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This study proposes a method for ventricular late potentials (VLPs) detection using time-frequency representation and
wavelet denoising in high-resolution electrocardiography (HRECG). The analysis is performed both with the signal averaged
electrocardiography (SAECG) and in real time. A comparison between the temporal and the time-frequency analysis is also
reported. In the first analysis the standard parameters QRSd, LAS40, and RMS40 were used; in the second normalized energy
in time-frequency domain was calculated. The algorithm was tested adding artificial VLPs to real ECGs.

1. Introduction

The ventricular late potentials (VLP) are high-frequency
(in relation to the bandwidth of the electrocardiographic
signal) and very-low-intensity signals. The presence of VLPs
in the electrocardiographic signal has been associated with
damages in the ventricular myocardial tissues. The necrosis
or ischemic death of myocardial cells causes the formation
of high-resistivity areas, where the propagation of cardiac
action potential is delayed. This phenomenon affects the
electrocardiographic signal with the presence of electrical
activity, although of low intensity, between the end of the
QRS complex and the initial part of the ST segment, where it
should not be (Figure 1) [1].

VLPs are localized at the end of QRS complex and in the
initial part of the ST segment. Their intensity is at least two
orders of magnitude smaller than the electrocardiographic
signal, so they are usually “hidden” below the noise produced
by the acquisition hardware and the electrical activity not
related to the heart. For these reasons VLPs are not easily
visible on the ECG.

Several statistical studies demonstrated a correlation
between the presence of VLPs and the possibility of sudden
cardiac death due to arrhythmia, often tachycardia. Patients
with previous ischemic events are the most at risk. A

correct VLPs detection makes the prevention of this serious
malignant arrhythmias possible.

A classic electrocardiographic signal has amplitude of the
order of a few mV and it contains most of the information
at frequencies below 100 Hz. VLPs, if present, are considered
nonstationary and non-Gaussian signals with an amplitude
between 1 and 20 μV.

Table 1 summarizes the main features of the VLP.
The low-amplitude and high-frequency dispersion makes

VLPs detection very difficult, often the signal is dominated
by the noise. It is therefore necessary to process the signal to
drastically reduce the noise level.

In this paper we propose a method to detect VLPs in two
different conditions: analyzing a few minutes of prerecorded
ECG with the use of signal averaged electrocardiography
(SAECG) and examining the ECG during its acquisition. The
first analysis allows the identification of weaker VLPs, while
the second can be used for real-time diagnostic purposes.

Another technique of denoising, the wavelet denoising,
was used in order to obtain a better detection and to
optimize the real-time analysis. The simultaneous use of
wavelet denoising and SAECG, in postacquisition processing,
yielded good results also with short-term ECG. However,
the most innovative feature of the work regards the search
for parameters, in the time-frequency domain, that confer
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Figure 1: Schematic ECG without (a) and with very exalted VLPs (b). Some characteristic points are also marked.

Table 1: Characteristics of VLPs.

Ventricular late potentials (VLPs)

Causes
Areas of myocardium with
reduced conductivity

Effects Onset of serious arrhythmias

Bandwidth 40–300 Hz

Time location
End of QRS complex and initial
part of ST segment

Duration <50 msec

Amplitude 1–20 μV

robustness to the method, as the introduction of a parameter
not influenced from the J point location (ENEND). Finally,
a bivariable separation between the time-frequency parame-
ters improved the effectiveness of the method.

Although VLPs can be of great importance in the
arrhythmic risk prevention, their detection is not yet
widespread, due to the lack of suitable equipment. Our work
is an attempt to solve this problem by providing a robust and
reliable algorithm.

For clarity, we divided the algorithm into two phases:
the preprocessing and the detection phase (Section 2). At
the end of Section 2 it will be shown how to adapt the
algorithm for the real-time analysis, and in Section 3 we show
our results. Finally, in Section 4, the conclusions and future
developments will be outlined.

2. Methods

2.1. ECG Signals Source. Real electrocardiographic signals,
provided by “PhysioNet” database, were used to develop
the algorithm. We chose “PTB Diagnostic ECG Database,”
a collection of real ECGs acquired by the Physikalisch Tech-
nische Bundesanstalt (PTB), the German national metrology
institute [2]. The signals are characterized by sampling
frequency of 1 kHz, resolution of 16 bit with 0.5 μV/LSB, and

Acquisition Filtering Denoising

Preprocessing phase

Denoising

Vector
magnitude

wavelet
SAECG

Figure 2: Steps of the pre-processing phase.

total duration of about 2 minutes. Each ECG is made by 15
leads: 12 conventional and 3 orthogonal (Frank leads).

