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Great effort has been devoted in recent years to the development of sudden cardiac

risk predictors as a function of electric cardiac signals, mainly obtained from the

electrocardiogram (ECG) analysis. But these prediction techniques are still seldom used

in clinical practice, partly due to its limited diagnostic accuracy and to the lack of

consensus about the appropriate computational signal processing implementation. This

paper addresses a three-fold approach, based on ECG indices, to structure this review

on sudden cardiac risk stratification. First, throughout the computational techniques that

had been widely proposed for obtaining these indices in technical literature. Second, over

the scientific evidence, that although is supported by observational clinical studies, they

are not always representative enough. And third, via the limited technology transfer of

academy-accepted algorithms, requiring further meditation for future systems. We focus

on three families of ECG derived indices which are tackled from the aforementioned

viewpoints, namely, heart rate turbulence (HRT), heart rate variability (HRV), and T-wave

alternans. In terms of computational algorithms, we still need clearer scientific evidence,

standardizing, and benchmarking, siting on advanced algorithms applied over large

and representative datasets. New scenarios like electronic health recordings, big data,

long-term monitoring, and cloud databases, will eventually open new frameworks to

foresee suitable new paradigms in the near future.

Keywords: sudden cardiac death, risk stratification, computational algorithms, scientific evidence, technology

transfer, heart rate variability, heart rate turbulence, T–wave alternans

1. INTRODUCTION

Sudden Cardiac Death (SCD) describes the unexpected natural death from a cardiac cause within
a short period of time (generally ≤ 1 h from the onset of symptoms if witnessed, or within 24 h
of having been observed alive if unwitnessed), in a person without any prior condition that would
appear fatal (Zipes and Wellens, 1998; Priori et al., 2001; Organization, 2005). The definition for
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sudden death is similar to SCD, except for its origin is from any
cause. Nevertheless, the main cause of sudden death is cardiac
origin, and SCD is mainly due to: (1) arrhythmic causes, such
as ventricular tachycardia (VT), ventricular fibrillation (VF),
or asystole; (2) other structural heart disease causes, such as
congenital heart disease; or (3) abnormal functioning of the
autonomic nervous system, which is not a death cause itself, but
it can promote causes such as arrhythmic or hypertension death
(Pratt et al., 1996; Priori et al., 2001; Zipes et al., 2006). The SCD
mechanism in the last cases is usually VT or VF.

SCD remains a major cause of mortality in industrialized
countries, and in order to reduce its incidence, methods
allowing accurate patient stratification in terms of risk have
been intensely scrutinized and developed. Whereas, a number
of studies suggest that most SCD episodes are given in patients
with coronary disease or cardiomyopathy, episodes can also
occur in people without previous symptoms or signs of heart
disease, and regrettably, there is no accurate enough method to
effectively predict SCD in these conditions. Risk stratification
of SCD in patients differs substantially depending on the
underlying cardiopathic basis, since the prognostic significance
of noninvasive studies and efficacy of therapeutic measures are
strongly etiology-dependent (Villacastín et al., 2004).

While the measurement of left ventricular ejection fraction
(LVEF) is widely used as the gold standard for detecting
SCD high-risk patients, other noninvasive techniques and
measurements have been proposed, such as late potentials, heart
rate variability (HRV), heart rate turbulence (HRT), T–wave
alternans (TWA), or deceleration capacity. In recent years, an
intense research has been driven for the development of SCD
risk predictors as a function of computational indices obtained
from the analysis of the electrocardiogram (ECG). However,
these techniques are not currently used in the clinical routine. A
surprising fact is the lack of consensus about the most adequate
computational methods for preprocessing or signal conditioning
in order to extract the clinically relevant information (Antezano
and Hong, 2003).

However, the interest of this subject has generated a number
of reviews, tutorials, and guidelines on the clinical fundamentals
and scope of SCD (Zipes and Wellens, 1998; Priori et al., 2001;
Zipes et al., 2006; Goldberger et al., 2008). In contrast to them,
this work is intended to illustrate the current situation in the
field of SCD risk stratification with computerized indices from a
practical standpoint. For this purpose, we address this study from
a three-fold perspective: (a) the role of computational processing
techniques and its diversity; (b) the current technology transfer
and its limitations; and (c) the need for scientific evidence and its
precedents.

