
Journal of Advanced Research 30 (2021) 147–158
Contents lists available at ScienceDirect

Journal of Advanced Research

journal homepage: www.elsevier .com/locate / jare
Rare variants discovery by extensive whole-genome sequencing of the
Han Chinese population in Taiwan: Applications to cardiovascular
medicine
https://doi.org/10.1016/j.jare.2020.12.003
2090-1232/� 2020 The Authors. Published by Elsevier B.V. on behalf of Cairo University.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Peer review under responsibility of Cairo University.
⇑ Corresponding authors at: Taiwan Biobank and Institute of Biomedical Sciences, Academia Sinica, Taipei 11574, Taiwan (C.-Y. Shen). Graduate Institute of Bi

Electronics and Bioinformatics, National Taiwan University, Taipei 10617, Taiwan. (E.Y. Chuang).
E-mail addresses: jjmjuang@ntuh.gov.tw (E.Y. Chuang), bmcys@ibms.sinica.edu.tw (C.-Y. Shen).
Jyh-Ming Jimmy Juang a, Tzu-Pin Lu b, Ming-Wei Su c, Chien-Wei Lin c, Jenn-Hwai Yang d, Hou-Wei Chu c,
Chien-Hsiun Chen d, Yi-Wen Hsiao b, Chien-Yueh Lee e, Li-Mei Chiang e, Qi-You Yu b, Chuhsing Kate Hsiao b,
Ching-Yu Julius Chen a, Pei-Ei Wud, Chien-Hua Pai c, Eric Y. Chuang e,⇑, Chen-Yang Shen c,d,⇑
aCardiovascular Center and Division of Cardiology, Department of Internal Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei
10002, Taiwan
bDepartment of Public Health, Institute of Epidemiology and Preventative Medicine and Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan
University, Taipei 10617, Taiwan
c Taiwan Biobank, Taiwan
d Institute of Biomedical Sciences, Academia Sinica, Taipei 11574, Taiwan
eGraduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei 10617, Taiwan
g r a p h i c a l a b s t r a c t
a r t i c l e i n f o

Article history:
Received 7 April 2020
Revised 3 December 2020
Accepted 3 December 2020
Available online 7 December 2020
a b s t r a c t

Introduction: A population-specific genomic reference is important for research and clinical practice, yet
it remains unavailable for Han Chinese (HC) in Taiwan.
Objectives: We report the first whole genome sequencing (WGS) database of HC (1000 Taiwanese gen-
ome (1KTW-WGS)) and demonstrate several applications to cardiovascular medicine.
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Methods: Whole genomes of 997 HC were sequenced to at least 30X depth. A total of 20,117 relatively
healthy HC individuals were genotyped using a customized Axiom GWAS array. We performed a
genome-wide genotype imputation technique using IMPUTE2.
Results: We identified 26.7 million single-nucleotide variants (SNVs) and 4.2 million insertions-deletions.
Of the SNVs, 16.1% were novel relative to dbSNP (build 152), and 34.2% were novel relative to gnomAD. A
total of 18,450 healthy HC individuals were genotyped using a customized Genome-Wide Association
Study (GWAS) array. We identified hypertension-associated variants and developed a hypertension pre-
diction model based on the correlation between the WGS data and GWAS data (combined clinical and
genetic models, AUC 0.887), and also identified 3 novel hyperlipidemia-associated variants. Each individ-
ual carried an average of 16.42 (SD = 3.72) disease-causing variants. Additionally, we established an
online SCN5A (an important cardiac gene) database that can be used to explore racial differences.
Finally, pharmacogenetics studies identified HC population-specific SNVs in genes (CYP2C9 and
VKORC1) involved in drug metabolism and blood clotting.
Conclusion: This research demonstrates the benefits of constructing a population-specific genomic refer-
ence database for precision medicine.
� 2020 The Authors. Published by Elsevier B.V. on behalf of Cairo University. This is an open access article

under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
Introduction

The human genome contains an enormous amount of informa-
tion about human evolution, development, and medicine. To dis-
cover the underlying genetic causes of diseases, comprehensive
whole-genome sequencing (WGS) is needed to interrogate all
types of genetic variation, including single-nucleotide variants
(SNVs) and structural and de novo variants. High-throughput
genotyping and sequencing have shown how diversity in the
sequence of the human genome affects human diversity. A huge
number of variants identified by WGS presents new opportunities
and challenges for researchers and clinicians.

Several large-scale WGS projects have been completed. Fore-
most among them are the 1000 Genomes (1000G) Project; the
National Heart, Lung and Blood Institute’s GO Exome Sequencing
Project for European Americans and African Americans; the integra-
tive Japanese Genome Variation Database (iJGVD); and gnomAD. All
of them have provided valuable information about human genome
diversity across different ethnic populations worldwide. In the past
few decades, studies based on WGS and whole-exome sequencing
have identified rare variants associated with diseases. Therefore,
it is essential to study large samples to build a complete database
of genetic variations for each population.

Taiwan is a small but densely populated island in East Asia
(~23.5 million inhabitants in 36,543 km2, a population larger than
that of the Netherlands but with a smaller geographic area). The
majority of the population (>95%) in Taiwan is of Han Chinese
(HC) ancestry [1]. In the Taiwan Biobank (TWB), a total of 20,117
relatively healthy HC individuals were genotyped using the cus-
tomized Axiom Genome-Wide Association Study (GWAS) array.
Although the GWAS chip was specifically designed for Taiwanese
people, it only contains around 600,000 SNV loci. This number is
dramatically lower than the number of bases in a whole human
genome (3 billion) and thus we performed this WGS study in order
to provide better variant identification. Here, we describe the
insights gained from sequencing the whole genomes of 997 HC
individuals in Taiwan. Lastly, we performed population genetic
analyses and applied the WGS data to the improvement of patient
care in the cardiovascular field. We also investigated the correla-
tion between the WGS data and the GWAS data and developed a
hypertension prediction model based on GWAS data.
Materials and methods

The Han Chinese study population. Taiwan is an island with a
population of approximately 23.5 million people. The majority
(>95%) of Taiwanese are of HC ancestry and mostly immigrated
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from southeast China over the past 4 centuries, whereas ~2% are
of aboriginal ancestry (Austronesian) [2]. This study was based
onWGS data from the white blood cells of 997 unrelated, relatively
healthy HC individuals randomly selected from among the 20,117
HC participating in the TWB. Since the resulting sequence database
has almost 1000 genomes, it was called 1KTW-WGS. The detailed
design of the TWB and individual enrollment are described in the
Supplementary Note. Supplementary Fig. 1 shows the locations
of the recruitment centers. No ethnicity outliers were included in
the 1KTW-WGS project. All participants provided written informed
consent, and all DNA samples and personal information were ana-
lyzed anonymously. This study was approved by National Taiwan
University Hospital (201305043RINB by Research Ethics Commit-
tee B) and by the Ethics and Governance Council of the TWB
(TWBR10507-03 by IRB-Biomedical Science Research, Academia
Sinica). The TWB is governed by the Ethics and Governance Council
and the National Ministry of Health and Welfare.