2.2. Preprocessing. The aim of the signal pre-processing is
the reduction of the noise level in the ECG record. For this
purpose two denoising techniques will be used: the wavelet
denoising and SAECG. The end result will be the vector
magnitude (VM), which contains the information of all leads
in a single signal. Figure 2 shows the main pre-processing
steps.

2.2.1. Filtering. The first operation consists in filtering the
signal. The filter performs two functions simultaneously: the
first is to remove both the DC component and the low-
frequency oscillations (which can be due for example to
breathing) and the second is to limit the bandwidth to the
component of interest, in order to limit the noise energy.

The studies carried out by Jane Raimon, Pablo Laguna,
and Pere Caminal have demonstrated the superiority of
nonlinear phase filters for this application. In particular the
filter which gives the best results is a band-pass Butterworth
filter of the fourth order, with cut-off frequencies at 25 Hz
and 300 Hz. Figure 3 shows its effect on an ECG signal [3].

In some signals we found the presence of peaks in
frequency, located at 50 Hz and its harmonics, which are
most likely due to a poor filtering of the power supply in
the acquisition phase. So it was necessary to remove these
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Figure 3: Effect of a fourth-order Butterworth filter on an ECG signal.

components with notch filters. We used a second-order filter,
with attenuated band of 5 Hz around the detected peak. The
effect of the filter is shown in Figure 4.

This operation can be performed either in the acquisition
phase or after the calculation of the SAECG.

2.2.2. SAECG. One of the first methods developed to reduce
the noise power in an electrocardiographic signal is the
signal averaged electrocardiography (SAECG). This method
is highly effective, and it is used in the preliminary analysis
of all algorithms for VLPs detection. It is based on the
principle according to which, averaging N realizations of
a Gaussian stationary process, its variance is reduced by a
factor N . The individual beats of an ECG can be considered
as embodiments of a process having an aleatory component
with the above-mentioned characteristics, due to noise, and
a deterministic component, the useful signal.

The SAECG is, therefore, obtained by averaging each of
these individual beats, to obtain a signal with a very low noise
level, suitable for the detection of small-intensity signals,
as the VLP. The voltage noise, however, is proportional
to the standard deviation, which is reduced by a factor
1/
√
N , instead of 1/N as the variance. Therefore, the noise

level is not reduced proportionally to the number of beats
considered. One of the main problems of SAECG is the exact
alignment of beats, to leave unchanged the deterministic
component; even a slight displacement can make the method
ineffective.

Several techniques have been developed for the beats
alignment. In particular the authors Jane et al. have distin-
guished three main variants that include all the methods used
in VLP detection algorithms [4].

(a) Double-level method: an amplitude threshold is set
in such a way that the signal exceeds it only in cor-
respondence of the QRS complexes. The alignment
is determined averaging the instant at which the
threshold is exceeded by the signal and the instant in
which the level returns below it.

(b) Normalized integrals method: each beat, called v(t),
is considered as a scaled and translated copy of a
template beat s(t) (1):

v(t) = ks(t − d), (1)

where “k” is a constant and “d” is the delay between
v(t) and s(t).
The delay between the beat and the template is

determined by comparing their normalized integrals,
respectively, S(t) and V(t), defined as in

S(t) = 1
A

∫ t

−∞
s(τ)dτ where A =

∫ +∞

−∞
s(t)dt. (2)

The delay “d”, for which it is possible to achieve the
alignment, is obtained from

d =
∫ +∞

−∞
(S(t)−V(t))dt. (3)

(c) Matched filtering method: this is a classical method
for the detection of a known signal in the presence of
additive white Gaussian noise. It consists of a linear
time-invariant system with impulse response s(−t).
If we consider the electrocardiographic signal x(t)
as a sum of a deterministic signal s(t) and a noise
component n(t), we obtain the system in Figure 5.
The impulse response is referred to as a template beat
sT(t). On the output y(t) there will be peaks, easily
localizable, corresponding to the perfect alignment
instants.

The latter is the most recent and effective method. In the
algorithm we use a variant of it, introduced by CD Woody
[4], which use the cross-correlation between the beat and
the template signal. In the output one gets the same peaks
in correspondence of alignment instants, and the principle
of the method remains the same. The result of this operation
is shown in Figure 6.

