused by increased pathogen load (Figure 2), we aimed to elucidate
if changes of cell intrinsic signaling and inflammatory gene expression might be responsible for this
phenomenon. We analyzed the gene expression of 84 different genes, involved in different signaling
cascades by use of a RT2 profiler Array (Qiagen, Hilden, Germany) in a single experiment to gain a first
insight in the complexity of cellular signaling (Figure 3). This enables a quick analysis of expression
levels of different genes that are organized by their function to be able to limit the amount of genes,
altering the cell intrinsic signaling. Here, we used the anti-viral immune response panel, including
pattern recognition receptors (PRRs), cytokines, and chemokines involved in pathogen recognition and
immune responses. The bioinformatic analysis is based on conventional ct-values and was performed
with the recommended GeneGlobe online software [26]. A clustergram was generated to visually
illustrate all up- and downregulated genes that were analyzed (Figure 3A). To further interpret the
results of the RT2 profiler Array, we did an in silico clustering of the upregulated genes of the array that
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were highly upregulated (difference of an n-fold of 2) in S. aureus 3878SCV and PR8-M super-infected
cells compared to single-infected cells (APOBEC3G, CASP1, CASP10, CCL3, CCL5, CD40, CD80, CTSS,
CXCL10, CXCL11, CYLD, IL1B, IL6, CXCL8, MEFV, TLR3, TNF, B2M) (see Supplementary Table S1),
with respect to their linkage to specific signaling pathways (Figure 3B) by using the Kyoto Encyclopedia
of Genes and Genomes mapper (KEGG mapper). KEGG mapper is a database resource of collected
information about pathways and the involved genes representing a pool of molecular interactions,
reactions, and their relation to each other [38–40]. Down-regulated genes were excluded, as the gene
expressions were negligible (Supplementary Table S1). Besides gene clusters connected to expected
PRR pathways including TLR-(11 genes involved, out of the 18 highly upregulated genes comparing
co- and single-infected cells identified (11/18), NLR- (7/18), TNFR- (6/18), RLR- (5/18), and NFκB- (5/18)
signaling pathways (Figure 3B), we identified gene clusters belonging to two cell death mechanisms,
necroptosis (5/18) and apoptosis (3/18). Furthermore, we identified genes involved in the IL-17 (5/18)
and c-type lectin (5/18) signaling pathways. To further classify the activated genes leading to the
observed cytopathic effect on human lung epithelial cells, we searched for a specific induction pattern
in which super-infected cells led to upregulated genes. We, therefore, compared all upregulated genes
of single-infected to super-infected samples in a Venn diagram (Figure 3C,D). We identified 11 genes
that were induced in all three infection-scenarios compared to uninfected cells and 9 genes that were
upregulated in super-infected cells only. We also compared the upregulated genes for super-infection
with IV Panama. Here, all infection scenarios shared the induction of 12 genes, where 7 genes were
exclusively induced by the super-infection of S. aureus 3878SCV and IV Panama. The upregulated
genes of the Venn diagram are listed in Table S2A,B. With respect to the mRNA expression levels
shown in Supplementary Table S1 and the cytopathic effect observed in super-infected cells (Figure 1),
an induction of pro-inflammatory immune response can be concluded, which was further visualized
by graphs, exhibiting the gene expression of the highly upregulated genes (Figure 3E).

To confirm an increased pro-inflammatory status of the human lung epithelial cells upon
super-infection, we analyzed the mRNA expression of different representative pro-inflammatory
cytokines and chemokines (IL-6, IL-8, TNFα, IL-1β, and IFN-γ) in detail (Figure 4A–E). Furthermore,
we analyzed the mRNA expression of molecules that are involved in the induction of the type-I-IFN
signaling (RIG-I, IFN-β, MxA, and OAS1) (Figure 4F–I), since it was described that IV-induced
type-I-IFN signaling had an impact on bacterial infections [41].

