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Abstract
Nitric oxide (NO), the highly reactive radical gas, provides an attractive strategy in the control of microbial infections. NO not
only exhibits bactericidal effect at high concentrations but also prevents bacterial attachment and disperses biofilms at low,
nontoxic concentrations, rendering bacteria less tolerant to antibiotic treatment. The endogenously generated NO by airway
epithelium in healthy populations significantly contributes to the eradication of invading pathogens. However, this pathway is
often compromised in patients suffering from chronic lung infections where biofilms dominate. Thus, exogenous supplementa-
tion of NO is suggested to improve the therapeutic outcomes of these infectious diseases. Compared to previous reviews focusing
on the mechanism of NO-mediated biofilm inhibition, this review explores the applications of NO for inhibiting biofilms in
chronic lung infections. It discusses how abnormal levels of NO in the airways contribute to chronic infections in cystic fibrosis
(CF), chronic obstructive pulmonary disease (COPD), and primary ciliary dyskinesia (PCD) patients and why exogenous NO can
be a promising antibiofilm strategy in clinical settings, as well as current and potential in vivo NO delivery methods.

Key points
• The relationship between abnormal NO levels and biofilm development in lungs
• The antibiofilm property of NO and current applications in lungs
• Potential NO delivery methods and research directions in the future
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Introduction

The past century witnessed the successful fight against many
acute bacterial infections in lungs with the discovery of dif-
ferent antibiotics, such as life-threatening pneumonia which
can now be cured with proper antimicrobial therapy.
However, slower-progressing chronic lung infections are
now affecting the life quality of millions of people
(Bjarnsholt 2013; Quaderi and Hurst 2018; Kelly 2017).

These infections are often associated with bacterial biofilms,
a growth mode where multiple bacteria stick together and
form a consortium. Compared to the free-floating planktonic
state, this growth mode provides encased individual cells
much higher tolerance to antibiotics, leading to chronic symp-
toms and therapy failures. With the slow progress in finding
new antibiotics, antibiofilm agents can serve as an adjunctive
therapy in chronic lung infections, enhancing the susceptibil-
ity of bacterial cells towards current antibiotics and increasing
life expectancy (Li and Lee 2017).

One antibiofilm agent that attracted much attention is nitric
oxide (NO). NO is endogenously produced by many types of
cells in the airway and regulates different cell behaviours.
Particularly, NO plays a crucial part in innate immunity
against a small inoculum of inhaled bacteria, where a high
concentration (above micromolar) of NO generates reactive
nitrogen oxide species (RNOS) by the reaction with oxygen
or superoxide. RNOS exert bactericidal effects via damaging
bacterial DNA, inhibiting enzyme functions and inducing
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lipid peroxidation (Schairer et al. 2012; Darling and Evans
2003; Sivaloganathan and Brynildsen 2020). In the past 15
years, NO was also found to inhibit bacterial biofilms in dif-
ferent settings at much lower, nontoxic concentrations (pico–
nanomolar) (Barraud et al. 2015). As such, the dual functions
of NO can both be used to fight against lung infections.
However, in CF, COPD and PCD patients, pathogens cannot
be cleared out by abnormal levels of endogenous NO,
resulting in chronic infections. Exogenous NO successfully
reduced biofilms and potentiated the efficacy of conventional
antibiotics in CF patients (Howlin et al. 2017), suggesting it
may also be a promising antibiofilm agent in other lung dis-
eases. Here, we summarize current knowledge of the abnor-
mal NO levels in CF, PCD and COPD patients, the efficacy of
NO on biofilms formed by chronic lung infection-related path-
ogens, and the existing devices for exogenous NO applica-
tions. The aim is to trigger more investigations into the com-
promised NO pathways in different patients and improve the
efficiency of NO application in chronically infected airways.

Chronic infections in different pulmonary
diseases

Chronic lung infections can develop in patients suffering from
certain diseases or conditions that cause deficiency in their
innate immunity. For example, a compromised first line bar-
rier of lung epithelium cells are often found in chronically
infected lungs. The epithelium of bronchial wall is covered
by cilia, on top of which residents the mucus (Boyton and
Openshaw 2002). The outer layer of mucus is a viscous gel
phase comprising a mixture of water, glycoproteins, immuno-
globulins, lipids, and electrolytes, whilst the inner layer, di-
rectly in contact with cilia, is a fluid or sol phase (López and
Martinson 2017). Mucus is continuously swept back up
through the lungs by the movement of cilia (ciliary beating),
referred to as mucociliary transport (López and Martinson
2017). This mechanism allows inhaled bacteria that are
trapped in the mucus layer to be cleared out and ensures that
pathogens do not directly contact with the epithelial cells or
reach the alveolar cavities (Fliegauf et al. 2013), However, a
deficient mucociliary transport is found in cystic fibrosis (CF),
chronic obstructive pulmonary disease (COPD) and primary
ciliary dyskinesia (PCD) patients. PCD is an autosomal reces-
sive genetic disorder causing defects in ciliary biogenesis,
structure, and function (Wijers et al. 2017; Horani et al.
2016). Such malfunctioning cilia are unable to move properly
and propel mucus, leading to a progressive accumulation of
mucus and the failure of mucociliary transport. In contrast, CF
is caused by mutations in the cystic fibrosis transmembrane
conductance regulator (CFTR) gene, which is translated into
proteins function as chloride channels in surface airway epi-
thelial cells and the cells of the submucosal glands. The lack/

dysfunction of this channel leads to insufficient chloride trans-
port followed by reduced water secretion. The failure to main-
tain proper salt–water balance results in abnormal periciliary
fluid depth and the production of highly viscous mucus that
remain tethered to gland ducts, interfering with ciliary move-
ment and contributing to the failure in mucociliary transport
(Chmiel and Davis 2003; Hoegger et al. 2014). Smoking and
exposure to noxious gases and particles are the leading causes
of COPD, which can reduce both the number and length of
cilia, enlarge the submucosal glands, and increase the number
of goblet cells, leading to mucus hypersecretion that further
interfere with ciliary motion (Simet et al. 2010; Rogers 2005).

Despite the different aetiologies, chronic bacterial infection
is the main reason for decreased life quality and shortened life
expectancy of these patients. Some bacteria involved in these
infections can survive treatments that are predicted to eradi-
cate them, where conventional antibiotics lose their efficacies.
These infections may persist lifelong in some patients. The
therapy failure leads to a vicious circle—damaged lungs fail
to resist new infections, whilst new infections further damage
lung tissue. The most prevalently found pathogens in CF
lungs range f rom Haemophi lus in f luenzae and
Staphylococcus aureus as early colonisers in children, to
Pseudomonas aeruginosa and Burkholderia cepacian-
complex frequently isolated from adults (Surette 2014).
H. influenza, Streptococcus pneumonia, P. aeruginosa,
Moraxella catarrhalis, Haemophilus parainfluenzae and
S. aureus are frequently found in stable COPD patients
(Beasley et al. 2012). For PCD patients, nontypeable
H. influenzae (NTHi) is the most commonly isolated species,
followed by P. aeruginosa, S. aureus, S. pneumoniae, and
M. catarrhalis (Alanin et al. 2015). Why can’t these patients
clear the infection?

