
RESEARCH ARTICLE Open Access

Analysis of lifestyle and metabolic predictors of
visceral obesity with Bayesian Networks
Alex Aussem1*, André Tchernof2, Sérgio Rodrigues de Morais1, Sophie Rome3

Abstract

Background: The aim of this study was to provide a framework for the analysis of visceral obesity and its
determinants in women, where complex inter-relationships are observed among lifestyle, nutritional and metabolic
predictors. Thirty-four predictors related to lifestyle, adiposity, body fat distribution, blood lipids and adipocyte sizes
have been considered as potential correlates of visceral obesity in women. To properly address the difficulties in
managing such interactions given our limited sample of 150 women, bootstrapped Bayesian networks were
constructed based on novel constraint-based learning methods that appeared recently in the statistical learning
community. Statistical significance of edge strengths was evaluated and the less reliable edges were pruned to
increase the network robustness. To allow accessible interpretation and integrate biological knowledge into the
final network, several undirected edges were afterwards directed with physiological expertise according to relevant
literature.

Results: Extensive experiments on synthetic data sampled from a known Bayesian network show that the
algorithm, called Recursive Hybrid Parents and Children (RHPC), outperforms state-of-the-art algorithms that
appeared in the recent literature. Regarding biological plausibility, we found that the inference results obtained
with the proposed method were in excellent agreement with biological knowledge. For example, these analyses
indicated that visceral adipose tissue accumulation is strongly related to blood lipid alterations independent of
overall obesity level.

Conclusions: Bayesian Networks are a useful tool for investigating and summarizing evidence when complex
relationships exist among predictors, in particular, as in the case of multifactorial conditions like visceral obesity,
when there is a concurrent incidence for several variables, interacting in a complex manner. The source code and
the data sets used for the empirical tests are available at http://www710.univ-lyon1.fr/~aaussem/Software.html.

Background
Introduction
Recently, Bayesian networks (BN) have become a very
popular tool for biological network reconstruction [1-3],
for genotype-to-phenotype relationship studies [4] and
for clinical and microarray data aggregation [5,6]. BN
are directed acyclic graphs (DAG) that model the prob-
abilistic dependencies underlying the data. These graphi-
cal models are highly attractive for their ability to
describe complex probabilistic interactions between vari-
ables. They offer a coherent and intuitive representation
of uncertain domains of knowledge. The graphical part

of BN reflects the structure of a problem, while local
interactions among neighboring variables are quantified
by conditional probability distributions. Learning a BN
from data requires identifying both the model structure
 and the corresponding set of model parameter
values. Given a fixed structure, however, it is straightfor-
ward to estimate the parameter values. The task can be
efficiently solved according to the maximum likelihood
(ML) or maximum a posteriori (MAP) criterion under
the assumption that the learning data contain no miss-
ing values [7,8]. As a result, research on the problem of
learning BN from data is focused on methods for identi-
fying the structure that best fits the data. Despite signifi-
cant recent progress in algorithm development, the
computational inference of network structure is currently
still very much an open challenge in computational
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statistics [7,9]. To appreciate the complexity of learning a
DAG, we note that the number of DAGs is super-expo-
nential in the number of nodes [7].
Broadly speaking, there are two main approaches to

BN structure learning. Both approaches have advantages
and disadvantages. Score-and-search methods search
over the space of structures (or the space of equivalence
BN classes) employing a scoring function to guide the
search. Another approach for learning BN structures,
known as the constraint-based (CB) approach, follows
more closely the definition of BN as encoders of condi-
tional independence relationships. According to this
approach, some judgments are made about the (condi-
tional) dependencies that follow from the data and use
them as constraints to construct a partially oriented
DAG (PDAG for short) representative of a BN equiva-
lence class. There are many excellent treatments of BN
which surveys the learning methods [7,9]. When data
sets are small, the relative benefits of the two
approaches are still unclear. While none has been pro-
ven to be superior, considerable advances have been
made in the past years in the design of highly scalable
divide-and-conquer CB methods [10-14] in order to
improve the network reconstruction accuracy when the
number of samples is small.
In this study, we apply one of these CB algorithms,