In S. aureus 3878SCV colonized cells subsequently infected with IV PR8-M the mRNA expression
of IL-6, IL-8, TNFα, and IL-1β 32 hpvi was induced if compared to uninfected cells or single-infected
cells (Figure 4A–D) and IFN-γ showed the same tendency (Figure 4E). Single-infection of S. aureus
3878SCV or IV PR8-M resulted in no significant induction of the mRNA expression 8 hpvi, 24 hpvi,
or 32 hpvi, except for IL-8, which was significantly induced 8 hpvi in bacteria single-infected cells
(Figure 4B). Nevertheless, this induction was abolished over time. Genes, encoding key proteins
involved in the recognition, and induction of type-I-IFN signaling were upregulated in IV PR8-M
infected cells 8 hpvi (IFN-β by tendency) (Figure 4G) or 24 hpvi (RIG-I, MxA and OAS1) (Figure 4F,H,I).
Previous colonization with S. aureus 3878SCV had no impact on IV-induced mRNA expression of factors
linked to the type-I-IFN response, except for RIG-I at 32 hpvi, which was significantly decreased in
super-infected cells. However, the enhanced RIG-I mRNA synthesis did not result in alterations of
viral titers. Similar results were obtained upon super-infection with S. aureus 3878SCV and IV Panama,
indicating a virus-independent effect (Supplementary Figure S2A–I).
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Figure 3. Gene expression analysis by RT2 Profiler Array. (A–E) A549 lung epithelial cells were infected
with S. aureus 3878SCV (MOI = 0.01) for 24 h and/or super-infected with IV PR8-M (H1N1; MOI = 0.1) or
IV Panama (H3N2; MOI = 0.01) for 32 h. Subsequently, RNA was isolated and further used to perform
the RT2 Profiler Array (Qiagen, Hilden, Germany). Ct-values were analyzed with the recommended
QIAGEN web portal [26]. (A) A clustergram is shown, visualizing the up- and downregulated genes of
the customized 84-gene array. (B) Ten potential signaling pathways are listed, which can be analyzed
by the RT2 Profiler Array with the correlating count of genes involved. The mapping was done by using
the Kyoto Encyclopedia of Genes and Genomes (KEGG) mapper [38–40]. (C,D) A Venn diagram of the
upregulated genes in a super-infection scenario with S. aureus 3878SCV and IV PR8-M (C) or IV Panama
(D) is shown. The analysis was performed by use of http://bioinformatics.psb.ugent.be/webtools/Venn/.
(E) Gene expression of highly induced genes indicating an increased pro-inflammatory cytokine
response. Values are shown as n-fold over mock (32 hpvi); (n = 1); (hpvi = hours post-viral infection).

http://bioinformatics.psb.ugent.be/webtools/Venn/
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Figure 4. Pro-inflammatory cytokines and chemokines are enhanced after S. aureus 3878SCV colonization
and subsequent IV PR8-M infection. (A–I) A549 human lung epithelial cells were infected with S. aureus
3878SCV (MOI = 0.01) for 24 h and/or super-infected with IV PR8-M (H1N1; MOI = 0.1) for 8 hpvi,
24 hpvi and/or 32 hpvi. Afterwards, RNA was isolated and mRNA levels of IL-6, IL-8, TNFα, IL-1β,
IFN-γ, RIG-I, IFN-β, MxA, and OAS1 were determined by qRT-PCR. All values were correlated to the
representative mock-control 8 hpvi (IL-6, IL-8, TNFα, RIG-I, IFNβ, MxA and OAS1) or 32 hpvi (IL-1β
and IFN-γ). Means + SD of three independent experiments including technical duplicates are shown.
Statistical significance was analyzed by a two-way (A–C), (F–I) or one-way (D,E) ANOVA, followed by
Tukey’s multiple comparison test (* p < 0.05, ** p < 0.01, *** p < 0.001); (hpvi = hours post-viral infection;
ns = not significant).