Biofilms in chronically infected lungs

P. aeruginosa aggregates in CF respiratory tracts

Aggregated biofilms are now recognised as the cause of many
chronic infections. Specific to chronic lung diseases, the initial
observation and the very first micrograph of a slimy biofilm in
CF sputum was published in 1977 (Høiby 2017, 1977). Many
later clinical examinations repeatedly confirmed the existence
of biofilms/aggregates in CF sputa and the lumen of CF lungs
(Worlitzsch et al. 2002; Bjarnsholt et al. 2009; Bjarnsholt et al.
2013) (Fig. 1). Compared to single celled bacteria freely float-
ing in aqueous environments, which are more formally named
as “planktonic cells”, aggregates or biofilms are bacteria phys-
ically stuck together and encased in the self-produced poly-
meric matrix containing proteins, DNA and polysaccharides
(Flemming and Wingender 2010). The protective shield and
united lifestyle grant the embedded single cells much higher
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tolerance to innate host defences (Leid 2009). Neutrophils that
settle onto aggregates are unable to migrate away from the
point of contact, and aggregates in mucus are frequently
founded to be surrounded by dead or dying neutrophils.
They are unable to penetrate but are instead killed by the
pathogens (Downey et al. 2009). Consequently, biofilms that
escaped the attack from innate immunity are persistently
established in vivo. With the prevalence of CF (more than
70,000 worldwide with ~1000 new cases diagnosed per year)
and the dominant role of P. aeruginosa in the later stage
(>80% of CF adults are entangled with P. aeruginosa chronic
infection), P. aeruginosa biofilm in CF patients inevitably
became the most extensively chronic lung infection model.

Invading, planktonic P. aeruginosa cells first adhere re-
versibly to the gel phase of the viscous mucus layer in CF
patients using flagella and pili, followed by cell division and
the formation of small clusters as early biofilms/aggregates
(Høiby 2002). The dehydrated, concentrated mucus plays a
crucial role in the formation of macrocolonies in CF
airways—an in vitro comparison between normal (2.5% solid)
and CF-like (8% solid) mucus showed that with the same
initial inoculum and end point CFU, biofilms were only de-
tected in CF-like mucus (Matsui et al. 2006) (Fig. 2a).

Aggregates formed in the thick mucus layer may be promoted
by a mechanism called “depletion aggregation” (Secor et al.
2018), which was postulated to bemediated by entropic forces
between uncharged/like-charged polymers and bacteria. The
thick CF mucus layer contains abundant polymers such as
mucin, DNA, and F-actin (all negatively charged), as well as
bacteria particles. In such a mixture, polymers cannot reach
the surface of bacteria by a distance less than the size of its
own radius. Each bacterial cell is therefore surrounded by a
“depletion zone”. When two bacteria cells come closer, the
depletion zones overlap, constraining the presence of poly-
mers in between. The polymer concentration between cells
is therefore essentially 0, whilst the osmotic pressure generat-
ed by different concentrations of polymers across the cells can
physically hold cells together. This spontaneous aggregation
reduces the total depletion zones and produces more space for
polymer movement, hence maximizing the entropy of the sys-
tem following the second law of thermodynamics (Fig. 2b).
As such, it is hypothesized that in the presence of abundant
polymers, bacteria can quickly aggregate through this passive
physical method without the positive involvement of bacterial
activities (Dorken et al. 2012; Secor et al. 2018). At this initial
stage, P. aeruginosa still continues its nonmucoid phenotype

Fig. 1 a Green mucus (yellow arrow) is filling the major airways of a
newly explanted CF lung (Bjarnsholt et al. 2009). b Thin section of an
obstructed CF bronchus. Aggregated biofilms are not attached to epithe-
lial surface (black arrow) but are embedded within intraluminal material
(white arrows). Scale bar=100μm (Worlitzsch et al. 2002). c Intraluminal
P. aeruginosa aggregates surrounded by PMNs stained with PNA FISH
and DAPI (Bjarnsholt et al. 2009). d NTHi forms massive aggregates

within the lungs of a COPD ferret after infection and smoke exposure,
whilst the lungs exposed to air display only few punctate NTHi. Nuclei
were stained with DAPI (blue), and bacteria were stained with anti-NTHi
polyclonal antibodies conjugated to Alexa 488 (green). Scale bar=50μm
(Hunt et al. 2020). Permissions to reuse images were obtained from
journals and/or Copyright Clearance Centre.
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(Chmiel and Davis 2003). However, P. aeruginosa that sur-
vived the phagocytosis may start benefiting from its end prod-
ucts. For instance, oxygen radicals produced by polymorpho-
nuclear leucocytes (PMNs) as a result of an inflammatory
response induces mutations in surviving P. aeruginosa, such
as in gene mucA (Høiby 2002). Such adaptation leads to ex-
cessive alginate production, and this adhesive substance can
promote bacterial aggregation, offering stronger protection
against both host immune defence and antibiotic delivery.
On the other hand, the remaining bacteria stimulate repeated
and excessive inflammatory responses, especially the progres-
sive accumulation of neutrophils, which in turn results in over-
production of elastase (Laval et al. 2016). An excessive
amount of elastase can degrade a range of cell surface recep-
tors on lymphocytes, neutrophils and dendritic cells that are
important for pathogen recognition and digestion (Gifford and
Chalmers 2014) and also destructs lung cell tissues causing
structural damage that further cripples the clearance process
(Chmiel and Davis 2003). Altogether, the thick mucus layer,
the in vivo bacterial pathoadaptation, and tissue damage all
contribute to the long-term bacterial residence and the devel-
opment of aggregated biofilms.

Another hallmark of biofilms is the high tolerance to anti-
biotics provided by this lifestyle besides the intrinsic or ac-
quired resistance, resulting in the chronic pathology in CF
patients despite the routine applications of antibiotics.
Traditionally, the terms “tolerance” and “resistance” were
used interchangeably in many biofilm-related articles. Here
in this review, these two terms are distinguished based on their
different mechanisms. Resistance is due to intrinsic or ac-
quired genotypes that allows bacteria to survive antibiotic
treatments even at planktonic states, which is usually
characterised as increased minimum inhibitory concentration
values. In contrast, tolerance in biofilms is due to phenotypic
changes offered by the formation of biofilms, where cells
survive high concentrations of antibiotics only if embedded
in biofilms. If cells in biofilms are reverted to planktonic state,
they are sensitive to antibiotics (For more details please see
review articles from Stewart 2015 and Ciofu and Tolker-
Nielsen 2019). Apart from the different responses to antibi-
otics offered by growth modes, how biofilms are grown may
also significantly affect the efficacy of antibiotics. Clinical
examinations observed that bacterial aggregates found
in vivo are generally much smaller in size compared to

Fig. 2 a Schematic diagram of biofilms/aggregates in chronically infect-
ed lungs and possible mechanisms of how abnormal levels of NO are
associated with chronic lung infections. b Schematic diagram of depletion
aggregation. Bacteria (green spherocylinders); polymers (yellow twisted
lines); and depletion zones (dashed lines around the bacteria). When two

bacterial cells come closer, polymers in between are squeezed into the
solution (red arrow). Such spontaneous aggregation minimizes the deple-
tion zones occupied by bacteria and maximizes the entropy of the system
(figure adapted from Dorken et al. 2012). The icons of lung, DNA, and
cigarette were obtained from vectors available from Vecteezy.com
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surface-attached biofilms grown in laboratory, suggesting a
different physiological character under the pressure of host
response, ROS, and nutrient limitation (Bjarnsholt 2013).
For example, aggregates embedded in the mucus plug are
surrounded by PMN cells which consume a large proportion
of oxygen, resulting in a lack of access to oxygen for
P. aeruginosa cells (Kolpen et al. 2014). Aggregates are there-
fore grown in anaerobic conditions, leading to different me-
tabolism and antibiotic tolerance mechanisms compared to
biofilms grown in classic flow-cell systems or microtiter
plates. As such, in vitro determination of antibiotic dosage
may not accurately reflect the requirement for biofilm elimi-
nation in patients. The repeated usage of some antibiotics in
patients that are not sufficient to eradicate biofilms may pres-
ent a selective stress that favour the mutations related to anti-
biotic resistance, and even the component of CF sputum can
cause an accumulation of mutations in the lasR gene that
increase the tolerance to β-lactam antibiotics (Marvig et al.
2013; Clark et al. 2018; Azimi et al. 2020). Hence, both phys-
iological tolerance and hereditary genetic mutations offered
by the biofilm mode of growth make it almost impossible to
eradicate bacterial aggregates settled down in the mucus layer,
even with aggressive combinational antibiotic treatments
(Soren et al. 2019).