named Recursive Hybrid Parents and Children (RHPC),
for representing the statistical dependencies between 34
clinical variables among 150 women with various
degrees of obesity. Obesity is recognized as a disease in
the U.S. and internationally by governments, health
organizations, researchers and medical professionals. It
is a complex multifactorial condition that needs to be
studied by the means of multidisciplinary approaches
involving biological expertise and new statistical and
data mining tools. Features affecting obesity are of high
current interest. Clinical data, such as patient history,
lifestyle parameters and basic or even more elaborate
laboratory analytes (e.g., adiposity, body fat distribution,
blood lipid profile and adipocyte sizes) form a complex
set of inter-related variables that may help better under-
stand the pathophysiology of visceral obesity and pro-
vide guidance for its clinical management. Gregori et al.
[15] performed a meta-analytic framework for the analy-
sis of obesity and its determinants in children using
Bayesian networks. Only seven lifestyle risk factors were
considered as being potentially related to obesity in this
population. To the best of our knowledge, our study is
the first attempt to use BNs in the context of modeling
the complex relationships between lifestyle and meta-
bolic correlates of visceral obesity among women.
We use the bootstrapping method to generate more

robust network structures as discussed in [6,16]. Statisti-
cal significance of edge strengths are evaluated using

this approach. If an edge has a confidence above the
threshold, it is included in the consensus network. Thus,
if dependencies have enough support in the bootstrap-
ping process they are captured and represented in the
final consensus network. The confidence estimate
assigned to each network edge is represented graphically
on the final network. Such network represents a power-
ful computational tool for identifying putative causal
interactions among variables from observational data.
The consensus network graphically represents the possi-
bly causal independence relationships that may exist in
a very parsimonious manner [17]. In this study, special
emphasis was placed on integrating physiological knowl-
edge into the graph structure. Once the consensus
PDAG was constructed from data, the remaining undir-
ected edges were then directed according to our causal
interpretation and additional latent variables were added
to the graph for the sake of clarity, coherence and concise-
ness. The graphical representation provides a statistical
profile of this sample of obese women, and meanwhile
helps identifying the most important predictors of visceral
obesity. Using the concept of a Markov Blanket we can
identify all the variables that shield off the class variable
from the influence of the remaining network. Therefore,
BNs automatically perform feature selection by identifying
the (in)dependency relationships with the class variable.
We compare our findings with the results obtained using
the same data and more traditional regression models.

Bayesian networks
Formally, a BN is a tuple < , P > where  = <U, E >
is a directed acyclic graph (DAG) with nodes represent-
ing the variables in the domain U, and edges represent-
ing direct probabilistic dependencies between them.
P denotes the joint probability distribution on U. The
BN structure encodes a set of conditional independence
assumptions: that each node Xi is conditionally indepen-
dent of all of its nondescendants in  given its parents
Pa i

 . These independence assumptions, in turn, imply
many other conditional independence statements, which
can be extracted from the network using a simple gra-
phical criterion called d-separation [8].
We denote by X ⊥P Y|Z the conditional independence

between X and Y given the set of variables Z where P is
the underlying probability distribution. Note that an
exhaustive search of Z such that X ⊥P Y|Z is a combina-
torial problem and can be intractable for high dimen-
sion data sets. We use X Y⊥ | Z to denote the
assertion that X is d-separated from Y given Z in  .
We denote by dSep(X, Y), a set that d-separates X from Y.
If < , P > is a BN, X ⊥P Y|Z if X Y⊥ | Z . The converse
does not necessarily hold. We say that < , P > satisfies
the faithfulness condition if the d-separations in 
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identify all and only the conditional independencies in P,
i.e., X ⊥P Y|Z if and only if (iff) X Y⊥ | Z . Two graphs
are said equivalent iff they encode the same set of condi-
tional independencies via the d-separation criterion. The
equivalence class of a DAG  is a set of DAGs that are
equivalent to  . [8] established that two DAGs are
equivalent iff they have the same underlying undirected
graph and the same set of v-structures (i.e., uncoupled
head-to-head meetings X ® Y ¬ Z). So we define an
essential graph (also called a DAG pattern) for a Markov
equivalence class to be the partially directed acyclic graph
(PDAG), that has the same links as the DAGs in the
equivalence class and has oriented all and only the edges
common to all of the DAGs in the equivalence class. The
directed links in the essential graph are called the com-
pelled edges [7].
An important concept of BN is the Markov blanket of

a variable, which is the set of variables that completely
shields off this variable from the others. In other words,
a Markov blanket MT of T is any set of variables such
that T is conditionally independent of all the remaining
variables given MT . A Markov boundary, MBT , of T is
any Markov blanket such that none of its proper subsets
is a Markov blanket of T. Suppose < , P > satisfies the
faithfulness condition. Then, for all X, the set of parents,
children of X, and parents of children of X is the unique
Markov boundary of X. A proof can be found for instance
in [7]. We denote by PCT

 , the set of parents and
children of T in  , and by SPT

 , the set of spouses of T
in  , i.e., the variables that have common children with
T. These sets are unique for all  , such that < , P >
satisfies the faithfulness condition and so we will drop
the superscript  .