To analyze whether the induction of mRNA synthesis of pro-inflammatory genes could also be
detected on protein level and to get further insights into the cell intrinsic innate immune status of
super-infected A549 cells, the protein expression of exemplary cytokines and chemokines was monitored
by FACS analysis (Figure 5A–H). Remarkably, FACS analysis verified the increased pro-inflammatory
response of A549 human lung epithelial cells for the secretion of representative factors. In super-infected
cells, protein levels of IL-6, RANTES (CCL5), IP-10, and I-TAC were significantly induced compared
to uninfected or single-infected cells with either S. aureus 3878SCV or IV PR8-M (Figure 5A,C,E,F).
TNFα was also significantly upregulated upon super-infection compared to uninfected and bacteria
single-infected cells but not to IV PR8-M single-infected cells. Furthermore, IV PR8-M infection
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provoked TNFα protein expression 32 hpvi (Figure 5B). Representative IFN protein concentrations of
IFN-γ and IFNβ (Figure 5G,H) showed no alteration in the amount of secreted proteins.
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Figure 5. Secretion of the pro-inflammatory cytokines and chemokines are enhanced after S. aureus
3878SCV colonization and subsequent IV PR8-M infection regulated by TLR2- and RIG-I-mediated
NFκB promoter activation. (A–H) A549 human lung epithelial cells were infected with S. aureus
3878SCV (MOI = 0.01) for 24 h and/or super-infected with IV PR8-M (H1N1; MOI = 0.1) for 32 h.
Afterwards, supernatants were collected to measure the concentration of secreted proteins via FACS
analysis. Means + SD of three independent experiments, including technical duplicates, are shown.
(I) A549 human lung epithelial cells were transfected with 3× NFκB luciferase promoter reporter
construct for 24 h prior to super-infection as described before. Afterwards cells were harvested and
analyzed for luciferase activity. (J–L) A549 human lung epithelial cells were stimulated with LTA
(100 ng/mL) for 24 h at 37 ◦C and 5% CO2. Afterwards, cells were stimulated with cellular RNA
(cRNA) or viral RNA (vRNA) (100 ng/mL) in the presence or absence of LTA for 4 h at 37 ◦C and 5%
CO2. Subsequently, RNA was isolated, and mRNA levels of IL-6, IL-8, and TNFα, were measured by
qRT-PCR. All values are correlated to the respective mock-control (n = 3). Statistical significance was
analyzed by one-way ANOVA followed by Tukey’s multiple comparison test (* p < 0.05, ** p < 0.01,
*** p < 0.001; # = *** p < 0.001 compared to LTA + vRNA, except for vRNA); (hpvi = hours post-viral
infection; ns = not significant).
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These results emphasize the enhanced cell intrinsic pro-inflammatory status of the super-infected
cells. We could confirm these results by the use of IV strain Panama, verifying a viral strain independent
effect (Supplementary Figure S3A–H). Based on these results and due to the fact that the induction of
pro-inflammatory cytokines and chemokines is mainly driven by NFκB activation, we hypothesized
an induction of the pro-inflammatory response via specific PRRs, resulting in the activation of the
NFκB-signaling cascade [42]. To confirm the induction of NFκB-signaling we transfected A549 cells
with an artificial NFκB promoter-dependent luciferase reporter plasmid prior to super-infection with
S. aureus 3878SCV and subsequent IV PR8-M infection. An increase of NFκB activation was observed
in super-infected cells compared to uninfected and IV PR8-M-infected cells, while S. aureus 3878SCV

infection only resulted in an increase of NFκB activation by trend (Figure 5I). This induction pattern
was also confirmed in cells super-infected with IV Panama (Supplementary Figure S3I).

