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Abstract

Objective

The transition from childhood to teenaged years is associated with increased testosterone

and a decreased iron status. It is not clear whether higher testosterone levels cause the

decreased iron status, and to what extent, obesity-related inflammation influences the iron-

testosterone relationship. The aim of the present study was to examine relationships of tes-

tosterone, iron status, and anti-/proinflammatory cytokines in relation to nutritional status in

boys and young adolescent Taiwanese males.

Methods

In total, 137 boys aged 7~13 yr were included. Parameters for obesity, the iron status, tes-

tosterone, and inflammatory markers were evaluated.

Results

Overweight and obese (ow/obese) boys had higher mean serum testosterone, interleukin

(IL)-1β, and nitric oxide (NO) levels compared to their normal-weight counterparts (all

p<0.05). Mean serum ferritin was slightly higher in ow/obese boys compared to normal-

weight boys, but this did not reach statistical significance. A multiple linear regression

showed that serum ferritin (β = -0.7470, p = 0.003) was inversely correlated with testoster-

one, while serum IL-10 (β = 0.3475, p = 0.009) was positively associated with testosterone

after adjusting for covariates. When normal-weight boys were separately assessed from

ow/obesity boys, the association between testosterone and serum ferritin became stronger

(β = -0.9628, p<0.0001), but the association between testosterone and IL-10 became non-

significant (β = 0.1140, p = 0.4065) after adjusting for covariates. In ow/obese boys, only IL-
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10 was weakly associated with serum testosterone (β = 0.6444, p = 0.051) after adjusting

for age.

Conclusions

Testosterone and serum ferritin are intrinsically interrelated but this relationship is weaker in

ow/obese boys after adjusting for age.

Introduction
Associations between androgens and erythropoiesis have been known for more than half a cen-
tury [1]. Low testosterone levels are a potential risk factor for anemia in older men and women
[2]. In particular, hypogonadal men have a 5-fold (1.41~21.8) higher risk of anemia compared to
eugonadal men [2]. Testosterone administration to hypogonadal men induces erythropoiesis via
increased erythropoietin (EPO) and inhibited hepcidin levels [3,4]. Low hepcidin, a key regulator
of iron metabolism, leads to a higher iron absorption rate in the small intestine. EPO can increase
iron incorporation into red blood cells (RBCs) in the bone marrow [5]. It is also recognized that
iron may exert specific effects on androgen. For example, a pituitary iron overload predicts hypo-
gonadism in thalassemia patients with transfusional iron overload [6]. Liver iron overload is
associated with increased sex hormone-binding globulin (SHBG) and moderate hypogonadotro-
pic hypogonadism in men with non-genetically dysmetabolic iron overload syndrome (DIOS)
[7]. Eugonadal men with iron-deficiency anemia (IDA) who received intravenous iron therapy
(800~1200 mg elemental iron) for 12 weeks exhibited increased levels of testosterone, luteinizing
hormone (LH), follicle-stimulating hormone (FSH), and sperm parameters [8].

Obesity is frequently associated with low testosterone [9] and high serum ferritin levels [10].
Both testosterone and iron may interact with inflammatory responses. Testosterone can sup-
press proinflammatory responses but upregulates immunomodulatory cytokines such as inter-
leukin (IL)-10 [11,12]. Proinflammatory cytokines are potent regulators of serum ferritin and
hepcidin. Hepcidin plays a key role in the innate and adaptive immunities [13]. Elevated serum
ferritin can function as a proinflammatory modulator by upregulating IL-1β, tumor necrosis
factor (TNF)-α, and nitric oxide (NO) transcriptional activity [14,15].

The transition from childhood to teenaged years is associated with increased testosterone
and a decreased iron status. Currently, it is not clear whether higher testosterone levels cause
the decreased iron status, and to what degree obesity-related inflammation influences the iron-
testosterone relationship in young boys. The broad aims of this study were: 1) to investigate the
relationship between testosterone and the iron status in terms of the nutritional status; and 2)
to evaluate the effects of anti-/proinflammatory cytokines on testosterone levels in boys and
young adolescent males.