Bayesian network structure learning
Automatically learning the graph structure of a BN is a
challenging topic of pattern recognition that has
attracted much attention over the last few years. CB
methods systematically check the data for conditional
independence relationships and try to construct a par-
tially directed graphical structure (also called a perfect
map) that encodes perfectly the set of independencies.
Typically, these algorithms run a c2 independence test
when the dataset is discrete and a Fisher’s z test when it
is continuous in order to decide on dependence or inde-
pendence, that is, upon the rejection or acceptance of
the null hypothesis of conditional independence. There-
fore, conditional independencies that are read off from
the BN structure are in total agreement with the condi-
tional independencies that are obtained by the statistical
tests. Very powerful, correct, scalable and data-efficient
CB algorithms have been recently proposed [10-12].
They are correct (or sound) in the sense that they

return the correct essential graph under the assumptions
that the independence tests are reliable and that the
learning database is a sample from a distribution P faith-
ful to a DAG  . The (ideal) assumption that the inde-
pendence tests are reliable means that they decide (in)
dependence iff the (in)dependence holds in P. In this
paper we adopt one of these CB approaches [11,18].
The essential graph is obtained by running an algorithm
called Recursive HPC (RHPC), where HPC stands for
Hybrid Parents and Children.

Results
Simulation experiments on artificial data
As RHPC relies on HPC to build the whole network
structure, we conducted several experiments on syn-
thetic data to assess the comparative performance of
HPC, and two algorithm proposals that appeared
recently in the literature, namely MMPC [12] and
GetPC [10]. The source code (C++) of HPC as well as
all data sets used for the empirical tests are available at
http://www710.univ-lyon1.fr/~aaussem/Software.html.
The authors’ implementation of MMPC and GetPC can
be found respectively at http://discover.mc.vanderbilt.
edu/discover/public and http://www.ida.liu.se/~jospe.
MMPC was deemed one of the best CB algorithms in
[12] and GetPC was used recently in [2] for modeling
gene networks. We also report the performance of our
weak learner Inter-IAPC for comparison. For GetPC
and MMPC, we used the softwares proposed by the
respective authors (see footnote). The confidence
threshold of the independence test was fixed to a = 0.05
for all algorithms. All the data sets used for the empiri-
cal experiments presented in this section were sampled
from a bio-realistic network that has been previously
used as benchmark for BN learning algorithms, namely
Insulin (35 nodes and 52 edges). The Insulin network
[19] was chosen purposely as it consists of the same
number of nodes as our dataset. Four sample sizes have
been considered: 200, 500, 1000 and 2000. For each
sample size, 100 data sets were sampled. We do not
claim that this benchmark resembles our real-world pro-
blem, however, it makes it possible to compare the out-
puts of the algorithms.
All four algorithms were run on the target node having

the largest degree (13 neighbors) in the Insulin BN to
increase the difficulty of the task. The variables in the out-
put of the algorithms were compared against the true
neighbors. To evaluate the accuracy, we combined preci-
sion (i.e., the number of true positives in the output
divided by the number of nodes in the output) and recall
(i.e., the number of true positives divided by 13, the size of

the true PC set) as ( ) ( )1 12 2− + −precision recall , to
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measure the Euclidean distance from perfect precision and
recall, as proposed in [10]. Figure 1 summarizes the varia-
bility of the Euclidean distance over 50 data sets in the
form of quadruplets of boxplots, one for each algorithm (i.
e., MMPC, GetPC, Inter-IAPC and HPC). The advantage
of HPC against the other three algorithms is clearly notice-
able. HPC outperforms the other algorithms in terms of
Euclidean distance from perfect precision and recall.