The induction of pro-inflammatory responses via NFκB in epithelial cells after pathogen exposure
can be triggered by both pathogens through different factors and their corresponding receptors [43–45],
which were further analyzed. To exclude specific pathogen-mediated interference with cellular factors
due to differences in protein expression, such as virulence factors or surface proteins, viral RNA
(vRNA) and bacterial lipoteichonic acid (LTA, Invivogen, San Diego, CA, USA) were used as pathogen
specific molecular stimuli. In human lung epithelial cells vRNA is mainly recognized by RIG-I, leading
to a strong induction of the type-I-IFN-signaling cascade [46], while LTA is mainly recognized by
TLR-2 [47]. We investigated mRNA expression of IL-6, IL-8, and TNFα after stimulating A549 cells
with vRNA and LTA (Figure 5J–L). The results matched our findings obtained from super-infected
cells, since significant enhancement of mRNA expression of IL-6, IL-8, and TNFα was observed in
presence of both stimuli. Artificial effects caused by RNA transfection could be excluded due to
equal cytokine mRNA expression induced by cellular RNA (cRNA) and cRNA + LTA stimulated cells.
Stimulation with vRNA tended to induce the expression of IL-6, IL-8, and TNFα, which, however,
was not significant compared to unstimulated cells.

Overall, these data suggest an induction of pro-inflammatory gene expression responses through
the detection of bacterial and viral components via the pathogen-associated molecular pattern receptors
(PAMP) RIG-I and TLR-2, followed by the induction of NFκB. To exclude bacterial strain-specific effects,
another SCV strain (S. aureus 814SCV) was used to determine pathogen loads and pro-inflammatory
gene expression in IV super-infection (Supplementary Figure S4). While neither viral titers nor intra-
and extracellular bacterial load were increased in presence of both pathogens, pro-inflammatory
cytokine expression was enhanced, verifying the former observations.

3.4. S. aureus 3878SCV Provoke Enhanced Necrotic Cell Death in Presence of IV Infection

The observed disruption of the cell monolayer (Figure 1) could be induced by a variety of
mechanisms. Besides the involvement of pro-inflammatory cytokines in the innate immune response,
these factors are also involved in the induction of cell death mechanisms, like apoptosis and necrosis.
As the results shown in Figure 3 indicate, an upregulation of pro-inflammatory cytokines, the cell death
mechanisms might be triggered by TLRs or cell death receptors through PAMPs or cytokines, like TNFα,
among others [48–50]. Therefore, we further investigated the induction of apoptosis and necrosis,
correlating to the cell death mechanisms identified in the RT2 Profiler Array analysis (Figure 3B).

As the results of the LDH assay led to the hypothesis of an induced necrotic cell death
mechanism, we performed FACS analysis to determine the number of early apoptotic cells by
detecting phosphatidylserine which switches to the cells’ surface in early apoptotic cells and can be
labeled with annexin V. Cells with a membrane rupture tending to necrosis were detected by using
a viability marker comparable to 7-aminoactinomycin D and propidium iodide staining. Therefore,
we performed the infection up to 44 hpvi to be able to still distinguish between early apoptosis and
necrotic-like cells and stained the cells accordingly. The amount of necrotic cells significantly increased
comparing un- or single-infected with super-infected cells, probably indicating necrosis (Figure 6A).
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Furthermore, the amount of apoptotic cells was significantly higher in IV-infected cells compared to
un-, bacteria-, or super-infected cells 44 hpvi (Figure 6B).
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Figure 6. S. aureus 3878SCV colonization and subsequent IV infection inhibits IV-induced apoptosis
but results in the induction of necrosis. (A–E) A549 human lung epithelial cells were infected with
S. aureus 3878SCV (MOI = 0.01) for 24 h and/or super-infected with IV PR8-M (H1N1; MOI = 0.1) for
44 hpvi (A,B) or 32 hpvi (C–E). At the indicated times post-viral infection, total amount of cells was
collected to perform FACS analysis to determine the relative amount of viability marker positive cells
(A) or annexin V positive cells (B). Furthermore, whole cell lysates were subjected to western blot
analysis (C). (D,E) Densitometrical analysis of three independent western blot experiments of cleaved
pMLKL (D) and PARP (E) 32 hpvi are shown. Equal protein amounts were calculated by correlating the
signal intensities to their corresponding ERK1/2 signals. Means + SD of three independent experiments
are shown (n = 3). Statistical significance was analyzed by a one-way ANOVA, followed by Tukey’s
multiple comparison test (A,B,D,E); (* p < 0.05, ** p < 0.01, *** p < 0.001); (hpvi = hours post-viral
infection; ns = not significant).
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As cell death mechanisms like necrosis can be further defined in specific mechanisms and to
compare our findings to previously described inductions of cell death mechanisms upon infection with
SCV [51] or in co-infection scenarios [27], we performed western blot analysis to be able to differentiate
between necroptosis and apoptosis.