Biofilms/aggregates in the respiratory tract of PCD
and COPD patients need further investigation

Compared to extensively studied chronic infections in CF,
biofilms in PCD and COPD patients with chronic bacte-
rial infection and massive mucus production appeared to
attract much less attention, despite a wealth of publica-
tions generally claimed that the formation of biofilms con-
tribute greatly to the difficulties in the treatment of chron-
ic lung infections. For instance, it was reported that bac-
terial evolution in PCD and CF patients follows a similar
pattern and the biofilm formation ability of P. aeruginosa
clinical isolates from PCD sputa was tested in vitro
(Sommer et al. 2016), but no micrograph was available
to conf i rm the aggrega tes in spu tum samples .
H. influenzae is the most frequent microorganism isolated
from a range of PCD patients (Alanin et al. 2015), yet it
was only confirmed in vitro that H. influenzae cells are
more likely to form aggregates on the PCD epithelial cells
than healthy control (Walker et al. 2017). Biofilm growth
mode has long been implicated in COPD despite the lack
of direct evidence, and this hypothesis was only very re-
cently supported by the detection of H. influenzae multi-
cellular aggregates within the airway lumen of COPD fer-
ret (Hunt et al. 2020). Models of chronic lung infection
including the implication of microbiota and biofilms have
been set up, yet many more investigations are required to
consolidate the biofilm growth mode in respiratory tracts

of different patients. Assuming that multicellular biofilms
can be prevalently found in all these patients, many ques-
tions still await to be answered for better treatment strat-
egies. For example, the dominant species found in differ-
ent patients varies; are all aggregates residing in mucus
layers or some are attached to the epithelium? Is there any
difference in the size and amount of aggregates observed
in different type of patients, and are they correlated to the
severity of diseases? How do these in vivo/ex vivo aggre-
gates respond to antibiotics or other treatments?

Biofilm-related infections during mechanical
ventilation

Another special type of biofilms in lung infection occurs
during invasive mechanical ventilation, which has been
frequently used in very severe acute exacerbation COPD
patients. Despite being a life-saving procedure for critical-
ly ill patients, intubation with endotracheal tubes (ET
tubes) provides perfect landing sites for bacterial adhesion
and biofilm formation on both the inner luminal and outer
surface (Li et al. 2015; Cairns et al. 2011). The colonisa-
tion of microorganisms and the formation of biofilms on
ET tubes can be rapid, within hours after insertion
(Vandecandelaere et al. 2012), and by the end of 10 days
almost all the ET tubes are covered by biofilms. A close
link was observed between the microbial flora of ET tube
biofilms and the microorganisms involved in the onset of
ventilator-associated pneumonia (VAP), including fre-
quently identified multidrug-resistant ESKAPE pathogens
(Vandecandelaere and Coenye 2015). Biofilms on ET
tubes are therefore heavily responsible for VAPs, resulting
in higher mortality rates and much longer ICU- and
hospital-lengths of stay (Diaconu et al. 2018). More impor-
tantly, biofilms on ET tubes also show great tolerance un-
der the challenge of antibiotics like those grown on plastic
plates in vitro, requiring novel combinational therapeutic
strategies for an efficient biofilm treatment in VAP patients
(Gordon Sahuquillo et al. 2015).

Abnormal levels of NO are associated
with chronic lung infections

Apart from themucociliary transport, lung epithelium cells are
also primary sources of NO (Lane et al. 2004). Endogenously
produced NO in the airways is evidenced by its appearance in
the exhaled breath. NO is synthesized from L-arginine by NO
synthase (NOS) with three isoforms—endothelial NOS
(eNOS), neuronal NOS (nNOS), and inducible NOS
(iNOS). Both eNOS and nNOS are constitutively expressed
and can generate picomolar levels of NO in pulmonary endo-
thelial cells and nonadrenergic, noncholinergic inhibitory
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neurons, respectively (Xu et al. 2006). The iNOS is continu-
ously expressed under basal airway conditions, and can be
induced by inflammatory stimuli during bacterial infection
to produce bactericidal levels of NO (Xu et al. 2006; Guo
et al. 1995). The total production of NO from these NOSs
can be reflected by fractional exhaled nitric oxide (FENO)
quantifying the level of nitric oxide gas in the breath
(Miskoff et al. 2019; Duong-Quy 2019).

However, much lower FENO levels are frequently found in
CF patients (Elphick et al. 2001; Korten et al. 2018;
Grasemann et al. 1997; Keen et al. 2010; Thomas et al.
2000). Bronchial epithelium from CF lungs showed less im-
munohistochemistry stain for iNOS compared to controls, and
further in situ hybridization also showed less iNOS mRNA in
CF epithelium than in controls (Meng et al. 1998). When a
differentiated human bronchial epithelial cell line derived
from CF patient is transfected with human iNOS cDNA, re-
duced P. aeruginosa adherence and enhanced killing of
internalised bacterial cells were observed (Darling and
Evans 2003). Also, genetic variations in the baseline nos1
(nNOS) lead to an altered NO production (Texereau et al.
2004; Grasemann et al. 2002; Grasemann et al. 2000), and
CF patients harbouring nos1 genotypes are much more sus-
ceptible to P. aeruginosa colonisation (Grasemann et al.
2002). These all suggest that in CF patients, the low level of
NO may play an important role in the higher susceptibility
towards pathogens.

Epithelium is not the only NO resource during an inflam-
mation in the airway, and different immune cells can also
produce NO in response to pathogenic stimuli. It was found
that PMN cells in freshly expectorated sputum samples from
CF patients with chronic P. aeruginosa infection can actively
produce NO (Kolpen et al. 2014). However, NO is an unstable
free radical, and once released into the aqueous or gel phase of
the thick mucus layer comprising a vast number of biological
components, it might degrade quickly before reaching the
bacterial cells. This postulation was supported by some find-
ings where high concentrations of the stable NO metabolites
nitrate and nitrite were detected in CF sputum, despite the
lowered FENO (Grasemann et al. 1998; Jones et al. 2000).
These stable end products of NO accumulated in mucus may
in return favour the growth of P. aeruginosa in anoxic envi-
ronment through denitrification process, promoting the chron-
ic infection (Zumft 1997).

A marked reduction in nasal NO (nNO) and FENO was
repeatedly found in PCD patients compared to healthy con-
trols (Walker et al. 2012; Walker et al. 2013; Lucas and
Walker 2013; Shapiro et al. 2017; Zhang et al. 2019a;
Horváth et al. 2003). Despite NTHi being the leading patho-
gen in PCD, several hypothesis were raised to explain the
reduced NO in PCD similar to in CF, including increased
breakdown of NO trapped in paranasal sinuses, and lowered
expression/function loss of NOS. However, with conflicting

data from different publications, the underlying mechanisms
still remain unclear (Walker et al. 2012). An early study
showed that NO metabolites were not decreased in PCD ex-
haled breath condensate, suggesting the existence of NO in the
secretion (Csoma et al. 2003). A later study compared the
expression of NOS amongst children with PCD and with sec-
ondary ciliary dyskinesia (SCD, comparably infected and in-
flamed control group who did not have a congenital defect of
ciliary function) (Pifferi et al. 2011). The expression of iNOS
was significantly lower in children with PCD compared SCD
group, and a positive relationship between iNOS gene expres-
sion and nNO levels was demonstrated, implying an impaired
expression of iNOSmay count for lowered NO output in PCD
patients. A lack of substrate L-arginine may also contribute to
the lack of NO production, as administration of L-arginine
increased nasal and exhaled nitric oxide levels in PCD patients
(Grasemann et al. 1999; Loukides et al. 1998). Despite the
lack of direct evidence, such lowered NO in PCD patients
may further compromise the nonspecific defences against
pathogens in the airway on top of deficient ciliary movement,
contributing to recurrent sinopulmonary infection. A particu-
larly interesting study was conducted by a healthy researcher
with no history of sinus problem, where he developed sinus
infection after the nasal application of NOS inhibitors in his
right nostril with a marked reduction of NO, whilst the un-
treated left nostril remained unaffected (Lundberg 2005).
Although this experiment was conducted in nasal, the results
may support the general notion that NO plays an important
role in primary host defence in the upper airways.