Simulation experiments on the sample of women
The consensus PDAG obtained by running RHPC on
the present sample of women is shown in Figure 2. Line
thickness corresponds to the relative confidence of the
edges. The edges that appeared more than 25% in the
networks were included in the aggregate PDAG. The
threshold was tuned on the previous Insulin benchmark

samples to maximize accuracy. As may be seen, the
directionality of the arrows was partially identifiable: 14
edges out of 34 were directed, indicating the presence of
several robust uncoupled head-to-head meetings (T ®
Y ¬ X).
Physiological knowledge integration into the model
Several interconnected groups of variables were identi-
fied, e.g., beer consumption, wine consumption and
spirit consumption; cigarettes per day and low exercise;
OM and SC fat cell sizes. In each of these densely con-
nected subgraphs, the variables were highly interdepen-
dent and a common cause is likely to explain the
observed correlations. Hence, we added some extra
nodes and directed some of the links according to phy-
siological knowledge available in the literature. The
result is the partially directed acyclic graph (PDAG) that

Figure 1 Validation of the learning method on the Insulin benchmark. Empirical experiments on synthetic data sets from the Insulin BN.
Each algorithm is run on the node having the largest neighborhood (13 nodes). Four sample sizes were considered: 200, 500, 1000 and 2000.
The figure shows the distribution over 100 data sets of the Euclidean distance from perfect precision and recall, in the form of boxplots.
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is shown in Figure 3. Dashed nodes and arrows are the
latent variables that were added for sake of clarity and
coherence. By definition, these latent variables are not
observed, nor recorded in our data set. For example, the
variable high alcohol intake was added as a common
“cause” to beer consumption, wine consumption and
spirit consumption; the variable unhealthy lifestyle was
added as a common cause to cigarettes per day, high
alcohol intake and low exercise; the latent variables fat
storage and prevailing hormonal conditions were added
as two distinct common causes to SC fat cell size and
OM fat cell size.
Almost all the undirected edges were oriented based on

current literature as follows. Edges directed from the age
variable were oriented based on the well-documented
impact of ageing on visceral adipose tissue accumulation,
blood pressure and plasma LDL-cholesterol levels
[20,21]. The edge between age and tea consumption is
based on the 2004 Canadian Community Health Survey,
which showed a steady increase in tea consumption from
19 to more than 71 years of age [22]. The edge between
tea consumption and blood pressure was oriented based
on literature showing lower cardiovascular disease risk
in tea consumers [23] and a direct effect of black tea

consumption on peripheral blood flow and arterial stiff-
ness [24]. The edge between age and the number of live
children was attributed to the slight decrease in Canadian
birth rates observed between 1961-66 and 1981-86 [25],
which corresponds approximately to the period in which
women of the study had their children. Accordingly,
older women of the sample were more likely to have
delivered slightly more children. Orientation of the edge
between the number of pregnancies and the number of
live children is self-explanatory.
The edge between the number of live children and

OM fat cell size was derived from literature supporting
that post-pregnancy weight retention is an important
risk factor for obesity [26]. The finding of a specific
association between the number of children and OM fat
cell size was novel and warrants further investigation.
The edges between OM and SC fat cell sizes and the
variables obesity or visceral fat is self explanatory since
the excess adipose tissue mass of obese or abdominal
obese individuals is constituted of larger fat cells. Asso-
ciations between fat cell size and obesity have been pre-
viously observed [27]. The edges between visceral fat or
large OM fat cells and metabolic variables such as
LDL-cholesterol, triglycerides and blood pressure was

Figure 2 Consensus PDAG of visceral obesity related variables
in women returned by RHPC. Consensus PDAG obtained by
running RHPC on bootstrapped samples. Labels are self-explanatory.
Line thickness corresponds to the relative edge strength.

Figure 3 BN of visceral obesity related variables in women
after physiological knowledge integration into the graph.
PDAG of Figure 2 oriented according to biological knowledge. Dash
nodes and arrows are latent variables that were added based on
current literature.
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oriented based on the ‘portal vein hypothesis’, which
states that visceral fat is a causal agent for metabolic
disturbances [28]. However, this hypothesis has not yet
been fully proven as operative and has been challenged
by a number of investigators. Further studies are
required to firmly establish causality. However, the fact
that the association between visceral fat and metabolic
disturbances is independent from overall obesity is well-
accepted [29,30]. The edges between the various compo-
nents of body composition (i.e., bone density, lean body
mass and obesity) were logical but it was difficult to
provide causal direction between these variables. Indeed,
many genetic, epigenetic, developmental and environ-
mental factors can contribute to determine body built of
a given individual. Moreover, the sizes of all compart-
ments generally evolve in a more or less coordinated
manner throughout the individual’s existence [31,32]. It
was expected that the variable 5-yr maximal weight
would be a strong correlate of the level of obesity and
lean body mass since these variables are the main com-
ponents of body composition [32] and that most
patients reported a stable weight in the five years pre-
ceding their inclusion in the study.
The edges around the number of hours of work and