Necroptosis is an inflammatory programmed form of necrosis, which was already described
in a recent publication reporting its induction by S. aureus SCV in single-infected human primary
keratinocytes [51]. Necroptosis is induced via a receptor-interacting protein (RIP) kinase-mediated
activation, resulting in the phosphorylation and oligomerization of mixed lineage kinase domain
like pseudokinase (MLKL) and pore formation, leading to the release of inflammatory cytokines.
To distinguish necroptosis from apoptosis induction, we monitored the induction of phosphorylated
MLKL and PARP cleavage, which are indications for both cell death mechanisms [52]. We infected
A549 human lung epithelial cells with S. aureus 3878SCV for 24 h, followed by IV infection with PR8-M
for 32 h (Figure 6C–E).

In super-infected cells, induction of pMLKL 32 hpvi was observed in comparison to uninfected,
bacteria-, or virus single-infected cells, respectively. PARP cleavage was more likely to be induced in
IV PR8-M-infected cells, and was slightly decreased in super-infected samples 32 hpvi (Figure 6C).
However, the densitometrical analysis of three independent experiments could only confirm a trend
of activated MLKL due to induced phosphorylation in super-infected cells (Figure 6D), whereas an
induction of apoptosis upon IV infection could be verified (Figure 6E). Additionally, pyroptosis as
another form of regulated necrotic cell death mechanism, which is activated via the induction of the
inflammasome resulting in the cleavage of gasdermin D, could not be detected by cleaved gasdermin D
(Supplementary Figure S5). The original blots are shown in the Supplementary Figure S6.

Thus, our results indicate a necrotic cell death induction, most likely induced by increased
pro-inflammatory gene expression response after super-infection with S. aureus 3878SCV, followed by
secondary IV infection with PR8-M and Panama.

4. Discussion

The first occurrence of persisting bacteria or SCVs was already described about 100 years ago [53].
Even though they are known for such a long time, not many studies were undertaken to elucidate their
impact on cellular responses or their impact on additional infections with other pathogens. Our aim
was to investigate the interaction of S. aureus SCVs with a subsequent IV infection in respect to epithelial
cell responses, which built the first cellular barrier for pathogens in the lung. Here, we demonstrate
that invasive S. aureus SCVs do have an impact on the cell intrinsic response in human lung epithelial
cells, as indicated by highly secreted pro-inflammatory cytokines and chemokines (Figure 5 and
Supplementary Figure S3) and, furthermore, an induction of necrotic cell death of super-infected
compared to single-infected cells (Figure 6). This was somehow surprising, since the majority of
SCVs are not described to significantly induce cell intrinsic responses, due to decreased secretion of
virulence factors [54], a feature that would match their dormant status. In particular, not much is
known about the impact of SCVs on lung tissue responses and nothing so far about their impact on
a secondary IV infection. In this study, we were able to show a cytopathic effect accompanied by
increased pro-inflammatory cytokine and chemokine release and necrotic cell death through colonizing
S. aureus 3878SCV and different IV strains, such as PR8-M and Panama.