Three relevant SCD computational markers are discussed in
detail, which have been chosen for their widespread relevance in
the field. HRT is assessed with an easy and clear methodology
with very few variations from the initially proposed one, hence
it represents a well established and standardized prediction
technique. Conversely, HRV has been extensively studied and
measured throughout a huge number of different proposed
techniques and indices. Finally, TWA is recently gaining much
clinical interest, but again, plenty of methods have been proposed

for its computation, which makes unclear the consistency
between clinical and technical literature.

The outline of this review is as follows. For better
understanding the computational issues of the topic, Section 2
addresses the general background on the SCD origin, and
Section 3 gives an overview on the used and proposed testing
methods in the clinical practice. Then, in Section 4, three
representative families of ECG derived indices are explored
with focus in the algorithmic implementations, namely, HRT,
HRV, and TWA. Section 5 summarizes the technology transfer
by analyzing the algorithms implemented in the commercial
equipments and the patents in the field, whereas Section 6
conveys a clinical and scientific evidence landscape. Section 7
contains the discussion and conclusions of the present work.

2. SCD ORIGIN

It is fundamental to understand that the SCD risk stratification
methods provide us with information related to the several
physiological aspects that may be affected during the course of an
SCD episode. The facts about SCD that are currently established
and accepted are next summarized.

First, most sudden death cases have usually cardiac origin,
and they mostly arise from some arrhythmic mechanisms
in malignant ventricular arrhythmia. These arrhythmias
are more frequently found in cardiopathies with extensive
structural affection of the ventricular myocardium (such as large
myocardial infarction and other kinds of cardiomyopathy), and
in patients with genetic abnormalities in the ionic channels
(such as long QT and Brugada syndrome channelopathies). In
most cases, the mechanism that elicits terminal arrhythmias is
considered to be a reentry in its multiple forms, depending on
the clinical scenario, such as anatomical or functional barriers,
and rotors. Second, non-sustained arrhythmias (basically
ventricular extrasystoles) may operate as triggers for the reentry
development in some cases, because the premature beat is
spread throughout a heterogeneous substrate, thus generating
a non–homogeneous slow conduction that allows the reentry.
And third, it is also known that in many of these cases, the
autonomous system, which innervates the heart and modifies the
properties of the ionic channels, can play a modulating role that
may allow the appearance or maintenance of the aforementioned
reentries or their triggering causes (Goldberger et al., 2008; Priori
et al., 2015).

Practical SCD computational predictors should be capable
of identifying patients with either substrate, or triggers, or
modulators, that lead to deathly arrhythmias, namely, non-
tolerated VT and VF. Accordingly, they should provide
information about the features described next.

(1) The presence of a substrate allowing reentries, which
includes the detection of slow conduction pathways in the
myocardium, and it is given by increased QRS duration,
late potentials (including early and afterdepolarizations),
left bundle-branch block, or specific ECG patterns (e.g.,
Brugada), among other possible factors. In this setting, the
demonstration of arrhythmia inductibility by maintaining
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a reentry in an electrophysiological study (EPS) shows
the existence of a pro-arrhythmic substrate. The presence
of anatomic barriers, heterogeneity, and myocardial
conduction dispersion (e.g., due to scars or fibrosis) are
also substrate indicators. Finally, the spatial or temporal
repolarization dispersion, which makes possible reentries,
can be detected, for instance in the QT dispersion or in the
TWA presence.

(2) The existence of triggers, which can be from extrasystole and
non-sustained VT, to the well-known R on T phenomenon,
among others (Engel et al., 1978).

(3) The existence of modulator abnormalities, which is mostly
due to three physiological alterations. First, the autonomous
nervous system alterations on the sinus node control, which
are observed via HRV, HRT, and on baroreflex sensitivity
(to be described next). Note that the presence of alterations
in these indices is not itself a mechanism of SCD related
arrhythmias, but instead it represents a way of evaluating the
function of the cardiovascular autonomous nervous system,
in such a way that abnormal function is assumed to promote
ventricular arrhythmias that are the actual cause of SCD.
Second, the performance alteration of ionic channels, such
as mutations with high arrhythmic risk. And third, many
other modulating factors, including the ischemia, the celular
hydrolytic environment, or the presence of drugs modifying
the electric properties of the cells.

3. TESTING METHODS

According to the testing method required to obtain the
information, the existing SCD risk stratification techniques can
be divided into invasive and noninvasive ones. The former
mostly consists of EPS, and the later include 12-leads ECG,
medical image techniques, Holter ECG, high-resolution ECG,
and baroreflex test. Other testing methods, such as genotype
determination or stress test, can be useful in patients with some
specific cardiopathies causes (Goldberger et al., 2008; Priori et al.,
2015).