Data generation and processing. We sequenced the whole
genomes of 997 HC using either Illumina Hi-Seq 2500 or Ion
Torrent-Proton technology (499 genomes using Illumina, 498 gen-
omes using Ion Torrent-Proton). The overall analysis workflows for
the two platforms are illustrated in Supplementary Fig. 2 and Sup-
plementary Fig. 3, respectively. In general, the two pipelines fol-
lowed the standard protocols provided by the two companies,
and all analysis parameters were set at their default values. The
details of procedures are described in the Supplementary Note.

Customized whole-genome genotyping and quality control.
The TWB used a customized Axiom GWAS array that includes
653,291 SNVs specific for the HC population in Taiwan and con-
structed a population-specific reference for the HC population in
Taiwan, which was used in our previous study [3]. A total of
20,117 relatively healthy HC individuals were genotyped using
the customized array in the current study. Quality control of the
customized GWAS array with PLINK software [4] includes a call
rate greater than95%, Hardy-Weinberg equilibrium > 10�4, and
ATP calling. Detection of uncertain kinships and ethnicity outliers
was also performed as described in our previous study [3].

Imputation performance and application of 1KTW-WGS. We
performed a genome-wide genotype imputation technique using
IMPUTE2 [5] to estimate untyped genotypes from known haplo-
type information in order to compare 1KTW-WGS with 1000G
Phase 3 East Asian (EAS) sequences. We randomly selected 406
of the 499 individuals sequenced by Illumina to construct a phased
reference panel and used the remaining 93 individuals to validate
the imputed genotypes.

Applying the 1KTW-WGS data to discover novel genetic vari-
ants associated with hyperlipidemia. A SNV, rs7115242, was
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identified with a P value of 5.72*10�8 in our previous GWAS, which
was conducted to identify important and predictive SNVs related
to hyperlipidemia. However, novel variants associated with
hyperlipidemia were not detectable due to the limitations of using
an SNV microarray. Therefore, to demonstrate the application of
the 1KTW-WGS database, we explored novel variants associated
with rs7115242. Initially, a linkage disequilibrium (LD) analysis
was performed for rs7115242 using the single nucleotide polymor-
phism annotation and proxy search (SNAP) web site [6]. To focus
on the East Asian population, we selected the Chinese Han Beijing
(CHB) and Japanese in Tokyo (JPT) populations as reference groups.
The genotyping data for the reference panel were obtained from
the 1000G Pilot 1 project [7], and confidence interval testing (used
D prime as the parameter) in Haploview 4.2 software was used to
partition the chromosome into blocks. The physical coordinates for
the two SNPs closest to the boundary of the LD block were deter-
mined according to the R2 value (R2=0.8) [8–10]. Subsequently,
the chromosomal locations for the LD block were utilized to select
nonsynonymous mutations identified from the next-generation
sequencing (NGS) data in the TWB. Three bioinformatics algo-
rithms—Sorting Tolerant From Intolerant (SIFT) [11], Protein Vari-
ation Effect Analyzer (PROVEAN) [12], and Polymorphism
Phenotyping v2 (PolyPhen-2) [13]—were used to assess the func-
tional significance of the nonsynonymous mutations.

Development of a prediction model for hypertension. Hyper-
tension was defined as (i) systolic blood pressure � 140 mmHg, or
(ii) diastolic blood pressure � 90 mmHg, (iii) or self-reported
hypertension patients on medications; all other subjects were clas-
sified as non-hypertensive. We genotyped 18,450 samples with the
TWB genotyping array. We excluded samples with (i) sample call
rate > 95%, (ii) heterozygosity rate > 5 standard deviations from
the population mean, (iii) closely related individuals (identity by
descent rating > 0.1875), and (iv) non–East Asian outliers identified
by principal component analysis (PCA) of the studied samples and
the three major reference populations (Africans, Europeans, and
East Asians) in the International HapMap Project. We then applied
standard quality-control criteria with PLINK software [4] for vari-
ants, excluding those with (i) SNV call rate > 95%, (ii) minor allele
frequency < 5%, and (iii) Hardy–Weinberg equilibrium P � 1.0
X10�4, and (iv) different missing rate between cases and controls
(P < 0.00001). Subsequently, for each of the remaining SNVs, a
logistic regression model was used to evaluate the association of
the SNV with hypertension after adjustment for age, gender, and
body mass index (BMI). PCA was used for the assessment of popu-
lation stratification. The first 8 principal components were used to
adjust the GWAS analysis. The genome-wide P value significance
threshold (P < 10�8) was defined to select SNVs significantly asso-
ciated with hypertension. Lastly, a prediction model for hyperten-
sion was developed based on the significant SNVs using a logistic
regression model. We selected candidate SNVs to construct a poly-
genic risk score after LD clumping of the variants with P < 5 � 10-5.

The score was created using the equation
Pk

i¼1biSNVi, where k is
the number of selected SNVs and bi is the regression coefficient
for each SNVi that was derived from logistic regression.

Development of an online database for identifying SCN5A
variants in sudden arrhythmia death syndrome. Because sudden
arrhythmia death syndrome is inheritable and is one of the pri-
mary causes of sudden death in children and young adults, data-
bases of disease-relevant mutations (e.g., Human Gene Mutation
Database (HGMD), ClinVar) are often used to identify potentially
pathogenic variants for clinical genetic testing or basic research.
We annotated variants in the HC WGS data that were listed as
disease-causing in the HGMD and ClinVar [14,15], and established
an online gene database to easily explore racial differences and the
potential functional impact of identified variants. The design of the
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database is summarized in Supplementary Fig. 4. Briefly, we col-
lected all nucleotide variants of SCN5A from the TWB [16] and 3
online databases, including the 1000G database (phase 3) [7], the
iJGVD [17], and gnomAD [18]. The detailed characteristics of the
four datasets and procedures are summarized in Supplementary
Table 1 and the Supplementary Note, and each population was
classified into Asian or non-Asian groups according to their ethnic
background. The proportion test embedded in the R language was
performed to assess whether DNA variants in SCN5A show different
allele frequencies between the two groups (proportion test:
P < 0.001). The online database for SCN5A variants was developed
using two programming languages, Python Flask and MySQL.