Materials and Methods

Study participants
In total, 137 (71 normal-weight and 66 overweight and obese (ow/obese)) boys were included
in the analysis: 36 boys were aged 7.43±0.56 yr (20 normal weight and 16 ow/obese), 46 boys
were aged 10.68±0.51 yr (27 normal weight and 19 ow/obese), and 56 young adolescents were
aged 13.11±1.08 yr (23 normal weight and 33 ow/obese). The study was approved by the
Research Ethics Committee of Taipei Medical University (201204011). Informed parental writ-
ten consent was obtained before enrollment in the study.
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Data collection
Details of data collection were previously described elsewhere [16]. Age- and sex-specific cutoff
points for the body-mass index (BMI) were used to define overweight and obesity in boys and
adolescent males according to guidelines of the Department of Health, Taiwan (Table 1)
[17,18]. The BMI was calculated as the mass (kg)/[height (m)]2.

Blood biochemical assessment
Fasting blood samples were collected in vacuum tubes containing EDTA. All blood samples
were separated into RBCs and serum, and stored at -80°C until being analyzed. Serum IL-1β,
interferon (IFN)-γ, and IL-10 levels were determined by enzyme-linked immunosorbent
assay (ELISA) kits (Procarta Cytokine Assay Kit; Affymetrix, Santa Clara, CA, USA) accord-
ing to the manufacturer’s instructions. As an indicator of NO production, the nitrite concen-
tration in the serum was determined with the Griess reagent (Sigma-Aldrich, St. Louis, MO,
USA). Serum hepcidin was assessed by an ELISA (DRG International, Marburg, Germany).
Serum ferritin was measured using a commercially available electrochemiluminescence
immunoassay and was quantitated with a Roche Modular P800 analyzer (Mannheim, Ger-
many). Serum iron and the total iron-binding capacity (TIBC) were measured by a ferrozine-
based colorimetric method. The percent of transferrin saturation (%TS) was calculated by
[serum iron/TIBC] x 100%. Serum testosterone was measured by an electrochemilumines-
cence immunoassay and was quantitated by a Modular analytics cobas E601 analyzer
(Roche).

Statistical analysis
Statistical analyses were performed using the Statistical Analysis Systems software (SAS vers.
9.22; SAS Institute, Cary, NC, USA). Continuous data are presented as the mean±standard
deviation (SD) and were assessed by an unpaired Student’s t-test. Variables not normally dis-
tributed were natural log-transformed to achieve a normal distribution and to allow the use of
parametric tests. Associations between the serum testosterone concentration and other labora-
tory parameters were assessed using Pearson’s rank correlation coefficients. A multivariate lin-
ear regression model was used to examine relationships between the dependent variable
(serum testosterone) and potential variables including age, BMI, iron parameters, and inflam-
matory cytokines. p<0.05 was considered statistically significant.

Table 1. Age- and gender-specific cutoff points for the body-mass index (BMI) for overweight and
obese boys and young adolescents according to guidelines of the Department of Health, Taiwan.

BMI (kg/m2)

Age (years) Normal Overweight Obese

7 14.7~18.5 �18.6 �21.2

8 15.0~19.2 �19.3 �22.0

9 15.2~19.6 �19.7 �22.5

10 15.4~20.2 �20.3 �22.9

11 15.8~20.9 �21.0 �23.5

12 16.4~21.4 �21.5 �24.2

13 17.0~22.1 �22.2 �24.8

doi:10.1371/journal.pone.0144238.t001
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Results

Baseline characteristics
In total, 137 boys participated in this study. The mean age was 10.48±0.26 yr and the mean BMI
was 20.2±4.1 kg/m2. The mean serum testosterone was 4.1±5.9 nmol/L, and mean serum ferritin
was 151.9±130.3 pmol/L. Ow/obese boys had higher serum testosterone concentrations com-
pared to their normal-weight counterparts (Table 2). The mean serum ferritin was slightly higher
in ow/obese boys compared to normal-weight boys, but this did not reach statistical significance
(Table 2). There were no significant differences in age, serum iron, TIBC, %TS, hepcidin, IFN-γ,
or IL-10 between normal weight and ow/obese boys (Table 2). Compared to their normal-weight
counterparts, ow/obese boys had higher levels of IL-1β and NO (both p<0.05; Table 2).

Distributions of testosterone, iron parameters, and cytokines in relation
to age and the nutritional status
We next evaluated distributions of testosterone, iron parameters, and inflammatory cytokines
stratified by age and BMI (Table 3). Distributions of serum testosterone (A), IL-10 (E), and IFN-
γ (H) were positively associated with age and, to a lesser extent, BMI (Fig 1). In contrast, serum
ferritin and serum iron concentrations sharply decreased in those aged 13 yr (Fig 1B and 1C). A
V-shaped hepcidin curve was found in both normal-weight and ow/obese boys (Fig 1D). Distri-
butions of serum IL-1β (F) and NO (G) remained stable during the transition from childhood to
teenaged years (Fig 1).