Typically, super-infections with pathogenic S. aureus strains and IV led to increased pathogen
loads accompanied with the induction of pro-inflammatory responses [13,35]. However, this could
not be confirmed within the present study in the SCV and IV super-infection scenario. It was
shown previously that super-infection with pathogenic S. aureus leads to the enhancement of viral
titers due to the inhibition of STAT1 and STAT2 dimerization, resulting in decreased production of
anti-viral factors [15]. This inhibitory effect could be excluded since mRNA expression of RIG-I,
IFNβ, MxA, or OAS1 in super-infected cells compared to IV-infected cells were not altered (Figure 4
and Supplementary Figure S2). Based on these results, we could exclude an effect of the anti-viral
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response and the involvement of an altered pathogen load. Nevertheless, we identified a clear
induction of pro-inflammatory cytokines and chemokines in human lung epithelial cells. Besides the
attraction of immune cells and the induction of an anti-pathogen status of the cell, pro-inflammatory
cytokines induce a stress response leading to the induction of cell death mechanisms via TLRs or death
receptors [55–57].

To proof the impact of two main cell death mechanisms we performed FACS analysis to monitor
early apoptotic and necrotic-like cells. Correlating to the LDH assays, we could confirm an increase
in necrosis during super-infection (Figure 6A). Besides, the amount of apoptotic cells was decreased
in super- compared to IV-infected cells. Further specifications of cell-death mechanisms by western
blot analysis revealed the tendency for an increase of phosphorylated MLKL in super-infected cells,
giving the hit of probably induced necroptosis. Concomitantly, IV-induced PARP cleavage was reduced
in super-infected cells compared to IV PR8-M-infected cells by trend.

Interestingly, there are two different mechanisms described, how pathogenic S. aureus and S. aureus
SCVs are able to induce necroptosis [27,51]. During the critical phase of S. aureus infection the
virulence factor agr is induced [8], resulting in possible secretion of different toxins, which induces
necroptosis [27,33]. In SCV-infected keratinocytes, necroptosis was driven by the activation of
glycolysis [51]. S. aureus adopts its whole metabolism to persist within the host. The metabolic changes
of S. aureus were already described elsewhere [58]. As the utilization of the tricarboxylic acid cycle for
the host cell and the persisting bacteria is decreased, the glycolysis is stronger induced to generate
adenosine triphosphate (ATP). As we observed a disruption of cell monolayer and a possible induction of
phosphorylated MLKL upon super-infection, we linked our findings more to necroptosis (Figures 1 and 6).
Even though S. aureus-induced necroptosis might be independent of TLR stimulation [59], our data
indicate a synergistic effect of S. aureus 3878SCV and IV inducing cell death, which can be related to
TLR2- and RIG-I-mediated pro-inflammatory response induction. In addition, our data show that
the superinfection could be imitated with the stimuli LTA and vRNA. This underlines that the initial
induction of the pro-inflammatory response and the subsequent cell death must be different from that
of pathogenic bacterial strains that induce cell death much more quickly. In case of SCV, this indicates
a lower virulence probably due to the decreased secretion of virulence factors. Nonetheless, dormant
SCVs can work synergistically and affect the virus-induced immune response. As we performed pure
ligand experiments, inhibitory effects of molecules of this pro-inflammatory cell intrinsic response is
supposed to trigger cellular stress in the form of reactive oxygen species [60].

So far, the impact of S. aureus SCVs with subsequent IV infection had not been investigated.
Interestingly, we could give first insights in this super-infection scenario and unravel one extraordinary
role of a SCV patients’ isolate S. aureus 3878SCV with subsequent IV infection. We observed an induction
of pro-inflammatory cytokines and chemokines, which underlines the severity of the coincident
occurrence of S. aureus SCVs and IV. These data point to a cross-interaction of necrotic cell death and
pro-inflammatory cell intrinsic response, as the pathogens alone can induce an inflammatory response
through PAMPs and secreted cell damage-associated molecular patterns (DAMPs). Upon necrotic
cell death induction, further pro-inflammatory responses are induced via DAMP receptors [50],
leading to an enhancement of pro-inflammatory cytokines and chemokines seen on transcriptional and
translational level.