Statistical analysis

For the comparison of minor allele frequency (MAF) across dif-
ferent groups, a proportion test was conducted, and P values less
than0.05 were reported as significant. For SNVs analyzed for
hypertension and hyperlipidemia, a logistic regression model was
utilized, and confounding factors including age, gender, BMI, and
principal components were adjusted. The LD associations were
evaluated to identify tag SNVs within a LD block.

Data availability

The URL for the online database for SCN5A variants is http://140.

112.136.14:8000. The 1KTW-WGS database is open to the public

(the Taiwan Biobank website is https://taiwanview.twbiobank.

org.tw/browse38).

Results

We randomly selected 997 unrelated HC individuals from the
TWB to construct 1KTW-WGS, identified novel variants in their
genomes, and applied the WGS data to clinical practice and patient
care in the cardiovascular field.

Sequencing and variant discovery

After considering the quality and abundance of DNA samples,
uncertain kinship, and ethnicity outliers (Supplementary Table 2),
we sequenced the whole genomes of 997 HC and identified a total
of 26,051,907 SNVs and 3,592,314 indels with at least 30X cover-
age. Of the SNVs, 13,624,601 (32.7%) were novel compared to gno-
mAD, while 2,266,663 of the indels (43.7%) were novel. Because HC
in both Taiwan and Japan are East Asian, we compared our WGS
data with that of 1,070 Japanese individuals (1KJPN) from iJGVD
[17]. Numbers of SNVs, novel SNVs, indels, and novel indels were
similar to those in 1KJPN (Supplementary Table 3). At first, two dif-
ferent cutoffs (20X or 30X) of the read depth were utilized to iden-
tify DNA variants in this study (Supplementary Table 3). Since the
average depth of the NGS data in this study was around 30X and
the number of identified variants was comparable to that from
the 1KJPN Biobank, we decided to use 30X as the cutoff in this
study. Per individual, the mean total number of SNVs with at least
30X coverage was 1,894,528.7 (range 585,773–2,740,034), and the
mean number of novel SNVs was 52,394.1 (16,037–91,629),
whereas the mean total number of indels was 133,869 (31,182–
306,432) and the mean number of novel indels was 8,746.7
(3,403–51233) (Fig. 1). The two platforms detected similar num-
bers of SNVs relative to dbSNP build 152 and the combined data-
sets of dbSNP and 1000G, whereas more novel SNVs were
detected by the Ion Torrent-Proton platform than the Illumina
platform (Supplementary Table 4).

http://140.112.136.14%3a8000
http://140.112.136.14%3a8000
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Fig. 1. The distribution of the number of variants and novel variants per individual
in 1KTW-WGS.
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Comparing the number of indels between protein-coding
regions and non-coding regions using the dbSNP 152 and 1000G
phase 3 public databases as references, we found that there were
fewer indels in protein-coding regions than in non-coding regions,
but the percentage of novel indels was higher in protein-coding
regions than in non-coding regions (Fig. 2).

We inspected the length and number of indels by genomic loca-
tion. The overall shape of the distribution for size frequency
showed that larger indels were less frequent than smaller indels
Fig. 2. Distribution and number of indels in protein-coding regions (a) and non-coding
phase 3 public databases as references. Novel indels are colored blue. Indels in dbSNP 1
colored gray.
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(Fig. 2), irrespective of their location in a coding or non-coding
region. Comparison of the length distribution of indels between
protein-coding regions and non-coding regions showed that indel
lengths were similar, from �30 to 30 base pairs. However, the
number of large indels (>20 bp) was higher in non-coding regions
than in protein-coding regions (Supplementary Fig. 5). Compared
with the distribution of indel lengths inside and outside protein-
coding regions of the Icelandic population (the only population
that provided this data) [18], our data also showed more deletions
were called than insertions. However, Gudbjartsson et al. observed
a deficit of deletions and insertions that were not multiples of
three, which was different from our finding.

In protein-coding regions, we found that the percentage of
indels that were multiples of three was higher compared to that
in non-coding regions, regardless of the MAF (Supplementary
Fig. 6). The MAF of most large indels was relatively low (<0.5%)
compared to the MAF of small indels in coding regions, but this dif-
ference in MAF distribution between large indels and small indels
was not found in non-coding regions (Supplementary Fig. 6).
Comparison of 1KTW-WGS with existing databases to reveal
novel variants

As expected, the majority of SNVs (65.8%) in the 1KTW-WGS
database were present in the Asian subset of gnomAD-genome
(EAS) or gnomAD-genome-all, which implied that common alleles
segregated across Asian populations. Of these variants, 16.1% of
SNVs in the 1KTW-WGS database were novel relative to dbSNP
regions (b) in 1KTW-WGS using the dbSNP (build 152) and 1000 Genomes (1 KG)
52 alone are colored orange, whereas indels in dbSNP 152 and 1000 Genomes are
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build 152, 53.4% were novel relative to the combined dataset of
dbSNP and 1000G phase 3, and 34.2% were novel relative to
gnomAD-genome-all (Fig. 3, Supplementary Table 5). This
demonstrates the value of performing WGS in individual popula-
tions in greater depth. On the other hand, we also compared the
results generated by two different platforms (Illumina vs. Ion
Torrent-Proton), which showed similar results.
Variants categorized by the burden of loss of function