Serum ferritin is independently associated with testosterone in normal-
weight boys
Pearson’s rank correlations analysis showed a strong positive correlation between serum testos-
terone and IL-10 (r = 0.3082), and a significant inverse relationship between serum

Table 2. Clinical and biochemical data according to the nutritional status (N = 137).

Variable a Boys (N = 137)

Normal (n = 71) Ow/obese (n = 66) p value b

Age (yr) 10.13 (0.28) 10.82 (0.30) 0.093

Body-mass index (kg/m2) 17.20 (2.10) 24.30 (5.60) <0.0001

Log serum iron (μmol/L) 0.79 (0.01) 0.80 (0.01) 0.694

Log serum TIBC (μmol/L)c 1.04 (0.00) 1.04 (0.00) 0.960

Log serum ferritin (pmol/L) 8.89 (0.18) 9.32 (0.13) 0.068

Log transferrin saturation (%) 3.24 (0.05) 3.27 (0.05) 0.701

Log hepcidin (ng/ml) 4.43 (0.08) 4.29 (0.10) 0.291

Log interleukin-1β (pg/ml) 0.11 (0.08) 0.49 (0.46) 0.044

Log interferon-γ (pg/ml) 1.55 (0.09) 1.46 (0.78) 0.554

Log nitric oxide (μM) 1.40 (0.11) 1.97 (0.09) 0.031

Log interleukin-10 (pg/ml) 1.44 (10.24) 1.07 (10.19) 0.401

Log testosterone (nmol/L) 0.10 (0.02) 0.50 (0.08) 0.005

a Mean (standard deviation).
b According to an unpaired Student’s t-test.
c TIBC, total iron-binding capacity.

Ow, overweight.

doi:10.1371/journal.pone.0144238.t002
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testosterone and serum ferritin (r = -0.2821) after adjusting for age and the BMI (Table 4,
adjusted; both p<0.01). We next performed a multiple linear regression analysis to predict var-
iants that were independently associated with testosterone concentrations. After adjusting for
covariates, serum ferritin (β = -0.7470, p = 0.0003) was inversely correlated with testosterone,
while serum IL-10 (β = 0.3475, p = 0.009) was positively associated with testosterone (Table 5,
pooled, multivariant). When normal-weight boys were assessed separately from ow/obese
boys, the association between testosterone and serum ferritin (β = -0.9628, p<0.0001) became
stronger after adjusting for covariates (Table 5, normal weight, multivariant). However, the
association between testosterone and IL-10 (β = 0.1140, p = 0.4065) became non-significant
after adjusting for age and serum ferritin. In ow/obese boys, only IL-10 was weakly associated
with serum testosterone (β = 0.6444, p = 0.051) after adjusting for age (Table 5, ow/obese).

Discussion
Our study indicated that testosterone and serum ferritin are intrinsically interrelated, but this
relationship became weaker in ow/obese boys after adjusting for age. It has long been specu-
lated that sex hormones may interact with iron at the systemic level, but the effects of obesity
on this relationship are not clear. Obesity is associated with decreased serum testosterone but
increased serum ferritin levels [7]. Elevated serum ferritin, an acute-phase reactant, is strongly

Table 3. Biochemical characteristics of study participants according to their age and nutritional status.

Variable a Boys Age (years)

7.4 (0.6) 10.7 (0.5) 13.1 (1.1)

BMI (kg/m2) normal 15.5 (1.9) 17.2 (2.2) 18.3 (3.5)

ow/obese b 20.6 (3.1)*** 23.1 (3.8)*** 25.0 (4.6)***

Serum iron (μmol/L) normal 16.3 (1.2) 17.2 (1.2) 13.5(1.3)

ow/obese 18.7 (1.5) 14.4 (1.1) 16.2 (1.2)

Serum ferritin (pmol/L) normal 130.8 (12.6) 166.1 (13.3) 133.7 (27.6)

ow/obese 162.9 (14.2) 186.1 (24.0) 118.4 (9.7)

Transferrin saturation (%) normal 29.9 (1.8) 31.0 (2.0) 22.1 (2.3)

ow/obese 33.3 (2.7) 25.6 (2.1) 27.5 (2.1)

Hepcidin (ng/ml) normal 98.3 (8.6) 56.7 (6.6) 130.5 (4.0)

ow/obese 91.1 (12.0) 46.0 (6.1) 122.5 (4.8)