In summary, we were able to show that persistent S. aureus SCV and subsequent IV infection
affects cell-internal immune response by inducing the release of pro-inflammatory cytokines and
chemokines, resulting in cell death induction.

Supplementary Materials: The following are available online at http://www.mdpi.com/2076-2607/8/12/1998/s1,
Table S1: List of ct-values analyzed by GeneGlobe online software of the RT2 Profiler Array plate. Table S2: (A,B)
Listed gene names of the venn diagrams shown in Figure 3. Figure S1: Wildtype phenotype S. aureus 3878 is more
virulent compared to S. aureus 3878SCV, but S. aureus 3878SCV induces LDH release upon super-infection with
PR8-M. Figure S2: Pro-inflammatory cytokines and chemokines are enhanced after S. aureus 3878SCV colonization
and subsequent IV Panama infection. Figure S3: Secretion of the pro-inflammatory cytokines and chemokines
are enhanced after S. aureus 3878SCV colonization and subsequent IV Panama infection regulated by TLR2- and
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RIG-I-mediated NFκB promoter activation. Figure S4: Pathogen load and pro-inflammatory cytokines and
chemokines are enhanced after super-infection with the SCV strain S. aureus 814SCV. Figure S5: S. aureus 3878SCV
colonization and subsequent influenza virus infection has no effect on the induction of pyroptosis. Figure S6:
Original western blots of Figure 6C and S5A.

Author Contributions: Conceptualization, J.J.W., E.R.H., S.L. and C.E.; methodology, J.J.W.; software, J.J.W.;
validation, J.J.W., Y.B. and E.R.H.; formal analysis, J.J.W., E.R.H., Y.B., S.L., S.N. and C.E.; investigation, J.J.W.;
resources, S.L. and C.E.; data curation, S.L. and C.E.; writing—original draft preparation, J.J.W. and C.E.;
writing—review and editing, J.J.W., E.R.H., S.N., Y.B., B.L., S.L. and C.E.; visualization, J.J.W.; supervision, C.E.;
project administration, C.E.; funding acquisition, J.J.W., S.L. and C.E. All authors have read and agreed to the
published version of the manuscript.

Funding: This work was supported by the Deutsche Forschungsgemeinschaft (SFB 1009, project B01 and B02,
CRU342 P06 and under Germany´s Excellence Strategy—EXC 2051—Project-ID 390713860). We acknowledge
support by the German Research Foundation and the Open Access Publication Fund of the Thueringer Universitaets-
und Landesbibliothek Jena Projekt-Nr. 433052568.

Acknowledgments: We would like to thank Karsten Becker for providing us with the bacterial isolate.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

DAMP damage-associated molecular pattern
hpbi hours post bacterial infection
hpvi hours post-viral infection
I-TAC interferon-inducible T-cell alpha chemoattractant
IFN interferon
IL interleukin
IP-10 interferon gamma-induced protein 10
IV influenza virus
LDH Lactate dehydrogenase
MAPK mitogen-activated protein kinase
MxA interferon-induced GTP-binding protein MxA
NFκB nuclear factor kappa-light-chain-enhancer of activated B-cells
NLR NOD-like receptor
NOD nucleotide-binding oligomerization domain
OAS1 2′-5′-oligoadenylate synthetase 1
PAMP pathogen associated molecular pattern
PRR pattern recognition receptor
RANTES CC-chemokine ligand 5
RELA nuclear factor NF-kappa-B p65 subunit
RIG-I retinoic acid inducible gene I
RLR RIG-I like receptor
S. aureus Staphylococcus aureus
SCVs small colony variants
TLR toll-like receptor
TNFR tumor necrosis factor receptor
TNFα tumor necrosis factor alpha
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