The relative maximum of the cross-correlation, marked
in Figure 6 and easily determinable, identifies the time shift
to be applied in order to optimally align the template. It
is unnecessary to repeat the operation for each lead; the
reasonable choice is to consider the lead with the greatest
amplitude, having the best resolution, and to use the same
instants for all the others.

The SAECG is obtained by aligning the individual beats
and averaging them, repeating this process for each lead
available (Figure 7).

2.2.3. Wavelet Denoising. The effectiveness of the SAECG
increases with the number of beats analyzed. However, it is
not always possible to operate on long time ECG; in these
cases it is therefore necessary to use alternative denoising
methods. For this purpose we have chosen, for its direct
effect on individual beats, the wavelet denoising. Details of
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Figure 4: Effect of a second-order Butterworth notch filter on ECG and its frequency spectrum.

Matched filter

x(t) = s(t) + n(t) y(t) = x(t)∗ h(t)
h(t) = sT(−t)

Figure 5: LTI system of a matched filter.
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Figure 6: Cross-correlation between template and signal. The
arrows show the peaks to be considered for the alignment.

this technique can be found in [5]. In Figure 8, the main
steps of wavelet denoising are shown, using Discrete Wavelet
Transform (DWT) and inverse discrete wavelet transform
(IDWT).

For decomposition and reconstruction we used the
family of wavelets “Coiflets 5,” which gives the best results,
decomposing the signal into five levels. The choice of the
threshold value is very important, we do not recommend to
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Figure 7: Example of SAECG.

DWT IDWTHard
decomposition reconstructionthresholding

Figure 8: Wavelet denoising general scheme.

set this value as a constant. Better results are obtained by
setting a threshold proportional to the residual noise. The
noise level is measured in the second level of decomposition,
calculating the standard deviation of the signal in a section
in which there is only noise. Hard thresholding was used to
cancel the coefficients below the threshold [6].
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2.2.4. Vector Magnitude (VM). The vector magnitude quan-
tifies the energy measured by the three bipolar leads:

VM =
√
X2(t) + Y 2(t) + Z2(t), (4)

where X(t), Y(t), and Z(t) are the SAECG of the three leads.
Therefore, the VM contains the information related to all the
considered leads. We propose instead to extend its definition
to all available leads:

VMTOT =

√√√√√
N∑
n=1

SAECG2
n, (5)

where SAECGn is the SAECG of the nth lead and N is the
total number of available leads.

The result of the pre-processing phase is shown in
Figure 9.

2.3. VLP Detection. The aim of this phase is the mea-
surement of parameters that are directly influenced by the
presence of VLPs. To make a comparison we performed both
time and time-frequency analysis. Figure 10 summarizes the
main steps of the detection phase. In particular, we compare
two techniques, one based on the time analyses and the other
based on time-frequency analysis.

2.3.1. J Point Location. The J point marks the end of the
QRS complex. In a healthy ECG, it separates a section

1800

1600

1400

1200

1000

800

600

400

200

0
0 100 200 300 400 500 600 700 800

10 ms

Minimum energy

t (samples)

Figure 11: VM division for residual noise estimation.

characterized by a wide signal from a section without
electrical activity. In the presence of VLPs this separation is
not so sharp, and it is difficult to locate the point. We propose
a method for J point location based on energy comparison.
The principle was introduced by Legarreta et al. [7].

The first step is the estimation of residual noise level. For
this purpose the VM is binned with time steps of 10 msec.
Then the energy in each trait is evaluated, and the minimum
energy is associated with the noise energy (Figure 11).

An energy threshold, proportional to the noise energy, is
then set. Starting from the R wave peak, which is the absolute
maximum of the VM, the threshold is compared with the
energy evaluated in a 10 ms interval after each ECG sample.
The first point that provides an energy below the threshold is
considered as the J point.

The same method is then used to locate another reference
point on the ECG, we called it “QRSoff.” It represents the
end of the QRS complex and has to be independent of
the possible presence of VLPs. This means that the energy
threshold used for its identification must be significantly
greater than the one used for J point detection. This point
is useful in time-frequency analysis in case of incorrect
location of the J point. The best results were obtained with
thresholds about 5 and 100 times greater than the noise
energy, respectively, for the J point and QRSoff. However,
the optimal values are different by changing the acquisition
hardware, and then the signals characteristics. It is, therefore,
necessary to test and analyze the results of a substantial
number of acquired ECGs, until obtaining a threshold level
that allows optimal localization of the points in all signals.