Testosterone (nmol/L) normal 0.2 (0.0) 0.4 (0.1) 8.8 (1.3)

ow/obese b 0.2 (0.1) 1.4 (0.5)* 9.6 (1.1)

NO (μM) normal 4.3 (0.9) 5.6 (1.2) 7.9 (1.0)

ow/obese 9.9 (2.5) 7.8 (1.2) 8.1 (0.7)

IL1β (pg/ml) normal 0.8 (0.2) 1.1 (0.2) 1.0 (0.1)

ow/obese 1.3 (0.3) 1.4 (0.2) 1.2 (0.1)

IFNγ (pg/ml) normal 1.2 (0.4) 3.1 (0.7) 17.9 (1.5)

ow/obese b 1.1 (0.4) 2.3 (0.6) 25.6 (1.7)**

IL10 (pg/ml) normal 0.39 (0.12) 0.43 (0.13) 8.6 (0.6)

ow/obese b 0.23 (0.13) 0.08 (0.05)* 9.4 (0.6)

a Mean (standard deviation).
b Unpaired student’s t-test for comparing normal and overweight (ow)/obese boys in the same age group

* p<0.05

** p<0.01
*** p<0.001.

doi:10.1371/journal.pone.0144238.t003
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Fig 1. Distributions of serum testosterone (A), ferritin (B), iron (C) hepcidin (D), interleukin (IL)-10 (E), IL-1β (F), nitric oxide (NO) (G), and interferon
(IFN)-γ (H) stratified by age and the body-mass index (BMI) (n = 137).

doi:10.1371/journal.pone.0144238.g001
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associated with central obesity and metabolic syndrome [10,19–21]. A recent study involving
1999 healthy Chinese adult men showed that serum ferritin levels were inversely correlated
with testosterone, free testosterone, and SHBG levels [22]. Our study in normal-weight boys
and adolescent males in Taiwan confirmed this relationship. Other studies showed that serum
ferritin levels significantly decreased in elderly obese hypogonadal men who received testoster-
one therapy [3,4]. These data suggest that testosterone exerts a direct regulatory function on
ferritin synthesis, and decreased testosterone may lead to higher serum ferritin levels in obese
men. Whether elevated serum ferritin further downregulates testosterone synthesis remains
unclear. Overall, our study, together with others, suggests that the testosterone-ferritin axis
may play an important role in maintaining physiological androgen function in boys.

Our study is in agreement with results reported in elderly men in whom testosterone and
iron levels are closely associated [3]. Aging may affect this relationship, but the mechanisms
underlying age-related differences in the erythropoietic response to testosterone are unknown
[23,24]. Elderly men experience a decline in testosterone and iron levels and pathophysiologi-
cal changes that may accompany this decline. The presence of chronic inflammation leads to
elevated serum hepcidin levels and anemia of chronic inflammation in the elderly [25]. In addi-
tion, aging also affects hemopoietic stem cell production and the endocrine milieu (e.g., EPO
secretion) [25]. Coviello and colleagues compared the effects of testosterone therapy on eryth-
ropoiesis in young and older men and reported that testosterone-induced increases in the
hemoglobin (Hb) and hematocrit levels are more pronounced in older men [23]. However, the
greater increase in the Hb level observed in older men during testosterone therapy was not
explained by changes in EPO [23]. Interestingly, Bachman et al. showed that greater increases
in Hb and hematocrit levels in older men during 20 weeks of testosterone therapy were related
to greater suppression of serum hepcidin levels in older men than in young men [24]. In our
study, the crude analysis of pooled samples showed a significant positive association between
testosterone and hepcidin levels, but this relationship became non-significant after adjusting
for age. When elementary school boys (aged 7 and 10 yrs) were separately from junior high
school (aged 13 yrs), a significant inverse relationship between testosterone and hepcidin was
found in elementary school boys (r = -0.405; p = 0.0027), which remained significant after

Table 4. Pearson’s rank correlation coefficient and partial r of log-transformed serum testosterone with selected iron statuses and inflammatory
cytokines in 137 boys.