The relationship between NO and COPD is much more
complicated with the involvement of cigarette smoke, which
may interfere with NO pathway in addition to the inflamma-
tion process. As COPD patients may have different history of
smoking, accordingly, reported exhaled NO levels in COPD
were conflictual depending on the subjects and measurement
approaches (Corradi et al. 1999; Ansarin et al. 2001; Brindicci
et al. 2005; Clini et al. 1998; Rutgers et al. 1999; Maziak et al.
1998). A recent meta-analysis based on a wealth of literature
concluded that FENO levels in COPD patients are higher than
healthy controls (Lu et al. 2018). This can be supported by
previous studies showing that the expression levels of iNOS
and nNOS were higher in COPD patients than nonsmokers
and smokers with normal lung function (Jiang et al. 2015;
Maestrelli et al. 2003; Brindicci et al. 2010). Apart from com-
paring COPD and healthy individuals, one consensus appears
that current smokers exhale less NO than ex-smokers (Corradi
et al. 1999; Clini et al. 1998; Malerba et al. 2014; Hynes et al.
2015; Högman et al. 2019). The contribution of cigarette
smoke to a lowered FENO in current smoker was postulated
to be a downregulation of NOS, or that the oxidants in smoke
may damage bronchial epithelial cells and suppress the pro-
duction of NO (Malerba et al. 2014), or an increased NO
consumption in smokers’ airways (Malinovschi et al. 2006).
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Solid evidence for the effect of smoke on the function of NOS
and NO production in vivo are yet to be achieved.
Interestingly, cigarette smoke extract was shown to inhibit
the NOS activity in lung epithelial cells and pulmonary artery
endothelial cells in vitro (Su et al. 1998; Hoyt et al. 2003), but
when mice were exposed to cigarette smoke for either a short
time (2–24 h) or 8 months, increased iNOSwas found (Wright
et al. 2002; Seimetz et al. 2011). Thus, much needs to be
investigated for a clearer picture of NO pathway, NO produc-
tion and consumption, as well as the relationship between NO
and the pathogenesis in COPD patients.

Due to the controversial NO output and NOS expression
levels in different type of patients, it is impossible to conclude
at this stage that chronic infection can be primarily attributed
to a deficiency in NO production. However, suffice to say, at
least the amounts of functional NO in the respiratory tracts of
all these patients are not enough to eliminate the invading
pathogens, which subsequently allows for their long-term
residence.

Nitric oxide as an antibiofilm agent

Low-dose NO disperses biofilms; high-dose NO eradi-
cates biofilms

It was well-documented that NO plays dual functions in
humans—at low concentrations, it serves as an intracellular
signal regulating a range of cell behaviours; at high concen-
trations, it exhibits cytotoxicity against tumours and can pro-
mote apoptosis. Similar dose-dependent scenarios also apply
to bacteria—besides the bactericidal effect at above micromo-
lar scales, NO can prevent the formation of biofilms or dis-
perse established ones as a signalling molecule when admin-
istrated at low concentrations (pico–nanomolar). Dispersal is
the natural, final stage of biofilm life cycle, where cells are
released from mature biofilms for reestablishment at a more
favourable niche (Kaplan 2010). Under clinical settings, ex-
ogenously added, low concentrations of NO can also trigger
this procedure—they reduce the CFU and total biomass of
biofilms remaining on the surface by reverting sessile biofilm
cells back to free-swimming planktonic state, without posing a
lethal effect to bacterial cells within the biofilms. Such action
increases the susceptibility of cells encased in biofilm towards
other treatments, thus enhancing therapeutic outcomes. For
example, by using a traditional NO donor, sodium nitroprus-
side (SNP), Barraud et al. showed that nontoxic dose of NO
(500 nanomolar) can trigger the dispersal of mature
P. aeruginosa biofilms and prevent initial attachment
(Barraud et al. 2006). Further studies elucidated that NOmod-
ulates P. aeruginosa biofilm through regulating a secondary
messenger, bis-(3-5)-cyclic dimeric GMP (c-di-GMP), that
can be found in most bacterial species (Barraud et al. 2009a;

Römling et al. 2013). c-di-GMP is synthesised by a group of
enzymes named diguanylate cyclase (DGC), and is hydro-
lysed by another group of enzymes named phosphodiesterase
(PDE). High concentrations of intracellular c-di-GMP pro-
mote the switch from planktonic growth modes to biofilm
formation (Römling et al. 2013). NO decreases intracellular
c-di-GMP levels in P. aeruginosa via directly or indirectly
stimulating several PDEs, such as NbdA, DipA and RbdA
(Barraud et al. 2009a; Morgan et al. 2006; Petrova and
Sauer 2012a; Petrova and Sauer 2012b; Li et al. 2013) (See
reviews by Cutruzzolà and Frankenberg-Dinkel 2016;
Williams and Boon 2019 for detailed molecular mechanisms).
Low-dose NOwas also proven to prevent or disperse biofilms
formed by many different species, although different concen-
trations and donors were required (Arora et al. 2015;
Thompson et al. 2019; Islam et al. 2020). Whilst NO-c-di-
GMP pathway was found in Legionella pneumophila,
Shewanella oneidensis, and Shewanella woodyi (Carlson
et al. 2010; Plate and Marletta 2012; Liu et al. 2012; Fischer
et al. 2019), some Gram-positive strains such as S. aureus do
not contain c-di-GMP related protein domains but can still
disperse upon NO challenge, suggesting an alternative signal-
ling cascade is involved and yet to be determined. In contrast,
NO released at higher concentrations (micro–millimolar) can
eradicate P. aeruginosa biofilms by both disrupting the phys-
ical structures of biofilms and exhibiting toxicity towards in-
terior cells. NOwas shown to decrease the viscoelastic moduli
and weaken the mechanical properties of biofilms matrix, pos-
sibly through polysaccharide depolymerization and DNA
structural damage (Reighard et al. 2015; Rouillard et al.
2020a; Yang et al. 2018; Duan and Kasper 2011; Burney
et al. 1999). Structural disruption in biofilms increases the
exposure of individual cells towards bactericidal levels of
NO, leading to eradication. As such, both low and high dosage
of NO treatment can reduce biofilms via different mecha-
nisms. Despite the lack of solid evidence of in vivo biofilms
formed by other leading pathogens frequently isolated from
chronic lung infection patients besides P. aeruginosa, in vitro
biofilms formed by these species showed different responses
to NO treatment (Table 1). Whilst NO was confirmed to re-
duce biofilms formed by P. aeruginosa, S. aureus,
B. cepacian, and M. catarrhalis, NTHi and S. pneumoniae
appeared unaffected at concentrations that are effective
against other species. Whether this resistance comes from
some intrinsic mechanisms of these two species, or it is more
of the nonoptimised experimental procedures or NO resources
remains unknown. Deeper studies into the effect of NO on
different species, especially clinical isolates, with more appro-
priate in vitromodels that recapitulate the in vivo environment
may potentially facilitate future clinical administration. So far,
the only successful clinical trial of low dose NO for biofilm
inhibition was conducted in CF patients targeting
P. aeruginosa aggregates (Howlin et al. 2017), and whether
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it can disaggregate other biofilms in other types of patients
awaits to be evaluated.