3.1. Information from the EPS in the Patient
The EPS uses a set of intracardiac catheters, guided by X-ray
or other systems, in order to register and record the internal
cardioelectric activity. The EPS-based SCD risk stratification
mainly consists of trying to induce ventricular arrhythmias (VT
or VF) by using electric extra-stimuli according to an adequate
programmed interval sequence in the ventricles, and for this
purpose it should not be longer than 20 or 30 min. The EPS is
not useful for the diagnosis of long QT syndrome or hypertrofic
myocardiopathy, and it does not provide either with relevant risk
information in these pathologies.

The usefulness of EPS for SCD prediction has been only
validated in ischemic cardiopathy after myocardial infarction,
and weakly validated in Brugada syndrome channelopathy and
in some other cardiopathies. For other cardiopathies, either there
are not enough data, or it is well known that EPS does not provide
with a useful SCD risk stratification criterion. Nevertheless,
the usefulness of EPS in ischemic cardiopathy was validated

in old studies with limitations, hence they are seldom used
in today clinical practice, except for very specific situations,
e.g., in patients with non-filiated origin syncope, old infarction,
and reasonably preserved ejection fraction. Note also that
patients with severe ventricular disfunction have straightforward
indication for Implantable Cardioverter Defibrillator (ICD),
hence they are not referred to EPS.

In addition, EPS has not been found to be very useful with
ventricular programmed stimulation for SCD risk stratification
in dilated myocardiopathy, as far as it is Class IIb in current
clinical practice guidelines (usefulness/efficacy is less well
established by evidence/opinion, may be considered), and it is
based in a meta-analysis (Goldberger et al., 2014; Priori et al.,
2015). Neither it has in hypertrophic myocardiopaty, for being
Class III in current guidelines (invasive EPS with PVS is not
recommended for stratification of SCD), and for being something
not much discussed except for old publications. Finally, neither it
has in right ventricular arrhythmogenic dysplasia, for being Class
IIb in the same guidelines (it can be considered for sudden death
stratification, but with low basement), only for being based in
retrospective studies in which ventricular arrhythmia induction
is a significant predictor in multivariate analysis (Roguin et al.,
2004; Bhonsale et al., 2011), but no prospective studies have been
designed for clarifying this, hence its robustness is low.

3.2. Conventional ECG
The conventional ECG is a well-known graphical representation
of the cardiac electrical activity. Among the number of ECG
standards depending on the followed objective, the most
commonly used is the 12-lead one. The basis of this system is to
evaluate a set of weighted potential differences between specific
sites of the body surface where electrodes are placed. Every
ECG is characterized by the cyclical occurrence of time-varying
patterns with different frequency content, defining specific and
known shapes that are related to relevant and macroscopic
noticeable electric activity of the heart. The most relevant waves
over the beat cycle are the P wave (atrial depolarization), followed
by the QRS complex (ventricular depolarization), and covering
up to the T wave (ventricular repolarization). The ECG is a
quite standard inexpensive non-invasive medical procedure with
immediate results, and available in all medical environments,
and for this reason, it plays a significant role for cardiovascular
diseases screening and diagnosis, metabolic disorders detection,
and SCD predisposition.

Accordingly, the ECG can be helpful for diagnosis of the
underlying cardiopathy, but it also can show elements suggestion
increased SCD risk, for instance, a Type I pattern in Brugada
syndrome, an elongated QT interval in the long-QT syndrome,
or a bundle-branch block in ischemich cardiopathy and in
miocardiopathies.

The QRS duration is a manifestation of the existence of a
conduction delay or intraventricular blocking. The duration of
ventricular activation is usually measured by a 12-lead ECG,
and under normal conditions it is lower than 120 ms. The QRS
duration is a highly reproducible measurement, with less than 5%
variation. A moderate amount of data shows that increased QRS
duration identifies patients at increased risk of SCD, although

Frontiers in Physiology | www.frontiersin.org 3 March 2016 | Volume 7 | Article 82

http://www.frontiersin.org/Physiology
http://www.frontiersin.org
http://www.frontiersin.org/Physiology/archive


Gimeno-Blanes et al. Cardiac Risk Stratification - A Review

the data are not uniform. In the absence of prospective studies
specifically designed to address this problem, the use of QRS
duration for risk stratification of SCD in patients with CHF is
not recommended at present (Goldberger et al., 2008). Recent
studies have demonstrated that QRS duration is an independent
predictor of SCD risk, though they refer to general population,
rather than cardiopathy (Kurl et al., 2012; Laukkanen et al., 2014).