Variable Boys (log testosterone)

Crude Adjusted*

r p value r p value

Age 0.7789 <0.0001 - -

Log serum iron (μmol/L) -0.0912 0.289 0.1403 0.103

Log serum TIBC (μmol/L) 0.1981 0.020 0.0749 0.385

Log serum ferritin (pmol/L) -0.3458 <0.0001 -0.2821 0.001

Log transferrin saturation (%) 0.1054 0.221 0.1054 0.221

Log hepcidin (ng/ml) 0.3399 0.0001 0.1547 0.092

Log interleukin-1β (pg/ml) -0.1080 0.252 -0.035 0.712

Log interferon-γ (pg/ml) 0.3881 <0.0001 -0.076 0.413

Log nitric oxide (μM) 0.0560 0.533 -0.1074 0.233

Log interleukin-10 (pg/ml) 0.7501 <0.0001 0.3082 0.003

*Adjusted for age and the body-mass index.

TIBC, total iron-binding capacity.

doi:10.1371/journal.pone.0144238.t004
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adjusting for age and BMI (r = -0.376; p = 0.048) (data not shown). No significant difference
was found in junior high school boys (r = 0.126; p = 0.623). Overall, these data suggest that the
relationship between testosterone and hepcidin is age-related, and biological changes that
occur during puberty may transiently alter this relationship.

Our study found a positive relationship between IL-10 and testosterone. We hypothesized
that the effect of IL-10 on testosterone might not be direct, but rather, indirect via interacting
with serum ferritin. The literature suggests that the interaction between serum ferritin and IL-
10 is bidirectional. The ferritin H chain was shown to inhibit the immune response of lympho-
cytes through inducing IL-10 production [26]. However, excess IL-10 may also cause hyperfer-
ritinemia. An in vitro study showed that recombinant IL-10 treatment directly stimulated
ferritin translation in human monocytic cells [27]. A human study reported that IL-10

Table 5. Multivariate regression coefficients for log-transformed serum testosterone in relation to the nutritional status in 137 boys.

Pooled Crude Age-adjusted Multivariant*

β p value β p value β p value

Log serum iron (μmol/L) -0.4765 0.289 0.4725 0.103

Log serum TIBC (μmol/L) 2.7230 0.020 0.6588 0.385

Log serum ferritin (pmol/L) -1.0990 <0.0001 -0.5700 0.001 -0.7470 0.0003

Log transferrin saturation -0.7537 0.071 0.3351 0.221

Log hepcidin (ng/ml) 0.9321 0.0001 0.2767 0.092

Log interleukin-1β (pg/ml) -0.4033 0.252 -0.0863 0.712

Log interferon-γ (pg/ml) 1.02901 <0.0001 -0.1507 0.712

Log nitric oxide (μM) 0.1311 0.533 -0.1584 0.233

Log interleukin-10 (pg/ml) 0.9667 <0.0001 0.4215 0.003 0.3475 0.009

Normal weight Crude Age-adjusted Multivariant*

β p value β p value β p value

Log serum iron (μmol/L) -0.8392 0.133 0.31849 0.391

Log serum TIBC (μmol/L) 3.5131 0.029 1.4981 0.151

Log serum ferritin (pmol/L) -1.2020 <0.0001 -0.8419 <0.0001 -0.9628 <0.0001

Log transferrin saturation -1.1557 0.029 0.1259 0.729

Log hepcidin (ng/ml) 1.3455 0.003 0.5173 0.079

Log interleukin-1β (pg/ml) -0.7039 0.131 -0.4281 0.166

Log interferon-γ (pg/ml) 0.6818 0.058 -0.2466 0.316

Log nitric oxide (μM) 0.3145 0.268 -0.2466 0.316

Log interleukin-10 (pg/ml) 0.8792 <0.0001 0.3249 0.042 0.1140 0.4065

Overweight and obese Crude Age-adjusted Multivariant

β p value β p value β p value

Log serum iron (μmol/L) -0.0432 0.951 0.6006 0.189

Log serum TIBC (μmol/L) 2.0027 0.220 -0.0153 0.988

Log serum ferritin (pmol/L) -1.0795 0.0272 -0.0899 0.790

Log transferrin saturation -0.3287 0.601 0.4893 0.236

Log hepcidin (ng/ml) 0.8427 0.002 0.2598 0.195

Log interleukin-1β (pg/ml) -0.1064 0.843 0.2813 0.430

Log interferon-γ (pg/ml) 1.3770 <0.0001 0.1391 0.623

Log nitric oxide (μM) -0.2278 0.470 -0.3408 0.091

Log interleukin-10 (pg/ml) 1.0900 <0.0001 0.6444 0.051

# Overweight and obese: body-mass index of �85th percentile of the age- and Sex-specific value.

* Multivariate model adding age, serum ferritin, and interleukin-10.

doi:10.1371/journal.pone.0144238.t005
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supplementation is associated with increased risks of hyperferritinemia and anemia in Crohn’s
disease patients [27]. On the other hand, sickle cell anemia patients with iron overload, defined
by elevated serum ferritin of>2247 pmol/L, had lower serum IL-10 levels compared to non-
iron-overloaded patients [28]. Future studies investigating the interactive effects of IL-10 and
serum ferritin on testosterone are needed in order to understand how a shift in the anti-/proin-
flammatory balance contributes to testosterone levels in boys and adult men.