NO potentiates the efficacy of conventional
antimicrobials

As the biofilm growth mode offers bacteria significant recal-
citrance to antimicrobials, reversing the embedded cells back
to planktonic state by NO can increase their susceptibility
towards treatments. Previous studies showed that
P. aeruginosa biofilms formed on catheters can tolerate
>100 μl/ml gentamicin, colistin, chloramphenicol, ciproflox-
acin, and tetracycline. However, when combined with NO,
>3-log reduction of viable biofilms cells was observed when
antibiotics were administrated only at 10 μl/ml (Ren et al.
2016). Nanoparticles that simultaneously release both genta-
micin and NO can decrease the viability of P. aeruginosa
biofilms by 90% at concentrations of 10–50 μM, which was
much more efficient than stand-alone applications of either
agent (Nguyen et al. 2016). Low dose NO significantly en-
hanced the efficacy of tobramycin, colistin and tobramycin+

ceftazidime against in vitro biofilms formed by CF-PA iso-
lates or ex vivo aggregates in CF sputa, suggesting a great
clinical potential of this combinational therapy (Soren et al.
2019; Howlin et al. 2017). The performance of several other
antimicrobials in P. aeruginosa biofilms, including SDS,
H2O2 and human β-defensin 2, was also increased in the pres-
ence of NO (Barraud et al. 2006; Ren et al. 2016). The remain-
ing CFU of S. aureus biofilms was reduced by 3-log when
challenged with NO+ciprofloxacin compared to the antibiotic
treatment alone (Hasan et al. 2018). Using a NTHi biofilm and
PCD ciliated epithelial cells coculture model, Walker et al.
reported that the susceptibility of NTHi biofilms towards
azithromycin was boosted by NO, despite the same NO dos-
age per se failed to reduce the CFU of NTHi biofilms (Walker
et al. 2017). Apart from reducing the tolerance in biofilms, NO
can also improve the susceptibility of planktonic, multidrug-
resistant pathogens towards different antimicrobials. For in-
stance, NO-releasing chitosan oligosaccharides pretreatment
resulted in a 2 to 4-log reduction in the viability of planktonic
P. aeruginosa, MRSA and B. cepacia, as well as biofilms
formed by multidrug-resistant P. aeruginosa isolates,

Table 1 The efficacy of NO on the biofilms formed by leading pathogens in different diseases with chronic lung infections

Species NO resources Biofilm reduction? Biofilm culture method

P. aeruginosa • 25 nM to 2.5 mM SNP (Barraud et al. 2006);
• 20 μM MAHMA NONOate (Barnes et al. 2013);
• 250 μMSpermine NONOate (Cai and Webb 2020);
• 256μM DEA-C3D (Soren et al. 2019);
• NO-loaded alginate beads (∼0.1–0.3 μmol/mg)

(Ahonen et al. 2019a);
• NO-releasing cyclodextrins (Rouillard et al. 2020b);
• ∼15 mM acidified sodium nitrite (Major et al. 2010);
• NO-emitting nanoparticles (Hetrick et al. 2009);
• 10 ppm NO inhalation (Howlin et al. 2017)

Yes Plate (M9 minimal medium, MH
medium);

Artificial sputum medium;
CF patients

S. aureus • Dressings producing >200ppmv gaseous NO
(Sulemankhil et al. 2012);

• 60 mg/ml isosorbide mononitrate (ISMN) (Hasan
et al. 2018) or ISMN encapsulated in liposome
(Jardeleza et al. 2014);

• 125–1000 μM DETA NONOate (Jardeleza et al.
2011);

• NO-loaded alginate beads (∼0.1–0.3 μmol/mg)
(Ahonen et al. 2019a);

• >15 mMacidified sodium nitrite (Major et al. 2010);
• NO-emitting nanoparticles (Hetrick et al. 2009)

Yes Plate (tryptic soy broth,
MH medium, cerebrospinal fluid

(CSF) broth); artificial sputum
medium

NTHi 50 μM cephalosporin-3′-diazeniumdiolate
(PYRRO-C3D/DEACP) (Walker et al. 2017)

No, but potentiates the efficacy of
antibiotic

Plate (BHI medium); coculture
with primary respiratory ciliated
epithelial cells

B. cepacia • NO-loaded alginate beads (Ahonen et al. 2019a);
• >15 mM acidified sodium nitrite (Major et al. 2010)

Yes Plate (MH medium);
Artificial sputum medium

S. pneumoniae 100 μM and 1 mM SNP (Allan et al. 2016) Yes, 1 mM SNP reduced the viability of
cells, and 100 μM potentiates the
efficacy of antibiotic

Plate (1:5 diluted BHI broth)

M. catarrhalis 1 mM nitrite (Mocca et al. 2015) Yes, NO radical derived from nitrite
reduction kills cells in biofilms

Coculture with human bronchial
epithelial cell
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compared to tobramycin exposure alone (Rouillard et al.
2020c). A prominent synergistic effect of NO and silver sul-
fadiazine was observed for many pathogens, including
P. aeruginosa andMRSA (Privett et al. 2010). A combination
of NO and superoxide resulted in a 1000-fold reduction of
CFU count in planktonic B. cepacia compared to either com-
ponent alone (Smith et al. 1999). Hence, exogenous NO pre-
sents a promising adjunctive therapeutic strategy in chronic
lung infection management, either by enhancing the bacteri-
cidal effect of antimicrobials against individual cells entering
the airway before biofilm formation, or reducing the tolerance
of established biofilms/aggregates.

NO delivery in vivo

Different devices for NO delivery may significantly influence
the clinical outcome. The administration of NO in patients is
not a new concept—the earliest medical application of NO
dates to 1879, where nitroglycerin was found able to relieve
angina (Murrell 1879). The increasing discoveries of the bio-
logical activities of NO triggered a growing interest in
chemist/pharmacist for the searching of new NO releasing
agents and novel NO delivery strategies, as some traditional
donors were proven to be toxic or carcinogenic. Furthermore,
due to the short half-life and cytotoxicity effect of high-dose
NO, inappropriate administration time, uncontrolled NO re-
lease or over dosage may lead to deleterious side effects and
injuries (Asmawi et al. 1999; Weinberger et al. 1999;
Murakami et al. 1997; Korde Choudhari et al. 2013). As such,
the development of novel NO-releasing strategies for better
delivery and less side effects, still remains a challenge. In the
context of chronic lung infection, the involvement of patho-
gens adds another layer of complication—what is the optimal
dosage that can remove the biofilms without triggering undue
side effects? Which NO donor possesses an appropriate deg-
radation half-life that allows released NO to be available in the
vicinity of biofilms in vivo? Apparently, there is still a long
way to go, given the fact that listed studies in Table 1 were
mostly conducted in vitro. In this section, we summarize some
traditionally and recently developed NO delivery methods
(Fig. 3), hoping to stimulate more advanced research for
NO-mediated bacterial inhibition in chronic lung infection.