The QT interval is a reflection of the combination of the
durations of the ventricular action potentials. Its value decreases
with increasing heart rate, and several correction formulas have
been suggested for its correction according to this factor, being
the Bazett’s equation (QT interval divided by the squared root
of RR interval) one of the most used ones (Ahnve, 1985). The
normal corrected QT interval is slightly shorter in men than in
women. The QT interval measurements have been shown to be
highly reproducible, but the need for certain correction formulas
and the use of different corrections throughout studies limits
their populational comparison.

3.3. Noninvasive Medical Image
Techniques
A well established relationship exists between left ventricular
systolic dysfunction and death from progressive heart failure
(HF) and ventricular arrhythmias in patients who have suffered
an acute myocardial infarction (AMI). The LVEF reduction has
been the most consistently reported SCD risk factor in HF
patients, and an important predictor of cardiac (and sudden)
mortality in the long term after AMI. A LVEF≤ 30 or 40% is used
as the threshold for identifying high-risk individuals. At present,
LVEF is considered a limited predictor, and is often impossible to
distinguish between patients with high arrhythmic mortality and
those with a high mortality due to pump failure (Villacastín et al.,
2004; Goldberger et al., 2008). Therefore, the limited sensitivity
of this test makes necessary its combination with other diagnostic
tests.

In addition to helping to the diagnosis of the underlying
cardiopathy, several cardiac image techniques also can provide
with SCD risk indicators. In this setting, they are used to estimate
the LVEF for SCD risk stratification, which can be estimated
by means of echocardiography, isotope ventriclegraphy, cardiac
computerized axial tomography, cardiac nuclear magnetic
resonance, or conventional contrast ventriclegraphy. The mostly
widespread used technique is echocardiography, for its ease,
lower price, and absence of irradiation.

The depressed LVEF is a significant risk factor in ischemic
cardiopathy, in myocardiopathies, in severe septal hypertrophy,
in hypertrophic myocardiopathy, among others. Also, cardiac
nuclear magnetic resonance can be used to estimate the degree
of myocardial fibrosis, which has been related to the ventricular
arrhythmia episodes in some cardiopathies.

3.4. Long-Term ECG Monitoring
The ambulatory electrocardiography, or Holter, is a diagnostic
method consisting of ECG recordings from 24 to 48 h in two
or three chest leads (some current systems provide with 12 leads
recording). These recordings are subsequently analyzed by using
a computer, and relevant electrophysiological events can be easily

detected, including several potential and proposed markers in
SCD risk stratification, such as ventricular extrasystoles, non-
sustained (NS) VT, or VT episodes, as well as TWA,HRT, or HRV
indices, whose alterations can promote ventricular arrhythmias.

There are a number of arrhythmic events associated to
SCD risk that are mostly noticeable on Holter ECG. Particular
attention has been paid to Ventricular Premature Beats (VPB),
with occurrence of 70–95% of HF patients (Teerlink et al.,
2000; Villacastín et al., 2004). Also, left bundle-branch block
is an arrhythmic event which, in turn, has been analyzed
in the literature as a specific marker of SCD (Baldasseroni
et al., 2002; Iuliano et al., 2002), although findings could not
be considered very conclusive from a prognostic perspective
(Villacastín et al., 2004). NSVT has also been observed on 50–
80% of the patients with HF and cardiomyopathy (Teerlink et al.,
2000), and previously observed NSVT is usually a significant
predictor in univariate analysis, but it does not remain as an
independent predictor in multivariate analysis (Villacastín et al.,
2004). Another remarkable arrhythmic event is atrial fibrillation
(AF), which is caused by chaotic electrical activity at the atrium,
resulting in an irregular ventricular response and minimum
oscillations of the baseline or f-waves (Villacastín et al., 2004).

3.5. Other Tests
Other relevant tests that have been paid relevant attention in the
context of SCD risk stratification are the following (see Villacastín
et al., 2004; Goldberger et al., 2008 and references therein).