Measuring hepcidin in biological fluids has been difficult [29]. In addition, differences in
methodology and the lack of normal reference ranges for serum hepcidin hamper the use of
hepcidin as a diagnostic tool and therapeutic target [30]. Mass spectrometry (MS) [31] and
immunological-based assays such as ELISA [32] are two of the most-often used methods to
analyze serum hepcidin levels. The circulating bioactive form of hepcidin is a small 25-amino-
acid (aa) peptide. Being a small peptide, it is difficult to raise antibodies against it. The advan-
tage of MS-based platforms is that they are able to discriminate between the bioactive 25-aa
form and other smaller bioinactive isoforms (e.g., 22- and 20-aa peptides) [33]. However, MS-
based assays require expensive equipment that is not widely available. According to literature
reports [30,34,35], MS- and ELISA-based detecting methods yield similar results in terms of
analytical variations and between-sample variations. However, some authors also observed
that immunological assays tend to yield higher concentrations of hepcidin than do MS meth-
ods. This can be due to either (1) differences in the internal and external standards used by the
different methods or (2) the concomitant detection of both the bioactive form of hepcidin-25
and bioinactive isoforms of hepcidin-20 and -22 by the ELISA assay. Our study used a com-
mercially available hepcidin ELISA kit from DRG International, which is based on the principle
of competitive binding. Therefore, our assay excluded prohepcidin (the 60-aa premature form
of hepcidin), but may also detect isoforms hepcidin-20 and -22 in addition to hepcidin-25. The
immunological assay offers a simple, accurate, and reproducible method for detecting serum
hepcidin levels. Future studies on large subsets from general populations are recommended in
order to establish reliable reference ranges of serum hepcidin concentrations for clinical
diagnoses.

Data on obesity and androgen levels in children and adolescent boys are scarce and incon-
sistent [36]. Hence, causal relationships between obesity and androgen levels remain unde-
fined. Some studies showed that obese boys had lower SHBG and total testosterone compared
to normal-weight boys [36,37], but another study revealed elevated testosterone in obese chil-
dren [9]. In our study, ow/obese boys had higher total testosterone levels than normal-weight
boys. Testosterone is an important regulator of the body composition, particularly muscle
mass and fat mass [38]. Elderly men with a low to normal gonadal status that received testos-
terone supplementation for 1 yr showed increased muscle mass and decreased fat mass com-
pared to those who received a placebo [38]. Wabitsch and colleagues first demonstrated that
the testosterone level is negatively associated with serum leptin in boys, and the addition of tes-
tosterone to human primary adipocytes reduced leptin secretion by up to 62% compared to a
control [39]. Later, Soderberg et al. further suggested that the negative influence of testosterone
on leptin production is lost with increasing adiposity [40]. These data suggest that testosterone
is an important regulator of central adiposity, and decreased testosterone may increase adipos-
ity in obese individuals.

There are several limitations to our study which need to be taken into account when inter-
preting the results. The small sample size and the cross-sectional nature of the study are two
limitations. In order to understand the causal relationship between androgen and the iron sta-
tus, a longitudinal study is needed to determine if changes in serum ferritin concentrations
over time predict testosterone levels in boys. A follow-up study will also help clarify the interac-
tive effect of serum ferritin and obesity-related inflammation (e.g., IL-10) on testosterone
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expression in boys. Our study did not assess the pubertal status and only measured total testos-
terone due to time and budget constraints. The pubertal status is known to affect testosterone
levels and the iron status. Despite the relative small sample size and the lack of information on
pubertal development and other sex steroid hormones, we still observed a significant inverse
relationship between testosterone and serum ferritin in boys. This suggests there are strong
cross-talk signals between sex hormones and ferritin at the systemic level.

Conclusions
Overall, our study results suggest that serum ferritin independently predicted testosterone lev-
els but this relationship became weaker in ow/obese boys after adjusting for age. Understand-
ing the interactive relationship between serum ferritin and testosterone may help clarify the
etiology of obesity-related hypogonadism.
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