Inhalation of gaseous NO

Inhaled nitric oxide gas was approved by FDA in 1999 for the
treatment of hypoxic infants (Nelin and Potenziano 2019).
Some commercial devices such as INOMAX® and Genosyl
have been developed and approved by FDA for NO inhala-
tion, which have facilitated the administration. Previous stud-
ies showed that inhalation of NO helped clear lung infections
in rats infected by P. aeruginosa and reduced the bacterial

load by 1.7–2-log (Webert et al. 2000; Jean et al. 2002). In
K. pneumoniae infected mice, inhaling NO at lower oxygen
concentration also resulted in a 5 to 10-fold reduction of CFU
in BALF and lung tissues (Sun et al. 2006). Similar bacteri-
cidal effects were also observed in CF patients, where case
studies showed that intermittent administrations of 160 ppm
NO significantly reduced CFU of P. aeruginosa, S. aureus,
and B. multivorans in CF patients that are resistant to multiple
antibiotics (Deppisch et al. 2016; Bartley et al. 2020). As such,
inhalation of NO may improve the therapy of chronic lung
infections in CF patients, particularly for those suffering from
MDR pathogens. Although the above reports showed that
such high dosages of NO were well-tolerated in tested pa-
tients, they may bring along toxic side effects to others. For
instance, after high dosages (≥80 ppm) of NO inhalation, met-
hemoglobinemia can be observed, and the high concentrations
of toxic nitrogen dioxide generated from spontaneous oxida-
tion result in direct injury to the alveolar epithelial cells and
may even cause pulmonary oedema (Davidson et al. 1998;
Kido et al. 2017). In addition, the toxic reactive nitrogen in-
termediates such as peroxynitrite generated under conditions
of high-NO flux may induce structural alterations in DNA and
cell damage, interfere with the activity of lung surfactants and
increase surface tension (Hallman and Bry 1996). As the met-
abolic fate and systemic effects of inhaled NO can be largely
affected by airway chemistry and environment, the adminis-
tration of high dose NO needs careful evaluation in different
patients. Whilst the applications of such high dosage were
mainly due to the bactericidal effect of NO, the first clinical
trial with low-dose NO inhalation (5-10 ppm) combined with
standard antibiotics (ceftazidime and tobramycin) also re-
duced the number of P. aeruginosa biofilm aggregates by
3.5-log in 12 CF patients (Howlin et al. 2017). These results
indicated that low dose NOmay be used as adjunctive therapy
for CF-related biofilm infections, especially when high-
dosage NO inhalation causes severe toxicological effects.

Inhalation of NO (lower than 80 ppm) has also been ap-
plied in COPD patients for reducing pulmonary vascular re-
sistance (Ashutosh et al. 2000; Hajian et al. 2016; Yoshida
et al. 1997). However, the relationship between inhaled NO
and bacterial load in COPD patients have not been investigat-
ed yet. As the existence of biofilm is yet to be confirmed in
these patients, no study was carried out to evaluate if such
lower dose of NO in COPD patients can inhibit biofilm ag-
gregates. Future studies on NO applications in COPD patients
with pulmonary hypertension may consider including sputum
culture data for determining a possible change in bacterial
load. Inhalation of NO has not been a favoured device for
NO augmentation in PCD patients so far. It is therefore not
yet known if it is appropriate to administrate NO in PCD
patients through inhalation, and if suitable can it also reduce
bacterial load and inhibit biofilms. Further investigations are
needed to address these questions.
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NO-releasing compounds (NO donors)

Some classic NO donors proven by FDA such as SNP,
nitroglycerin (NTG), and isosorbide dinitrate (ISDN),
have long been used in a variety of clinical settings in
cardiovascular diseases (Hottinger et al. 2014; den Uil
and Brugts 2015; Nyolczas et al. 2018). Yet, some side
effects rising from the constant usage of organic nitrates
and SNP were observed. For example, a long-term supply
of nitroglycerin may cause nitrate tolerance, increase ox-
idative stress, and induce endothelial dysfunction (Daiber
and Münzel 2015; Sydow et al. 2004; Schulz et al. 2002;
Hink et al. 2007). This tolerance was observed in almost
all organic nitrate compounds, albeit to different extent.
Much less tolerance was found in the usage of SNP.
However, the decomposition of SNP releases cyanide,
and the toxicity as a result of cyanide accumulation con-
current with the nitroprusside administration is well

documented in clinical cases, even when the dosage
was lower than recommended (Davies et al. 1975;
Chung et al. 2016; Udeh et al. 2015; Rindone and
Sloane 1992). Such side effects triggered the particular
i n t e r e s t i n o t h e r two c l a s s e s o f NO dono r s ,
diazeniumdiolates (NONOates) and S-nitrothiols, due to
their distinct advantages. NONOates are a series of com-
pounds containing a X-[N(O)NO]- functional parent nu-
clear structural unit, where X represents different amines
or polyamines. They can spontaneously decompose to
generate up to 2 moles of NO per mole of donors with
first order release kinetics under physiological condi-
tions. The half-lives of NONOates at body temperature
and pH largely depend on the chemical structures of
amines, which exhibit a wide range that covers different
demands. Moreover, after NO release, there is no other
metabolites produced except for the original amines (For
a more detailed review of NONOates please see Li et al.

Fig. 3 Potential methods for in vivoNO delivery and biofilm inhibition. a
Significantly reduced biofilm formation of a multidrug-resistant
P. aeruginosa strain on NONOate-functionalised polymers. Scale
bar=20 μm (Sadrearhami et al. 2019). b NO-induced P. aeruginosa bio-
film dispersal in CF sputum samples. P. aeruginosa was stained using
fluorescence in situ hybridization (FISH) with both a Cy3-labeled
P. aeruginosa-specific 16S rRNA probe (green) and a Cy5-labeled

eubacterial 16S probe (red). Scale bars=25 μm (Howlin et al. 2017). c
Biofilms formed by a CF-PA isolate can be efficiently dispersed by
250 μM Spermine NONOate (Cai and Webb 2020). The icons of lung,
gas cylinder, antibiotic drugs, and bacteria in biofilms were obtained from
the vectors available from Vecteezy.com. Permissions to reuse images
were obtained from journals and/or Copyright Clearance Centre.
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2020). However, such spontaneous systemic release can
lead to enormous off-target effects, and it is hard to precisely
control the concentrations of NO at a desired location during
real administrations. The unintended NO release or reactions,
especially at high concentrations, may cause harmful or even
cytotoxic effect in different cell types. The subsequent reac-
tions between decomposition products could also lead to the
formation of carcinogenic nitrosamine in vivo (Maragos et al.
1991). As such, the long-term safety of these compounds needs
careful confirmation. Most NONOates are still at experimental
stage despite the great promise, and there can be big gaps
between laboratory and in vivo results (Chen and Zhang 2013).

In contrast, the chemistry of NO release from S-
nitrosothiols is very complex. This class of compounds (gen-
eral formula RSNO) contain a nitroso group attached by a
single chemical bond to the sulphur atom of a thiol, where R
denotes a cysteine-containing peptide (Patel et al. 2017). S-
Nitrosoglutathione (GSNO) is endogenously produced by
many tissue cells in human, whilst both in vitro and in vivo
studies suggested that some other S-nitrosothiols are also un-
likely to exhibit significant cytotoxicity when used at pharma-
cologically relevant concentrations (Miller et al. 2000). NO
release can be triggered by a variety of factors such as light,
heat, metals, other thiols, and different enzymes. Particularly,
these compounds can directly transfer NO+ species to another
thiol via transnitrosation reaction, which may lead to altered
enzyme or receptor activity (Singh et al. 1996). Such flexible
metabolic pathways will unlikely trigger tolerance after long-
term usage (Miller and Megson 2007). On the other hand,
however, the stability of RSNOs in vivo is difficult to predict
by in vitro experiments. The number of thiol-containing en-
zymes, the presence of trace metals, as well as the levels of
intracellular thiol glutathione, can be influenced by many dis-
ease states (Tullett et al. 2001). As RSNOs offer many advan-
tages over the current FDA-approved NO donors, some stud-
ies focused on manipulating the chemical properties of R
groups that can increase the stability of existing compounds
(for more details please, see reviews by Richardson and
Benjamin (2002) and Al-Sa'doni and Ferro (2000)).