the number of meals out per week were oriented based
on the demonstration that increased working time was
associated with food choice coping strategies [33], which
we suggest is reflected by the edges to number of meals
out per week, beer, wine and coffee consumption. On
the other hand, the number of meals out per week was
related to obesity. Accordingly, the frequency of restaurant
food consumption was previously found to be positively
related to body fatness [34]. Wine consumption was
related directly with plasma levels of HDL-cholesterol.
This edge was oriented based on epidemiological data
showing a protective effect of moderate wine consumption
on HDL-cholesterol levels [35]. Low leisure time physical
activity was linked together with smoking habits under a
latent causal variable that we termed unhealthy lifestyle.
These variables were also linked with coffee and beer con-
sumption, but had no direct link with the level of obesity.
We were unable to provide orientation for these edges.
Moreover, we were not able to readily explain a small
number of edges. For example, the link between age at
menarche, which reflects timing of puberty, and dietary
supplement use is not intuitive. Further analyses and other
samples will be required to clarify this apparent
association.
Statistical validation
We noticed from the PDAG that OM fat cell size, visc-
eral fat, blood pressure, tea consuption and age belonged
to the triglycerides Markov boundary, though the edge
between OM fat cell size and triglycerides was only
moderate in strength. The influence of OM fat cell size

on triglycerides was mostly mediated by visceral fat. We
observed that age and triglycerides were marginally inde-
pendent according to the d-separation rule. However,
they became dependent conditioned on visceral fat. The
PDAG was consistent with multivariate linear regression
analyzes performed a posteriori on the sample (Table 1).
In model 1, plasma triglyceride levels were predicted
using computed tomography-measured visceral adipose
tissue area (visceral fat variable) and total body fat mass
(which is included in the variable obesity). Visceral fat
explained 31.9% of the variance in triglyceride levels
whereas overall obesity was not a significant predictor of
triglyceride levels. A similar analysis in which plasma tri-
glyceride levels were predicted by OM and SC fat cell
size was also performed (Table 1, model 2). OM fat cell
size explained 21.2% of the variance in triglyceride levels,
whereas SC fat cell size was not a significant predictor of
triglyceride levels in the model.

Discussion
The purpose of this paper was to introduce the BN meth-
odology in the context of clinical studies, specifically obe-
sity, and to show its effectiveness, as a component of
general data mining/knowledge discovery approaches in
epidemiology research. We have evaluated a consensus
BN learning approach based on boot-strapping techni-
ques on synthetic data with satisfactory results. Although
our approach did not use any prior information, it was
successful in uncovering biologically relevant dependen-
cies and conditional independencies. Once the most
interesting dependencies are ascertained, traditional
statistical methods (e.g. linear or logistic regression, etc.)
can be used to rigorously scrutinize the resulting smaller
subnetworks.
In this study, special emphasis was put on integrating

physiological expertise and statistical data analysis
together. It is well beyond the scope and purpose of
this paper to delve deeper into the problem of infer-
ring causalities from observational data. However, the
usefulness of BN stems partly from their causal inter-
pretation. As we have seen, the graphical representa-
tion is useful as it allows tighter collaboration between
the modeler and the biologist. The integration of med-
ical knowledge into data-driven models is not only
desirable, but it is also far easier and less subjective
than constructing the whole BN with a priori knowl-
edge. In this spirit, most edges were directed according
to plausible causal inference although interpretation of
edges as carriers of information does not necessarily
imply causation.