In a clinical setting, predicting the biological consequences of
variants is an important application of sequencing data. To partic-
ularly evaluate and compare the burden of loss-of-function (LOF)
variants, we classified these variants into four categories as
described in previous studies: (1) LOF, including stop-gain or -
loss variants, frameshift indels, splice donor or acceptor variants,
and initiator codon variants; (2) moderate impact, including mis-
sense variants, in-frame indels and splice-region variants; (3) low
impact, including synonymous variants and 30- and 50-UTR vari-
ants; and (4) others, including deep intronic and intergenic vari-
ants. Table 1 shows the frequency distribution of variants based
on functional annotation. We found that the percentage of variants
with a MAF below 0.5% was 76.3%, 75.5%, 62.3% and 63.2% in the
categories for the LOF, moderate impact, low impact, and other cat-
egories, respectively. In each category, the proportion of novel vari-
ants with an MAF below 0.5% was similar to the proportion of total
variants with an MAF below 0.5%. We also found that the propor-
tion of total variants with a MAF below 0.5% was similar in the cat-
egories of LOF, moderate impact, low impact and other, between
the two NGS platforms. The exception was indels, which were
higher in the Ion Torrent-Proton platform than the Illumina plat-
form (Supplementary Table 6). Notably, in Supplementary
Table 6, we only included indels with MAF<0.5% to do the compar-
isons, i.e., rare indels. We note that the indels identified in the Ion
Torrent-Proton system had higher MAFs and thus under such crite-
ria (MAF < 0.5%), the number of novel indels from the Ion Torrent-
Proton system was less than that from the Illumina system
(888,033 versus 1045,081). However, if we calculate the propor-
tion of novel indels versus total indels, the Ion Torrent-Proton sys-
tem still has a slightly higher number (57.57% versus 56.63%). This
might be explained by the presence of false positive indels, as
reported by previous studies [19,20].

Identifying a causal variant in patients with an inherited Men-
delian disease is crucial in clinical genetic testing. Online Men-
delian Inheritance in Man (OMIM) is a public and popular
database of reported genes and mutations of rare diseases and
mutations with high penetrance [21]. For Mendelian diseases, the
causal variants in the OMIM database are most often LOF or
moderate-impact mutations [21]. Reliable estimates of genotype
frequency in a population play an extremely important role when
filtering candidate variants in a patient with an inherited Men-
delian disease. The 1KTW-WGS database provides the distribution
Fig. 3. Venn diagram of all SNVs and indels discovered in 1KTW-WGS relative to
dbSNP (Build 152), and the 1000 Genomes Project (1000G) Phase 3. M, million.
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of mean genotype counts per individual by frequency and variant
impact (Table 2, Supplementary Fig. 7). Our sequenced individuals
carried on average 149 LOF variants, of which 1.4 were only seen in
1 or 2 of the 997 sequenced individuals (MAF < 0.04%) and are thus
likely candidates for dominant determinants of rare traits. In the
context of rare recessive traits, we found that 3.3 individuals were
homozygous for a LOF variant with MAF < 3.2%, a threshold that
would correspond to 1 in 997 individuals being homozygous under
Hardy-Weinberg equilibrium (Supplementary Table 7).
Functional variants

We found that the overall patterns and per-individual distribu-
tions of LOF SNVs (variants introducing premature stop codons or
variants interrupting splice sites) and missense variants in 1KTW-
WGS were consistent with those found in the 1000G Project.
Regarding the individual variant load of coding mutations, each
individual carried an average of 218.07 LOF SNVs, 99.49 LOF indels,
and 0.67 LOF large deletions. Interestingly, 78.4% of the LOF SNVs
for each individual are common variants. In contrast, considering
rare LOF SNVs (MAF < 0.5%) alone, each individual carried an aver-
age of 5.67 nonsense variants, 10.88 variants interrupting a splice
site, 11.34 frameshift indels, and 0.03 larger deletions (Table 2).

Because databases of disease-relevant mutations are often
employed to identify potential variants of interest, we annotated
variants in 1KTW-WGS that were listed as disease-causing muta-
tions (DMs) in the HGMD [14]. We identified 1139 variants with
at least 30X coverage as DMs, and each individual carried an aver-
age of 16.42 (SD = 3.72) DM variants whose GERP score was greater
than 2.0 (Table 2, Supplementary Fig. 8). ClinVar is another well-
known and popular disease-relevant database (https://www.ncbi.
nlm.nih.gov/clinvar/). In addition to annotating disease-causing
variants in 1KTW-WGS based on the data in the HGMD database,
we listed some variants in 1KTW-WGS that were classified as
pathogenic in ClinVar (Table 3).

As the strength of negative selection increases, we expect a
greater fraction of very rare variants (FVRVs), defined the same
as in previous work [17], which are not usually included on GWAS
chips. In FVRV analyses, we only considered positions with a cov-
erage of at least 30X. A detailed breakdown of FVRVs by variant
annotation category is shown in Fig. 4. More than 40% of the total
identified missense variants were FVRVs, which was the highest
among all mutation types and genomic regions (Fig. 4a). In the
Japanese population [17], the FVRV was highest in intergenic
regions. This finding suggested that although Japanese and HC in
Taiwan are both East Asian, the effect of negative selection is dif-
ferent in the two ethnic populations. In addition, we were sur-
prised to find that variants with a greater impact on gene-
encoded proteins tended to have a higher FVRV. Approximately
40–50% of the total identified variants predicted to be probably/-
possibly damaging by PolyPhen-2 or LOF variants by the Variant
Effect Predictor were very rare variants (Fig. 4b).
Genotyping consistency between 1KTW-WGS and a customized
GWAS array and imputation performance

Since we used two platforms of NGS, we tested the genotyping
consistency of each platform separately. Four hundred ninety-nine
individuals underwent both WGS by Illumina and the customized
GWAS array, whereas 498 individuals underwent both WGS by
Ion Torrent-Proton and the customized GWAS array. There were
610,225 and 585,535 overlapping SNVs, and the consistency rates
were 98.7% and 95.6%, respectively. We also compared 1KTW-
WGS and the samples in 1000G (phase 3: EAS) for genotyping
imputation. The highest R2 value (the measure of imputation accu-

https://www.ncbi.nlm.nih.gov/clinvar/
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Table 1
The frequency distribution of variants based on functional annotations*

Type SNV Indel

MAF > 5% 0.5–5% < 0.5% All > 5% 0.5–5% < 0.5% All

30 or 50 UTR, upstream, downstream,
Synonymous

Total 217,916 143,562 618,151 979,629 33,692 30,607 86,387 150,686
Novela 2674 4045 137,780 144,499 7867 12,585 48,616 69,068
% of total
variants

3.703 3.925 3.61 3.674 3.492 3.624 3.558 3.556

% of novel
variants

3.298 3.77 3.367 3.376 3.244 3.422 3.375 3.368

Stop gain or loss, frameshift variant, splicing
variant

Total 647 605 4943 6195 937 1696 7561 10,194
Novela 4 16 1171 1191 441 1163 5463 7067
% of total
variants