Although NONOates and S-nitrosothiols are greatly
favoured, some other types of NO donors are still attracting
much attention. Some NO donors at experimental stages, in-
vestigational stage or approved by FDA that belong to 14
major classes of NO donors are listed in Table 2, along with
their status in biofilm-related research. This selection is based
on their potential clinical application for biofilms in chronic
lung infections. Another common class of NO donors, nitroso
compounds, is not included due to their carcinogenic features
(Eichholzer and Gutzwiller 1998). Whilst these NO donors
offer great potential in future markets, many more investiga-
tions are required for their side effects and dosage windows,
especially if they are appropriate to be applied in chronic lung
infections.

NO donor prodrugs (NO-drug hybrid)

The side effects of the abovementioned traditional NO donors
triggered a novel approach taking the most advantage of NO
whilst minimizing toxicity - attaching a NO-releasing moiety to
an existing drug. Different hybrid compounds were produced to
offer various drug actions with synergistic effects, which may
also reduce side effects of parent compounds and slow down
NO release. So far, hybrid drugs with nitrate (nitric-oxide-re-
leasing nonsteroidal antiinflammatory drugs, NO-NSAIDs), S-
nitrosothiols (nitrosylated α-adrenoreceptor antagonists
moxisylate ,S-NO-moxisylate; Diclofenac derivatives contain-
ing S-nitrosothiols, S-NO-diclofenac), NONOates (NONO-as-
pirin and NONO-indomethacin) and furoxan (furoxan-
nicorandil) have been developed, showing great clinical poten-
cy (Fiorucci et al. 2001; Sáenz De Tejada et al. 1999;
Bandarage et al. 2000; Velázquez et al. 2008; Mu et al.
2000). Apart from the applications in cardiovascular and in-
flammatory diseases, NO donor prodrugs that are linked to
antimicrobials or can be specifically activated by bacterial en-
zymes have attracted much attention from medical microbiolo-
gists. For instance, a combination of metronidazole (and its
amino analogues) with furoxan and furazan moieties yielded
some compounds that exhibited higher antibacterial efficacies
against Helicobacter pylori, even for clinical isolates that resist
metronidazole (Bertinaria et al. 2003). Considering the sponta-
neous decomposition of NONOates, Chen et al. synthesized β-
galactosylpyrrolidinyl diazeniumdiolates (β-Gal-NONOate),
which showed much higher specificity and bactericidal activity
towards E. coli engineered to express β-galactosidase (Chen
et al. 2006). However, these compounds did not solve the prob-
lem of low specificity against different clinical isolates in the
complex in vivo environment. Following the concept of using
bac te r ia -spec i f ic enzymes , a prodrug l ink ing a
diazeniumdiolatemoiety to aβ-lactam analogue cephalosporin,
Cephalosporin-3′-diazeniumdiolates (DEACP/C3D/PYRRO-
C3D), was developed (Barraud et al. 2012). This compound
remains highly stable in solution and only releases NO upon
the activation of bacteria-specific enzyme β-lactamase. In vitro
studies showed that DEACP can effectively inhibit
P. aeruginosa biofilms, including those formed by clinical iso-
lates, and increased the susceptibility of P. aeruginosa and
NTHi biofilms against antibiotics (Soren et al. 2019; Barraud
et al. 2012; Collins et al. 2017). Furthermore, the effective
concentration of DEACP against biofilms exhibits no cytotox-
icity when tested on murine fibroblast cells (Barraud et al.
2015), showing great potential for clinical trials. Despite the
necessity of further tests in mucus and animal models, this
method of drug hybridization based on broad-spectrum,
bacteria-specific enzymatic activities and NO donors may sig-
nificantly increase the specificity of NO delivery towards path-
ogens surrounded by a myriad of biological targets in chroni-
cally infected lungs.
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NO-releasing polymeric materials

Synthetic and hybrid polymers have been used for multiple
medical applications. Due to their tunable physical and chem-
ical properties by modifying synthetic precursors and proce-
dures, they can be designed to load many different molecules
matching specific requirements (Maitz 2015). Polymers are
also proven to be efficient platforms for NO, with excellent
NO storage stability and prolonged NO release. Furthermore,
they can also be easily loaded with other antimicrobial sub-
stances to achieve synergistic effects (Rong et al. 2019;
Namivandi-Zangeneh et al. 2018). Numerous NO-releasing
polymers have been developed in recent years for antimicro-
bial and antibiofilm effects, either in the format of small-sized
nanoparticles as drug vectors to improve solubility and tissue
specificity, or as surface coating for in-dwelling medical de-
vices (Rong et al. 2019). For instance, polyvinyl chloride im-
pregnated with S-nitroso-N-acetylpenicillamine (SNAP) sig-
nificantly reduced the colonisation of E. coli and S. aureus,
with excellent storage stability and ease in preparation (Feit
et al. 2019). A core cross-linked star polymer containing
poly(oligoethylene methoxy acrylate) and encapsulated
NONOates significantly prevented the formation of
P. aeruginosa biofilms and can greatly convert established
biofilms into planktonic cells at concentrations that are non-
toxic to bacteria (Duong et al. 2014b). However, the cytotox-
icity of these two types of polymer against human cell lines
was not investigated. Metal nanoparticles coated with NO-
releasing polymers were also developed, such as
AuNP@P(OEGMA)-b-P(VBHA/NO) prepared by grafting
NONOate functionalised poly((oligoethyleneglycol methyl
ether) methacrylate)-block-poly(vinyl benzyl chloride) onto
Au nanoparticles. This polymer/gold hybrid nanoparticle con-
stantly released NO at a slow rate for 6 days, resulting in an
83% reduction in the biomass of P. aeruginosa biofilms
(Duong et al. 2014a). However, when tested against human
cell lines, these NO-loaded nanoparticles significantly de-
creased the viability of both cancer and noncancerous cells.
Although the reason behind such cytotoxicity was not evalu-
a t ed , e a r l i e r s t ud i e s r a i s ed the conce rn s w i th
diazeniumdiolated-based polymers, where NO-donors were
found to leach from the polymers and potentially result in
the formation of carcinogenic N-nitrosoamines (Annich
et al. 2000; Mowery et al. 2000). This leach also suggested
the issues with sustained NO release and the stability of the
NO donor within this type of polymers, which could limit
shelf life or ability to be sterilised. Therefore, covalent attach-
ment of the diazeniumdiolate group to the polymer backbone
was deemed as a better approach in the development of new
NONOate-conjugated polymers.

Whilst the abovementioned polymers tend to release NO at
a relatively low concentration aiming at inhibiting biofilm
formation, polymers storing a large volume of NO may