Conclusions
Thirty-four predictors related to lifestyle, adiposity, body
fat distribution, blood lipids and adipocyte sizes have
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been considered as potential correlates of visceral obe-
sity in women. The analysis was performed with a novel
scalable and effective constraint-based bayesian network
structure learning algorithm called RHPC.
From a biological point of view, the present study

confirms, among other interesting findings, that visceral
fat is the predominant predictor of triglyceride levels in
obese individuals. It is reassuring that an unsupervised
BN analysis uncovered previously established relation-
ships between visceral fat, blood pressure, aging and tri-
glyceride levels. The advantage of BN method is not
that it will identify the “true causes”, but rather that it
will perform initial data exploration to unearth new
knowledge in a semi-automated and rapid fashion.
In conclusion, we suggest that BNs are valuable data

mining tools for the analysis of clinical data. In addition,
BNs can explicitly combine both expert knowledge from
the field and information studied from the data. A need
for such multi-step processes (hypothesis generation
step followed by a traditional hypothesis testing step) is
essential. Finally, an extension to our existing framework
would be to consider Bayesian model averaging as an
alternative to a single consensus model selection. This
extension is currently underway.

Methods
The Recursive Hybrid Parents and Children algorithm
RHPC is based on the faithfulness assumption. As
RHPC calls HPC on each node, we start discussing HPC
first. HPC receives a node X and returns its adjacent
nodes PCX. Under this faithfulness assumption, X and Y

are not adjacent in  if and only if ∃ Z Î U\{X, Y}
such that X ⊥ Y|Z [7]. As an exhaustive search of Z is
intractable for high dimension data sets. HPC perfoms a
heuristic search with a severe restriction on the maxi-
mum conditioning size in order to significantly increase
the reliability of the statistical independence tests. Note
that other similar ‘Parent and Children’ learning proce-
dures were proposed recently in the machine learning
literature, namely MMPC [12] and GetPC [10]. They
could be used as well. Nonetheless HPC was favored in
a recent evaluation using the same conditional indepen-
dence test, over a range of different networks, sample
sizes and number of variables [11].

Formally, HPC can be viewed as an ensemble method
for combining many weak PC learners in an attempt to
produce a stronger PC learner. The algorithm was
designed in order to endow the search procedure with
the ability to: 1) handle efficiently data sets with thou-
sands of variables but comparably few instances; 2) deal
with datasets which present some deterministic relation-
ships among the variables; 3) be correct under the faith-
fulness condition; and 4) be able to learn large
neighborhoods. HPC is based on three subroutines:
Data-Efficient Parents and Children Superset (DE-PCS),
Data-Efficient Spouses Superset (DE-SPS), and Inter-
leaved Incremental Association Parents and Children
(Inter-IAPC), a weak PC learner based on Inter-IAMB
[36] that requires little computation. HPC was shown to
be correct in the sample limit under the faithfulness
assumption [11,18]. For the sake of conciseness, we only
discuss the main HPC routine. The algorithm details are
omitted here for brevity: RHPC and its sub-routines are
thoroughly described in additional file 1 for the sake of
conciseness.
HPC may be thought of as a way to compensate for the

large number of false negative nodes, at the output of the
weak PC learner with few data cases, by performing extra
computations. HPC receives a target node T, a data set

 and a set of variables U as input and returns an esti-
mation of PCT. It is hybrid in that it combines the bene-
fits of incremental and divide-and-conquer methods. The
procedure starts by extracting a superset PCST of PCT

(line 1) and a superset SPST of SPT (line 2) with a severe
restriction on the maximum conditioning size (Z <= 2)
in order to significantly increase the reliability of the
tests. A first candidate PC set is then obtained by running
the weak PC learner on PCST ∪ SPST (line 3). The key
idea is the decentralized search at lines 4-8 that includes,
in the candidate PC set, all variables in the superset
PCST ∪ SPST that have T in their vicinity. Note that, in
theory, X is in the output of Inter-IAPC(Y) if and only if
Y is in the output of Inter-IAPC(X). However, in practice,
this may not always be true, due to the statistical test
errors that should appear, especially with few data sam-
ples. The decentralized search enables the algorithm to
handle large neighborhoods while still being correct
under faithfulness condition.