0.011 0.017 0.029 0.023 0.097 0.201 0.312 0.241

% of novel
variants

0.005 0.015 0.029 0.028 0.182 0.316 0.379 0.345

Missense, in-frame variant Total 18,893 18,097 114,202 151,192 470 461 2824 3755
Novela 32 330 17,752 18,114 64 134 1668 1866
% of total
variants

0.321 0.495 0.667 0.567 0.049 0.055 0.116 0.089

% of novel
variants

0.039 0.3 0.43 0.42 0.026 0.03 0.11 0.09

Intronic, intergenic Total 5,647,133 3,494,935 16,385,854 25,527,922 929,818 811,862 2,331,119 4,072,799
Novela 78,362 102,894 3,935,234 4,116,490 234,153 353,881 1,384,933 1,972,967
% of total
variants

95.965 95.563 95.694 95.736 96.363 96.121 96.014 96.115

% of novel
variants

96.657 95.907 96.17 96.173 96.548 96.226 96.131 96.197

Overall Total 5,884,589 3,657,199 17,123,150 26,664,938 964,917 844,626 2,427,891 4,237,434
Novela 81,072 107,285 4,091,937 4,280,294 242,525 367,763 1,440,680 2,050,968

a Not observed in dbSNP build 152 and 1000 Genomes Project Phase 3; MAF: minor allele frequency; SNV: single nucleotide variant; Indel: insertion or deletion.

Table 2
Variant load of coding mutations and disease-associated variations per individual in 1KTW-WGS.

Rare variant
(<0.5%)

Low frequency variant (0.5–
5%)

Common variant
(>5%)

Mean (s.d.) Mean (s.d.) Mean (s.d.)

Total loss of functiona 19.76 13.79 27.26 7.88 171.05 26.31
Non-synonymous 135.67 27.57 245.81 54.11 2032.78 415.2
Probably damaging 0.29 0.55 0.36 0.62 1.47 0.97
Splicing varianta 10.88 3.71 3.5 1.32 10.39 3.51
Stop gaina 5.67 2.34 6.55 2.57 70.42 18.71
Synonymous 51.37 9.79 114.13 25.97 1123.95 242.7
HGMD (only disease-causing mutations) 0.03 0.17 0.99 0.74 11.25 3.62
OMIMC 0.23 0.47 0.25 0.5 1.25 0.88
Loss of function (>20BP deletion)a 0.03 0.17 0.11 0.32 0.53 0.75
Indel frameshift (<20 BP)a 11.34 13.05 15.44 5.82 72.04 15.32
Indel non-frameshift (<20 BP)a 3.47 16.87 4.91 3.15 68.2 13.48
All SNVsa 599.8 126.1 1008.38 239.15 9982.2 2230
Novela,b 26.42 12.4 5.58 3.98 14.01 5.97
Total conserved 191.49 36.61 365.23 79.53 3221.63 671.2
Total bases deleted 7,007,314 bases

Only SNV sites at which ancestral state can be assigned with high confidence and that are highly conserved (GERP > 2.0) are reported. OMIM, Online Mendelian Inheritance in
Man; HGMD, The Human Genetic Mutation Database professional version.

a No conservation filter applied but used SNPAncestralAllele; bNot observed in dbSNP build 152 and 1000 Genomes Project Phase 3; cOnly counts damaging and possible
damaging variants.
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racy) was achieved with 1KTW-WGS plus 1000G (phase 3: EAS),
irrespective of a high or low MAF; the mean R2 values were 0.7
for rare SNVs (MAF 0.01–1%), 0.7–0.85 for low-frequency SNVs
(MAF 1–5%), and 0.88–0.94 for common SNVs (MAF > 5%) (Supple-
mentary Fig. 9). In addition, we compared the number of imputed
SNVs using 1KTW-WGS and 1000G (phase 3: EAS) separately ver-
sus 1KTW-WGS plus 1000G (phase 3: EAS). In general, the combi-
nation of 1KTW-WGS plus 1000G (phase 3: EAS) could impute
more variants, especially rare variants, than the use of 1KTW-
WGS or 1000G (phase 3: EAS) alone (Supplementary Fig. 10).
The significant improvement in imputation accuracy and the num-
ber of imputed SNVs using the 1KTW-WGS data suggest the impor-
152
tance of constructing and examining a population-specific
reference panel.
Applying 1KTW-WGS sequencing data to the discovery of novel
genetic variants associated with hyperlipidemia

The results of a LD analysis using the SNAP web site indicated
that the nucleotide variants located within chr11:116264865–11
6432950 (GRCh 37/hg19) had R2 values higher than 0.5. Based on
their chromosomal coordinates, 43 non-synonymous variants were
reported from the WGS data in the TWB (Supplementary Table 8).
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To assess whether these variants have functional effects on their
downstream proteins, three bioinformatics algorithms—SIFT, PRO-
VEAN, and PolyPhen-2—were utilized. As shown in Supplemen-
tary Table 8, 5 of the 43 variants were predicted to be damaging
by all three algorithms. Among them, three (chr11: 116633749;
chr11: 116661392; chr11: 117128401) were novel, and two of
them were reported as SNVs: rs200949753 in BUD13 and
rs2075291 in APOA5. These variants were identified based on
rs7115242, which was significantly associated with the dysregula-
tion of lipids and lipoproteins in the HC population in our prior
GWAS (P = 5.72*10�8, unpublished). In addition, we used the pro-
portion test to examine the allele frequencies of the 5 damaging
variants in the Asian and non-Asian groups. The results showed
that one of the 5 variants, rs2075291, located in APOA5 which reg-
ulates triglyceride levels, was present at a significantly higher pro-
portion in the Asian group (P < 0.001).
Identification of hypertension-related SNVs and development
of a prediction model for hypertension