Figure 12 shows the points in a VM with and without
VLP.

2.3.2. Time Analysis. Once the J point has been determined,
the measurement of temporal parameters is almost immedi-
ate. The standard parameters for the time analysis [8] are as
follows (Figure 13).

(i) QRSd: QRS complex duration.

(ii) RMS40: root mean square voltage of the terminal
40 msec of the QRS complex.
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(iii) LAS40: amount of time that the QRS complex
remains below 40 μV.

The measurement of QRSd requires the knowledge of the
QRS complex onset. However, the VLPs are present only at
the end of the complex. For this reason we have redefined
the parameter QRSd as the temporal distance between the
R wave peak and J point, influenced equally by the VLP
(Figure 13). Standard analysis is still possible by determining
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Table 2: Effectiveness of temporal parameters.

Temporal parameters

Parameter Threshold Effectiveness

QRSd 95 96.7%

RMS40 63.5 91.7%

LAS40 44.2 85%

the onset of the QRS complex using the same method
introduced for the J point location.
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Figure 18: Values of effectiveness for each analyzed signal, with
both time-frequency analysis (graphic at the top) and temporal
analysis (graphic in the lower). VLP amplitude of 10 μV (top figure)
and 3 μV (bottom figure).

2.3.3. Time-Frequency Analysis. The time-frequency repre-
sentations (TFRs) are a very effective tool for VLPs detection,
due to the localization of VLPs in both domains. Unlike
the time analysis, a standard for this approach has not
yet been defined. Laciar and Orosco proposed the use of
normalized energies as parameters for VLP detection [9].
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In their work, they made a comparison between three
different representations: the short-time fourier transformer
(STFT), Wigner-Ville (WVD) and Choi-Williams (CWD)
distributions. They obtained the best results with the WVD,
defined in (6), which is what we decided to use in our work:

WVD
(
t, f
) =

∫ +∞

−∞
x
(
t +

τ

2

)
x∗
(
t − τ

2

)
e− j2π f τdτ. (6)

Figure 14 shows an example of WVD of an ECG. The window
where the VLP should be located is also highlighted.

The normalized frequency in Figure 14 is the frequency
divided by the Nyquist frequency fN (i.e., half the sampling
frequency). Moreover, the second peak around f / fN = 0.5 is
due to the alias effect.

The first value of energy is calculated in an interval
around the J point. The extremes of the window that gave
the best results, based on the characteristics of VLP signal,
are as follows:

tmin = J point− 55 msec,

tmax = J point + 25 msec,

fmin = 55 Hz,

fmax = 300 Hz.

(7)

The energy in this area, called EVLP, is therefore evaluated
as in

EVLP =
√√√√√ 1
k1

fmax∑
f= fmin

tmax∑
t=tmin

TFR2(t, f ), (8)

where TFR is the two-dimensional matrix resulting from the
WVD of the signal and k1 (as k2 and k3 in (9)-(10)) is a
normalization parameter defined as the product between the
rows and columns numbers of the considered region in TFR
matrix.

We introduced a second energy value, called EEND,
calculated in an area next to the QRSoff point, previously

determined (9). 80 msec is a time sufficiently high to analyze
the region in which to search VLPs:

EEND =
√√√√√ 1
k2

fmax∑
f= fmin

QRSoff+80 msec∑
t=QRSoff

TFR2(t, f ). (9)

This value is very important in case of wrong localization
of the J point. However, the calculated energies require a
normalization. For this purpose, they are divided by the
energy of the QRS complex (EQRS), evaluated from the R
wave to the QRSoff:

EQRS =
√√√√√ 1
k3

fmax∑
f= fmin

QRSoff∑
t=R wave

TFR2(t, f ). (10)

The normalized energy indexes are, therefore, as in (11).

EN = EVLP

EQRS
,

ENEND = EEND

EQRS
.

(11)

The EN index is lower in patients with VLPs, because, in the
neighborhood of the J point, there is less energy compared to
a healthy ECG. On the contrary, the presence of VLPs makes
the ENEND index greater.