Table 1 Prediction of plasma triglyceride levels

Independent variable Parameter estimate P value Partial R2× 100 Total R2× 100

Model l Visceral fat 1.0568 0.0001 31.9 31.9

Obesity (Total body fat mass) 0.0425 NS 0.0

Model 2 OM fat cell size 0.0088 0.0001 21.2 21.9

SC fat cell size 0.0031 NS 0.0

Multivariate regression models for the prediction of plasma triglyceride levels with adiposity measures (top); or fat cell size in the omental (OM) and
subcutaneous (SC) compartment (bottom). Variables with non-normal distributions (Shapiro-Wilk test p < 0.05) were log-10- or Box Cox-transformed for the
analysis.
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The essential graph is obtained by running HPC on
the every node and by directing the compelled edges as
shown in RHPC. Note that HPC must have found dSep
(X, Y ) (at line 5 of RHPC) and have cached it for later
retrieval. Alternatively, HPC can be run recursively on
the adjacent nodes of a target variable in order to estab-
lish a local graph without having to construct the whole
BN first as discussed in [2]. RHPC applies standard
techniques at lines 4-19 to identify the compelled edges.
The reader is directed to [7], pp. 538, for further details.
The correctness and completeness of the edge orientation
in RHPC are demonstrated in [37].

Network aggregation
As discussed in the introduction, our practical goal is to
extract a BN structure that encodes the conditional inde-
pendencies between 34 variables given our sample of 150
women. The most common approach to discovering the
structure is to use learning with model selection to pro-
vide us with a single model. However, model selection is
known to be sensitive to the particular data set, especially
with few instances. Had we sampled another data set of
the same size from the same distribution, model selection
would have learned a different model [16]. So we cannot
simply accept our chosen structure as a true representa-
tion of the under-lying distribution. Averaging over the
sampled structures that are generated by a sampling pro-
cess produces models that are more robust, have greater
confidence and place less reliance on a single dataset.
Several approaches exist: generating samples of the BN
structure from its marginal posterior distribution using
Monte Carlo Markov chain (MCMC) [16,38-40], using
bootstrapping methods for computing a statistical confi-
dence features within a BN [6,16]. In this study, we make
use of the bootstrapping method to generate a more
robust network structure. The ‘re-shuffled’ dataset is gen-
erated from the original dataset (re-sampling with repla-
cement), the graph is built from this re-shuffled set and
then the procedure is repeated a sufficient number of
times. Confidence in a particular edge is measured as a
percentage of the number of times this edge actually
appears in the set of reconstructed graphs. If an edge has
a confidence above the threshold, it is included in the
consensus network. Thus, if dependencies have enough
support in the bootstrapping process, they are captured
and represented in the final consensus network. When
computing confidence estimates, we define a feature as
the existence of an edge between two nodes in the
PDAG. Thus, the bootstrapped network has a confidence
estimate assigned to each network edge. Where directed
edges are present in a PDAG, they contribute only to the
confidence estimate for the edge in that direction,
whereas undirected edges contribute to the confidence
estimate for an edge in both directions. If an edge has a

confidence above the threshold, it is included in the con-
sensus PDAG, and if edges are found in both directions
(e.g. from node Xi ® Xj and Xj ¬ Xi), then the edge is
undirected. Thus, if directional dependencies have
enough support in the bootstrapping process, they will be
captured and represented in the final PDAG.

Biological data
The sample of 150 obese women used for these analyzes
consists of 34 variables related to lifestyle such as alco-
hol consumption, smoking habits, leisure time activity
and eating patterns. Dual energy x-ray absorptiometry
was used to obtain whole-body measures of body com-
position (bone density, lean body mass, total body fat
mass). Computed tomography was used to assess body
fat distribution at the abdominal level. These measures
include adipose tissue areas of the abdominal fat com-
partments located subcutaneously and inside the
abdominal cavity (visceral fat). Finally, the variables
examined also include average adipocyte sizes measured
both in the omental (OM) and subcutaneous (SC) adi-
pose tissue compartments from adipose tissue samples
obtained during surgery. Women included in these ana-
lyses have been the object of previous publications on
other topics [41,42]. All women who participated in the
protocols signed an informed consent document. The
projects were approved by the ethics committee of Laval
University Medical Center.

Additional material

Additional file 1: Description of the Recursive Hybrid Parents and
Children algorithm. This file contains a detailed discussion of our
algorithm called Recursive Hybrid Parents and Children (RHPC). RHPC
takes a data set as input and returns a partially oriented DAG (PDAG for
short) representative of a bayesian network equivalence class. The latter
is obtained by directing the compelled edges of the skeleton. The
skeleton is obtained by running an algorithm called Hybrid Parents and
Children (HPC) algorithm recursively on every node. RHPC is shown to
be sound in the sample limit.
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