Because of the high genotyping consistency between 1KTW-
WGS and the customized GWAS array and the large sample size
of the customized GWAS array with high quality controls, we used
the data from the customized GWAS array to identify
hypertension-related SNVs and develop a prediction model for
hypertension in the HC population. After quality control of geno-
typing data and excluding pre-hypertensive individuals, the GWAS
analysis was performed on 10,678 unrelated individuals (2,936
hypertension patients and 7,742 non-hypertensive individuals)
from the TWB, and 577,656 autosomal SNVs passed stringent qual-
ity controls. The Manhattan plot showed 1 region in chromosome 4
with genome-wide significance (P < 5 � 10�8, Supplementary
Fig. 11). In this region, rs16998073 in the FGF5 gene was the most
significant SNV (P = 2.16 � 10�10). Next, we utilized a genome-
wide P value threshold (P < 5x10�5) to select significant SNVs
(N = 48) for development of the prediction model (Supplementary
Table 9). To avoid the issue of collinearity among the predictors,
we used an LD pruning approach to filter out independent SNVs.
The baseline prediction model (clinical model) was developed
based on gender, alcohol consumption, family history, hyperlipi-
demia, BMI, glucose, triglyceride, and microalbumin. Besides using
clinical variables to develop the clinical model, we further incorpo-
rated a polygenic risk score to develop an advanced model (com-
bined clinical and genetic models). We selected 26 SNVs to
construct a polygenic risk score after LD clumping of the 48 vari-
ants with P value < 5 � 10�5 (Supplementary Table 10). Receiver
operating characteristic curve analysis of the clinical model and
the advanced model are shown in Supplementary Fig. 12. The pre-
dictive performance of the advanced model was slightly better
than the clinical model (area under curve (AUC) 0.87 vs. 0.85). In
addition, the advanced model had slightly better predictive perfor-
mance for hypertension in females than in males (AUC 0.887 vs.
0.858, Supplementary Table 11).
Comparison of allele frequency of pharmacogenetics-related
SNVs identified in WGS databases across multiple populations

To demonstrate the clinical applications of 1KTW-WGS data, we
have listed examples of clinical scenarios relevant to genetic vari-
ants in Table 4. Warfarin is a widely used oral anticoagulant for
preventing or treating thromboembolism in patients with atrial
fibrillation or a mechanical valve. It is a well-known clinical issue
that warfarin displays large inter-individual and inter-ethnic dif-
ferences in the dose required to achieve its anticoagulation effects
[22,23]. SNVs in the CYP2C9 gene (rs1057910, rs1799853) and the



Fig. 4. (a) Fractions of very rare variants in different genomic locations in 1KTW-
WGS. (b) Fractions of very rare variants with different predicted functions using in
silico analysis in 1KTW-WGS. VEP, Variant Effect Predictor.
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VKORC1 gene (rs9923231) have been reported to be associated
with the dose requirement for warfarin [24–26]. Table 4 shows
that the MAFs of these three SNVs in 1KTW-WGS were signifi-
cantly higher or lower than those in Caucasians and African Amer-
icans. This genetic difference may be one of the reasons explaining
the different dosage requirements for warfarin across populations
(Supplementary Fig. 13).

Clopidogrel is the standard of care for patients receiving coro-
nary stenting [27–29]. It becomes an active metabolite after pro-
cessing by cytochrome P-450 (CYP) enzymes to achieve its
antiplatelet effect. LOF alleles (*2 or *3) of the CYP2C19 gene have
been reported to be associated with clopidogrel response and car-
diac ischemic events in patients with coronary stenting or acute
coronary syndrome [30,31]. It is reported that the prevalence of
the CYP2C19 LOF variants is 35% to 45% among blacks, and 25%
to 35% in whites, whereas it is 55% to 70% among Asians. The
prevalence of CYP2C19 poor metabolizers, which means individuals
carrying 2 LOF alleles, is 5% among blacks and whites, whereas it is
higher among Asians (10–20%). In addition to the CYP2C19*2 allele,
10% to 20% of Asians also carry another defective allele, CYP2C19*3
[32–34]. The differences in the MAFs of SNVs in CYP2C19*2 and
CYP2C19*3 across different populations are shown in Table 4,
showing substantial ethnic differences in the distribution and type
of CYP2C19 LOF alleles.

A very recent project entitled ’ChinaMap’ reported the genomes
of 10,588 individuals (http://www.mbiobank.com/) [35]. We com-
pared ChinaMap with the TWB, and found that in general, the
results between them are very similar, and only a few loci showed
minor differences. For example, rs199473009, associated with long
QT syndrome, was not reported in ChinaMap but showed a MAF of
0.002 in the TWB (Table 3). Another SNV, rs4244285 in Table 4, had
35% frequency in the TWB but around 31% in ChinaMap. Thus,
minor differences do exist between these two datasets.
Applying 1KTW-WGS to the investigation of the impact of
ethnic genetic differences on the SCN5A gene and development
of an online database

It is well known that SCN5A (cardiac voltage-gated sodium
channel a-subunit) is an important cardiac gene that can cause
several inheritable life-threatening arrhythmic diseases, including
long QT syndrome, Brugada syndrome, and dilated cardiomyopa-
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thy [36–39]. Mutations in SCN5A can in sudden cardiac death,
especially in children or young adults. For physicians and patients
in clinical practice, genetic testing for patients with inheritable
arrhythmic diseases and family members is strongly recom-
mended to obtain an early diagnosis, a treatment plan, and risk
stratification [40]. The SCN5A gene is an example of the usefulness
of 1KTW-WGS in clinical genetic testing. When a SCN5A variant is
identified in a patient, a physician could use our online database to
easily explore the potential functional impact of the identified
SCN5A variant in a race-specific way. An online tool was developed
to demonstrate this application of the 1KTW-WGS database.

A total of 1877 DNA variants in SCN5Awere identified in 1KTW-
WGS. A proportional test revealed that 349 variants showed signif-
icant differences in allele frequencies between the Asian and non-
Asian groups (proportion test: P < 0.001), and among them, 191
variants had higher allele frequencies in the Asian group (Supple-
mentary Table 12). Intriguingly, none of the 349 significant vari-
ants were reported in the HGMD database, suggesting that these
significant SCN5A variants identified in healthy volunteers are not
causal mutations in inheritable arrhythmic diseases or
cardiomyopathy.

As shown in Supplementary Fig. 14, we developed an online
database for SCN5A variants that accesses five datasets derived
from different populations (Supplementary Table 1). Briefly, users
can input the chromosomal coordinates of interest to query SCN5A
variants (Supplementary Fig. 14a), and the database is able to out-
put a spreadsheet including the genetic structure, allele frequency
in different populations, and the pathogenic level in previous stud-
ies, if available (Supplementary Fig. 14b). A tutorial and an exam-
ple of the use of the database are described in the Supplementary
Note.