2.4. Real-Time Processing. Electrophysiological abnormali-
ties may change on a beat-to-beat basis, resulting in a failure
of signal-averaged recordings to identify changes related
to arrhythmogenesis. The VLP detection during the ECG
acquisition is therefore very important. An adequate noise
reduction is required in order to obtain a good effectiveness.
The impossibility of using the SAECG to increase the signal-
noise ratio is the main problem of real-time analysis.

The real-time application of the algorithm requires the
modification of the input phase. In particular, a peak detector
should be introduced in order to identify the individual beats
exploiting the high amplitude of the QRS complex. Each
heartbeat is then sent to the processing phase. We propose
a scheme as in Figure 15.

The processing phase is the same used in the postacqui-
sition analysis, without the SAECG calculation step.

3. Results

To test the method we used 60 real electrocardiographic
signals with artificial VLP (aVLP). The VLP component has
been simulated with a sum of sine signals with a definite
amplitude and frequency, added to the first milliseconds of
the ST segment [10]:

aVLP [n] =
N∑
i=1

Ai cos
(
2π fin

)
. (12)

The constant Ai is set equal to one hundredth the
amplitude of the ECG in the postacquisition analysis, and it
assumes different values in the real-time analysis. We have
considered a VLP duration of 40 ms and frequencies of 70,
130, 210 and 280 Hz to reproduce realistic VLP.



ISRN Cardiology 9

3.1. Postacquisition Analysis. The results obtained can be
displayed by histograms. Figure 16 shows how the temporal
parameters divide healthy ECG from the group with aVLP.

The parameters are distributed according to a Gaussian
law. Our optimal threshold values, as well as the correspond-
ing effectiveness, are reported in Table 2.

For time-frequency parameters we chose to use bivariable
analysis, to improve the effectiveness [11]. Figure 17 shows
the separation between the healthy ECG and ECG with aVLP.

Using the straight line ENEND = EN/10 we obtained a
complete separation between the two groups. This separation
is not unique but heavily depends on acquisition hardware
and signals characteristics.

3.2. Real-Time Analysis. To test the effectiveness of the real-
time processing we have generated signals with a known
number of aVLPs. The effectiveness represents the ratio
between the number of VLPs detected and the real number of
VLPs in the signal. For the temporal analysis the presence of
VLPs was confirmed if at least two of the three parameters
(QRSd, LAS40, and RMS40) were outside the established
range. Instead, for the time-frequency analysis, VLPs were
confirmed if the point in the plane (EN, ENEND) exceeds
the separation line ENEND = EN/10. Figure 18 shows the
effectiveness obtained on each analyzed signal with aVLP,
respectively, by 10 and 3 μV.

It is clear that 3 μV VLPs are not detectable. The graph in
Figure 19 was obtained by plotting the average effectiveness
related to VLPs of different amplitude.

4. Discussion

We developed a new method for ventricular late potentials
(VLP) detection in high-resolution electrocardiographic
(HRECG) signals, suitable for both postacquisition analysis
and real-time applications. The method was evaluated with
a group of 60 healthy ECG, provided by “PTB Diagnostic
ECGs Database,” with the addition of realistic artificial VLP
(aVLP).

The innovative features of the work, in addition to taking
advantages of the best methods available in the literature,
concerning a phase of preprocessing with the simultaneous
use of two denoising techniques (the SAECG and the denois-
ing wavelet) and a detection phase based on the bivariable
separation of time-frequency parameters. Very important is
the independence of the parameter ENEND from the J point
location, which may be easily subject to wrong localization.

A comparison between the time and the time-frequency
analysis demonstrated the real improvement achievable with
the time-frequency parameters. The results obtained show
how, with the time-frequency representation, it is possible
to have an effectiveness of 100%, using the signal averaged
electrocardiography (SAECG), and an effectiveness higher
than 90% for the beat-to-beat analysis, considering VLP of
amplitude greater than 6 μV. Instead, the temporal parame-
ters QRSd, RMS40, and LAS40 divide the two groups of ECG
with an effectiveness, respectively, of 96.7%, 91.7%, and 85%.

It is also possible to further improve the results using high-
performance acquisition hardware and low-noise electrodes.

The algorithm for automatic VLP detection can be
implemented by software, for example in the Holter ECG,
or by firmware, directly associated with an acquisition hard-
ware. Future developments may include a statistical study of
a large number of ECGs in order to standardize the thresh-
olds of parameters and optimize the time-frequency analysis.
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