eradicate biofilms with its bactericidal function. A copolymer
consisting of cross-linked branched polyethylenimine (bPEI)
onto N-carboxy propionyl chitosan sodium bear many sec-
ondary amines for NO loading, and an overall release amount
of NO at 2.031μmol/mg yielded prominent antibacterial func-
tion against E. coli and S. aureus (Ji et al. 2017). Alginate and
chitosan are ideal platforms for inhalation applications due to
their high solubility, compatibility for nebulization and little
toxicity (Lee and Mooney 2012; Ahmad et al. 2005; de Jesús
Valle et al. 2008; Hall et al. 2020). Nitric oxide (NO)-releasing
alginates with a NO storage of 0.1–0.3 μmol/mg were highly
antibacterial against P. aeruginosa, B. cepacia and S. aureus
cultured in artificial sputum medium, resulting in a 5-log re-
duction in biofilm viability within 24 h (Ahonen et al. 2019a).
NO-releasing chitosan oligosaccharides (COS-EA/NO) sig-
nificantly reduced the viability of P. aeruginosa and
S. aureus planktonic cells, as well as eradicated
P. aeruginosa biofilms (Hall et al. 2020). Both NO-loaded
alginate and chitosan exhibited negligible toxicity to human
epithelial lung cells A549, and the latter showed much better
performance than NO gas in buffered solutions, mucus, and
artificial sputum (Hall et al. 2020; Rouillard et al. 2020a;
Ahonen et al. 2018). Although direct inhalation of NO gas
has been widely used as aforementioned, the high reactivity
and short lifetime of NO in biological media, as well as the
necessity in phase transition for diffusion into solutions, can
hinder its total efficacy in vivo. In contrast, the similarly
inhalable NO-releasing alginate and chitosan release their
NO payload directly into the solution and only when in con-
tact, allowing for more targeted and effective treatment.
Moreover, as chitosan scaffold is positively charged, it pro-
motes specific target against negatively charged bacteria and
biofilm (Hall et al. 2020). Apart from the bactericidal effect of
NO, COS-EA/NO was found to decrease the viscoelastic
moduli and weaken the mechanical properties of biofilms
(Reighard et al. 2015; Rouillard et al. 2020a), whilst both
NO-releasing chitosan and alginate were shown to disrupt
the mucus and reduce the viscosity and elasticity of sputum
by degrading of the mucin and DNA networks (Reighard et al.
2017; Ahonen et al. 2019b). As the thick mucus layers in CF,
PCD and COPD greatly contribute to the chronic infection
and restrict the diffusion of NO (Hall et al. 2019), and the high
viscoelasticity of biofilms may impede pathogen clearance
from the lungs and impair antibiotic action (Gloag et al.
2018; Rozenbaum et al. 2019) , the application of NO-
releasing alginate and chitosan may significantly benefit the
treatment of pathogens by both breaking the shield and killing
the cells. Despite the need for more investigations, these
polymer-based NO donors showed superior efficacies to gas-
eous NO in biological relevant models and hold great clinical
promises.

Polymer NO donors can also be incorporated into indwell-
ing medical devices, such as endotracheal tubes in mechanical

3945Appl Microbiol Biotechnol (2021) 105:3931–3954



ventilation, to prevent biofilm formation in the respiratory
tract. Fluorinated derivatives of NO donor SNAP, C2F5-
SNAP, and DiCF3Bn-SNAP, were doped into polyvinylidene
fluoride (PVDF) tubes. These tubes showed significant anti-
microbial and antibiofilm activities against S. aureus and
P. aeruginosa (Zhou et al. 2019; Zhou et al. 2018), suggesting
a great potential in the development of antibacterial biomedi-
cal devices applied in respiratory diseases.

Concluding remarks and future perspectives

Chronic bacterial infection is the leading cause of morbidity
and mortality in CF, COPD and PCD patients, which affect
the life quality of millions of people around the world.
Bacteria that successfully settle down in the respiratory tracts
go through a series of pathoadaptation, including the forma-
tion of biofilm aggregates and genetic mutations, granting
them high tolerance to many antibiotics (Winstanley et al.
2016). As a result, once chronic infections establish, they are
almost untreatable. The insufficient antibiotic suppression
may in return induce biofilm formation and the development
of resistant genes (Hoffman et al. 2005; Ahmed et al. 2018).
Hence, novel antibiofilm therapeutic strategies are urgently
needed for the treatment of these patients and minimizing
the transmission of superbugs in nosocomial infections.

In the airway, nitric oxide plays a vital role as proinflam-
matory and immunomodulatory mediator in pathophysiolog-
ical conditions (Ricciardolo 2003). At high concentrations, it
can exhibit bactericidal effect against invading pathogens; at
low concentrations, it can revert the established biofilms back
to the planktonic state, thus increasing their susceptibility to-
wards antibiotics. Therefore, NO has been regarded as a prom-
ising adjunctive therapeutic strategy in chronic lung infec-
tions. The functions of NO in vivo heavily rely on the concen-
trations generated under specific circumstances, the location,
and the timing of synthesis. As such, a thorough understand-
ing of NO metabolism in pulmonary disease patients helps to
elucidate how the dysfunction of this pathway contributes to
chronic infections, and a clear picture of the pathogenesis may
significantly facilitate the decision of appropriate NO applica-
tions. So far, most of the NO pathway studies in chronic lung
infections focused on CF, and supplementation of NO has
been shown to improve lung function and help reducing bac-
terial load. However, the biosynthesis of NO in PCD and
COPD patients attracted much less attention, and the lack of
knowledge makes it difficult to evaluate the benefit or neces-
sity of different NO augmentation methods. Whilst NO sup-
plementation has been conducted in PCD and COPD, and it
was suspected that NO augmentation will improve treatment
of bacterial infections in PCD and COPD, no clinical data is
available to demonstrate a significant reduction in bacterial
load. On the other hand, solid clinical observations of biofilms

were only reported in CF, despite the long-term implications
in PCD and COPD patients. The absence of direct observation
of biofilms in the lungs or sputa samples from PCD and
COPD patients further hinders the development of better strat-
egy for NO-based treatments, when various concentrations of
NO perform differently in the inhibition of biofilms in vivo.
Future research may focus on (1) NO production and dysfunc-
tion in PCD and COPD patients in order to determine whether
and how exogenous NO application would benefit these pa-
tients; and (2) clarifying the predominant bacterial lifestyle
(planktonic or biofilm) and the primary location of pathogens
in the respiratory tract (on epithelium or mucus) in PCD and
COPD patients so that we can design better NO treatment
strategy targeting different formats of bacterial growthwithout
triggering toxic effects on the delicate tissues. The abundant
literature of NO pathway and pathogenesis, as well as differ-
ent detection methods of biofilms and bacterial load in CF,
will shed light on similar studies in PCD and COPD patients.

Given that externally applied NO would significantly re-
duce bacteria in these patients, either based on its antibacterial
effect at high concentrations, or antibiofilm function at low
scales, the optimised design of NO delivery is crucial for suc-
cessful applications. Numerous novel synthetic NO donors or
polymer NO hybrid drugs have been developed in recent
years, and they are primarily tested in vitro. Therefore, the
selection of in vitro model greatly affects the precision of
conclusion in drug development. Most chemists use type
strains and routine culture medium to test their compounds,
which do not take into considerations of the plasticity of clin-
ical strains and the complicated in vivo environment. As it is
now confirmed that most P. aeruginosa aggregates are em-
bedded in the thick mucus layer in CF patients, some recent
studies started to test novel compounds in artificial CF sputum
medium and yielded some exciting results for bacteria clear-
ance (Ahonen et al. 2019a; Rouillard et al. 2020b).We believe
this experiment model may better recapitulate the perfor-
mance of these drugs in vivo, as P. aeruginosa aggregates
grown in artificial sputum mimic those isolated from patients
to a large extent both physiologically and transcriptionally
(Turner et al. 2015; Fung et al. 2010). As such, these NO
donors that passed the tests in mucus show great potentials
in future clinical trials. The only application of NO donor on
biofilms in PCDwas conducted in NTHi/epithelium coculture
(Walker et al. 2017). Whether this model is suitable to reflect
the efficiency of NO drug remains unclear due to the lack of
evidence of biofilm existence in vivo. Again, a clear picture of
how bacteria are settled in PCD and COPD is crucial for
optimised NO donor design, and future NO donor research
from the chemistry side should carefully consider the selection
of an appropriate in vitro system based on clinical and biolog-
ical findings. Nevertheless, with so much exciting progress in
the discovery of novel NO donors, especially those that spe-
cifically release NO with bacterial triggers and from small-
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sized nanoparticles, future NO applications in chronic lung
infection diseases may possess a significantly higher precision
and efficiency with much fewer side effects.
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