With advancements in high-throughput technology, such as
microarrays and NGS, more SCN5A variants in Brugada syndrome
are expected to be identified, and thus this SCN5A database can
serve as an important reference system. Users can easily explore
racial differences and the potential functional impact of identified
SCN5A variants. Importantly, the results indicate that the develop-
ment of a reference database in healthy general populations can
facilitate the screening of important and pathogenic DNA variants
associated with inheritable arrhythmic diseases or cardiomyopa-
thy, since these variants seldom overlap between the 1KTW-WGS
and HGMD databases.
Discussion

We have deeply sequenced the whole genomes of 997 HC indi-
viduals in Taiwan and constructed 1KTW-WGS, the first large ref-
erence database for the HC population. The results presented here
reflect the wealth of knowledge that can be gleaned from WGS
data, providing a comprehensive understanding of the genetic
structure of the HC population and a basis to uncover associations
between DNA variants and phenotypes and develop clinical appli-
cations. The observed proportion of novel variants that were not
identified in the 1000G and gnomAD databases demonstrated
the value of in-depth population-specific WGS studies in HC.

Large-scale investigation of human genetic variations suggested
that recently increased human population growth has caused an
excess of rare genetic variants, most of which possibly arose in
the past 5,000–10,000 years [41]. It is reasonable to hypothesize
that these rare variants are population-specific. As a result, it
would be difficult to impute these variants from a reference data-
base generated from diverse genetic backgrounds. Here, we
showed that the number of imputed variants increased with the
combined use of both a population-specific reference (1KTW-
WGS data) and a non-specific reference (1000G phase 3). These

http://www.mbiobank.com/


Table 4
Examples of pharmacogenetics in clinical scenarios and comparisons of minor allele frequency across different populations.

Drug name Gene Genetic
variants

Minor Allele Frequency Clinical application or impact

Ref. Alt. 1KTWWGS 1000GCHB 1000GCHS 1000G
JPT

gnomADEAS gnomAD
SAS

1000GCEU gnomAD
non-
Finish

gnomAD
AFR

ChinaMap

Warfarin VKORC1 rs9923231 C T 0.865 0.956* 0.890 0.903 0.901* NA 0.429* 0.368* 0.102* NA Weekly warfarin dosage
CYP2C9 rs1057910 A C 0.034 0.038 0.047 0.019 0.033 0.109* 0.066 0.068* 0.012* 0.0459

rs1057910 A G NA NA NA NA NA NA NA <0.000 0.00007 NA
rs1799853 C T 0.001 <0.000 0.004 <0.000 0.0004 0.047* 0.152* 0.127* 0.021* 0.0012

Affects the metabolism of clopidogrel
and the risk of coronary stenting
thrombosis or cardiovascular events

Clopidogrel CYP2C19*2 rs4244285 G A 0.348 0.335 0.352 0.3220 0.308* 0.325 0.131* 0.147* 0.178* 0.3117
rs3758580 C T 0.305 0.335 0.352 0.3220 0.310 0.327 0.131 0.147* 0.179* 0.3121
rs181297724 G C 0.0048 <0.000 0.004 0.009 0.004 0.00007* <0.000 0.0012* 0.00004* 0.0053
rs181297724 G A NA NA NA NA NA NA NA <0.000 0.00007 NA
rs17878459 G C <0.000 <0.000 <0.000 <0.000 <0.000 0.0078* 0.0250 0.033 0.008 0.00024
rs778258371 G A <0.000 NA NA NA NA NA NA <0.000 <0.000 0.00005
rs144036596 G A NA <0.000 <0.000 <0.000 0.0001 0.0001 <0.000 0.0003 0.0002 0.00014
rs144036596 G C NA NA NA NA NA NA NA 0.00005 <0.000 NA
rs144036596 G T NA NA NA NA NA NA NA 0.00001 <0.000 NA
rs550527959 A T <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 <0.000 NA

CYP2C19*3 rs4986893 G A 0.055 0.044 0.048 0.072 0.063 0.004* 0* 0.00025* 0.00038* 0.0485
rs763625282 T A <0.000 NA NA NA NA NA NA <0.000 <0.000 0.0005
rs144036596 G A <0.000 <0.000 <0.000 <0.000 0.00011 0.0001 <0.000 0.00029 0.00021 0.00014
rs144036596 G C NA NA NA NA NA NA NA 0.00005 <0.000 NA
rs144036596 G T NA NA NA NA NA NA NA 0.00001 <0.000 NA

* Indicates P value < 0.01 compared with 1KTW-WGS; AFR: African/African American; CEU: European; CHB: Chinese-Bejing; CHS: Chinese-South; JPT: Japanese; EAS: East Asian; NA: not available; SAS: South Asian; Ref: reference;
Alt: alternate; CHC: chronic hepatitis C; <0.000 means the actual number is not provided in the databases, but it should be less than < 0.000001.
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results demonstrated that combining sequencing datasets within
and across populations can maximize sensitivity and resolution
for the discovery of DNA variants.

The density and frequency of variants in genes and genomic
regions afford important information about the strength of natural
selection acting on them [42,43]. Because deleterious mutations
generally disappear from populations faster than neutral muta-
tions via natural selection, SNVs observed at lower frequencies in
a population are indicative of natural selection. Furthermore, the
strength of natural selection (purifying selection) differs among
various functional genomic categories. We evaluated the relative
influence of natural selection on SNVs of each functional category
in the same way as previous large sequencing projects [41,44,45].
In 1KTW-WGS, we found that the non-synonymous FVRVs was
higher in all categories than in the 1000G dataset [17]. Further-
more, the non-synonymous FVRVs in both 1KTW-WGS and
1000G was higher than the FVRVs of intergenic regions in both
datasets, implying this region is under weak natural selection.
However, the FVRVs in 30-UTRs and introns in 1KTW-WGS was sig-
nificantly higher than the FVRVs in intergenic regions, whereas the
FVRVs in 30-UTRs and introns in the 1000G dataset was lower than
the FVRVs in intergenic regions [17]. This might be due to low cov-
erage in these regions in the 1000G dataset rather than a signature
of weak purifying selection in UTRs and introns. With regard to
structural variants, the overall shape of the distribution for size-
frequency showed that larger structural events are less frequent
than smaller ones, presumably reflecting the relatively deleterious
nature of larger structural changes. The difference between the
length distributions of coding and noncoding indels is possibly
the result of negative selection against frameshift indels [46,47].
Overall, our results are consistent with previous reports [42] show-
ing that variants with a greater impact on gene products tended to
have a higher FVRVs, illustrating that these variants can be associ-
ated with diseases and could be useful in capturing causal variants
in future studies.