ECG Signal Averaging Techniques detect the presence of
arrhythmic substrate in terms of slow conduction paths.
In particular, ventricular late potentials are high frequency
potentials with small amplitudes found in the final portion of
QRS complex and the onset of the ST segment. These potentials
are associated to depolarization of slow-conduction areas at
the edges of the scarred myocardium. Delayed conduction and
unidirectional block tend to favor reentry, which is believed to
be the cause of certain VT. However, signal averaged ECG is
not currently used for risk prediction of SCD. It was formerly
used to predict the inductibility of ventricular arrhythmias during
EPS, which is indirectly related to SCD, but published data are
from several decades ago, and they are not easily applicable to
current populations and therapies. Nowadays, the only clinical
indication for this technique is helping to the diagnosis of right
ventricular arrhythmogenic dysplasia in some cases, and even
in this pathology it has not been shown to have SCD predictive
capacity.

Baroreflex Sensitivity refers to the heart response, in terms
of RR intervals, to changes in blood pressure. Baroreflex
mechanisms have been established as central element to
the regulation of the cardiovascular system. It is usually
measured with a polygraph or conventional electrocardiograph
system during a procedure in which arterial pressure is
pharmacologically modified, hence allowing to detect alterations
in the autonomous function.

Studies examining the vagal reflex in patients with recent HF
provide prognostic information independent of the LVEF and
additional to the information provided by HRV measurements.
The main restriction of this method is the requirement to
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simultaneously record blood pressure and HRV signals, which
is not usual in the clinical practice. New measurements have
been developed in recent years, such as baroreflex sensitivity
turbulence in heart rate, which reflects the fluctuation of the
cardiac cycle length in sinus rhythm after an isolated PVB.

4. ALGORITHMIC AND COMPUTATIONAL
INDICES

This section summarizes the main computational and
algorithmic implementations that have been used in the
three families of SCD risk stratification indices.

4.1. HRT Indices
HRT describes the short–term fluctuation in ECG cycle length
that follows a VPB. The turbulence can be very well identified
in RR interval time series and its regular pattern exhibits
an initial sinus rhythm acceleration after the VPB, followed
by a subsequent deceleration to finally return to pre–ectopic
levels (Watanabe and Schmidt, 2004; Bauer et al., 2008). Figure 1
depicts a typical averaged tachogram over which the turbulence
phenomenon is observed. It comprises the VPB surrounded by
several sinus RR intervals, usually at least two before the coupling
interval and 15 after the compensatory pause.

The physiological mechanism of HRT is likely based on a
baroreflex source in such a way that changes in blood pressure
are also manifested in the heart rate (HR). The lower ventricular
filling and ineffective contraction due to a VPB produces a
reduced pressure, which causes vagal inhibition and increases
the HR. Subsequently, this heart rhythm growth induces a
post–compensatory pause increased pressure resulting in vagal
activity restitution, which in turn leads to sinus deceleration. Any
deviation from this pattern may reflect anomalous autonomic
function, thus, patients at risk show an attenuated or even entirely
missing HRT, and this difference on the HRT response has
been proven to be an informative predictor of mortality and
SCD (Schmidt et al., 1999; Barthel et al., 2003).

The measurement of HRT is carried out by means of two
parameters, namely, Turbulence Onset (TO) and Turbulence
Slope (TS), which quantify the two phases described above. The
early acceleration is characterized by

TO =
(RR1 + RR2) − (RR−3 + RR−2)

(RR−3 + RR−2)
· 100 (1)

where RR−3 and RR−2 are the two RR intervals preceding the
coupling interval, while RR1 and RR2 are the two RR intervals
immediately following the compensatory pause. The spots used
for calculating TO are identified in Figure 1, which for this case
clearly reflects rhythm acceleration corresponding to a negative
value (healthy response) when computed as in Equation (1).
On the other hand, the sinus deceleration, attributed to the
second turbulence phase, is quantified by TS, which is the slope
of the steepest regression line observed over any sequence of
five consecutive RR intervals starting within the first 15 sinus
rhythm RR intervals after the compensatory pause. The thick
line superimposed over the deceleration portion of the tachogram

observed in Figure 1 is the one reporting the steepest slope from
which TS is determined. In most clinical studies, the values
T0 < 0 and TS > 2.5 ms/RR interval are considered as normal.
There are three categories for SCD risk stratification based on
HRT indices, namely, Category 0 (both TO and TS are normal),
Category 1 (either TO or TS is abnormal), and Category 2 (both
are abnormal). Category 0 also comprises the case when HRT
cannot be calculated due to unsuitable tachogram.