In the 1KTW-WGS database, we observed that a relatively
healthy individual carries an average of 16.42 disease-causing vari-
ants reported in HGMD. This raises the question of how any person
remains disease-free. One possible explanation is that the exis-
tence of modifier alleles induces incomplete penetrance or variable
expression of DMs, which is dependent on the carrier’s genetic
background [48]. An alternative explanation is that HGMD con-
tains a large number of false-positive DMs [49]. Of the 1139 DMs
identified in 1KTW-WGS, 30% had a MAF greater than 1%, which
is higher than the prevalence of many of the diseases described
in HGMD. The majority of these mutations were common in
1KTW-WGS, suggesting that these variants are not subject to
strong selective pressure and are likely phenotypically benign. In
other words, given the inheritance patterns of the diseases con-
ferred by these variants, many individuals in 1KTW-WGS should
have been affected by diseases with profound physical or struc-
tural cardiac abnormalities or lethal arrhythmias (Table 3). For
example, one of these variants (MYH7 c.77C > T, rs186964570; T
variant for hypertrophic cardiomyopathy) was reported as a DM
in HGMD. The prevalence of hypertrophic cardiomyopathy (MIM
192600), an autosomal dominant disease, is estimated to be 0.2%.
However, some unrelated 1KTW-WGS individuals were heterozy-
gous carriers of this variant (prevalence = 0.46%, ~2.3-fold higher
than the disease prevalence). Thus, establishing population-
specific WGS reference datasets (null expectation) is crucial in
defining guidelines for investigating the causality of variants
[50]. This observation also emphasizes the need for caution in
assigning pathogenicity to variants purely based on in silico pre-
dicted impact on protein structure, which is widely used in clinical
genetic testing for patients with inherited diseases.
156
Of the hypertension-associated regions with genome-wide sig-
nificance in this study, rs16998073 in FGF5 was the most signifi-
cant SNV in Taiwan’s HC population. In a previous meta-analysis
focusing on 4 SNVs, rs16998073 was significantly associated with
hypertension risk in East Asians [51], consistent with our finding.
This suggests that rs16998073 may be used as a predictive marker
for hypertension in clinical practice. On the other hand, we found
that adding a weighted genetic risk score into the prediction model
generated by clinical variables only slightly improved the predic-
tion of hypertension, implying that clinical risk factors such as
age and BMI have a stronger predictive power for hypertension
than genetic variants. This is consistent with previous studies
[52,53]. We also identified rs2075291, which had a significantly
higher frequency in the Asian population. This variant is located in
APOA5, which regulates triglyceride levels, suggesting that it may
play a role in the regulation of lipid biosynthesis. Furthermore, pre-
vious studies have demonstrated that abnormal lipid expression
levels are an important risk factor in early-onset breast cancer
patients [54,55]. Our previous study also showed that deletion of
the APOA1/C3/A4/A5 gene cluster occurred in approximately 30% of
breast cancer patients in Taiwan (data not shown). Taken together,
the WGS data from the TWB further revealed three novel SNVs that
might be potential genetic regulators of lipid biosynthesis.

There were limitations in this study. First, we used two NGS
platforms (Illumina and Ion Torrent-Proton) in the TWB, which
might cause batch effects in the data. To address this issue, we per-
formed joint calling and selected the variants identified in common
by both Illumina and Ion Torrent-Proton platforms to do the com-
parisons. The difference in MAF was calculated by subtracting the
MAF in the Illumina platform from the MAF in the Ion Torrent-
Proton platform. The results are illustrated in Supplementary
Fig. 15. Notably, no major differences were observed, suggesting
the reproducibility of the two platforms to do the variant analysis.
Similar to the MAF difference analysis, we selected the variants
identified in common to both platforms for the PCA plot. The first
principal component explained about 20% of the variance and ade-
quately distinguished the two platforms (Supplementary Fig. 16).
Additionally, we did PCA of the samples analyzed in the TWB and
the 1000G CHB population. The results are illustrated in Supple-
mentary Fig. 17. Notably, the plot showed a triangle shape, which
suggested that some batch effects exist among the 3 different plat-
forms. However, the values of the first and second principal com-
ponents are only 8.2% and 5.08%. Therefore, the differences are
not very large and the results across the 3 different platforms could
be reliably compared each other. Second, although 1KTW-WGS
was established, population-wide sequencing with a larger sample
size (e.g., > 100 K) is warranted to discover the full spectrum of
SNVs and structural variants. Third, all participants who were
enrolled in TWB were volunteers. They were not randomly sam-
pled from the HC population. Lastly, in our study, Torrent Variant
Caller (TVC) was utilized for Ion Torrent-Proton data, whereas
iSAAC Variant Caller was used for Illumina data. No study has
directly compared the callers of the two types of the data, but a
previous study [56] suggested that the consistency of different call-
ers used with Illumina is up to 91.7%, whereas the variations of the
different callers used with Ion Torrent-Proton data ranged from
1.3% to 34.6%. Furthermore, some previous reports indicated that
the false discovery rate of SNVs and indels was relatively higher
in the Ion Torrent-Proton system than in the Illumina system
[57,58]. In addition, several studies suggested that higher false pos-
itive rates were observed when using the Ion Torrent-Proton sys-
tem versus the Illumina system [59–61]. One plausible
explanation for this is that the data from the Illumina system have
better sequencing quality and stable read length. These advantages
give the Illumina system better performance in identification of
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rare variants because of better alignment quality as well as more
uniform and consistent reads.
Conclusions

In this study, we used the 1KTW-WGS reference database to
discover novel HC population-specific variants, identified novel
hyperlipidemia-related variants, developed a hypertension predic-
tion model, and established an online SCN5A tool for genetic test-
ing. Taken together, the results demonstrate the necessity of
constructing a population-specific genomic reference, which can
pave the way for precision medicine and population health
initiatives.

The cost of WGS is gradually decreasing. Thus, we expect that a
more comprehensive interrogation of genetic variants will advance
basic research and support development of diagnostic tools,
healthcare customization, and preventive therapeutics for human
diseases.
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