In analyzing turbulence from a single VPB, background
effects and noise related to HRV severely affects any individual
tachogram, so in practice, the aforementioned parameters are
assessed over the mean of a number of selected VPB taken from a
long-term Holter. Thus, the shape shown in Figure 1 is a clean
VPB waveform which corresponds to an averaged tachogram.
For reliable construction, at least five individual tachograms need
to be averaged, but normally, tachograms from all VPBs on a
Holter recording are used. At the same time, not all the VPB
tachograms are suitable, hence, those that do not hold some
specific morphological conditions are considered useless and
invalid for averaging (Watanabe and Schmidt, 2004; Bauer et al.,
2008).

Intra-patient long-term averaging of VPBs in order to reduce
the noise level of the HRT signal provides only long-term HRT
computational indices. In Rojo-Álvarez et al. (2009), a method
for denoising individual VPBs was proposed using Support
Vector Machines (SVM) for regression, by using HRT stimulated
during EPS as a low-noise gold standard. This approach provided
with HRT measurements in a 24–h Holter patient database
with significant reduction in the bias and the variance. In this
setting, HRT is well-known to be affected by several physiological
factors, mainly heart rate and coupling interval of the VPB.
Despite the physiological hypothesis to explain the HRT as a
baroreflex response after the VPB, several studies have shown
different results about the relationship between coupling and
HRT parameters, sometimes with results apparently opposite
to the hypothesis of HRT baroreflex source (Watanabe, 2003;

FIGURE 1 | Biphasic response after a VPB in an RR interval time series

(circles). The computation of both TO and TS is also represented.
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Savelieva et al., 2003; Lee et al., 2004; Schwab et al., 2004). In
Barquero-Pérez et al. (2012), a nonlinear regression model was
used to assess the influence of coupling interval and heart rate
on HRT, using the same data as in Rojo-Álvarez et al. (2009)
from EPS and from Holter recordings. Results showed that the
non-averaged tachogram analysis with the nonlinear regression
model is able to explain the influence of the coupling interval on
the HRT for healthy patients in accordance with the baroreflex
hypothesis.

Both TS and TO, assessed over averaged tachograms, are so far
the widely accepted turbulence measures for risk stratification.
Nonetheless, although several other HRT measures have been
proposed, they have scarcely been applied in clinical studies.
Regarding TS modifications, a new figure independent of heart
rate and the number of VPBs was given in Hallstrom et al.
(2004), and a corrected TS normalized with respect to the systolic
and diastolic blood pressure was used in Malberg et al. (2004).
Furthermore, new parameters (such as turbulence dynamics,
turbulence frequency decrease, turbulence timing, turbulence
jump, and correlation coefficient of TS) have been presented,
though their risk stratification capabilities have not yet been fully
demonstrated (Watanabe, 2003).

Finally, an alternative approach to quantify HRT was
proposed in (Solem et al., 2008; Martínez et al., 2010; Smith et al.,
2010), fromwhich a statistic test is performed over the turbulence
waveform, modeled as the sum of HRT and HRV, and where the
HRV is taken here as the noise source. The method relies on
an extension of the integral pulse frequency model, defined for
describing rate variability, where the turbulence phenomenon is
included. Thus, the turbulence is treated as a function of time,
instead of a tachogram, over which the generalized likelihood
ratio test is applied. The method exhibits good performance
on simulated data as well as in a limited set of ambulatory
recordings, but it still needs further research on representative
clinical studies.

4.2. HRV Indices
HRV measures and analyzes the temporal variation between
sets of consecutive cardiac beats. The short-term HRV is
associated with an adequate control of the heart rate by
the autonomic nervous system, whereas the long-term HRV
has a more complicated physiological meaning in terms of
the complexity of the auto-regulation mechanisms in the
cardiovascular system. The autonomic nervous system is divided
into two branches, namely the sympathetic and parasympathetic
(or vagal). In general terms, the excitation from the sympathetic
(parasympathetic) branch is accepted to accelerate (decelerate)
the heart rhythm, and since both systems act simultaneously,
oscillations about the mean heart rate are produced in a
dynamical equilibrium, which can be observed in through the
HRV dynamics (Malik et al., 1996). However, this is not the only
source of HRV, as far as the nervous system receives information
from many other different systems and acting on organs (heart,
digestive system, kidney, respiratory system, and more), which
also contribute to modulate the HR through a complex dynamic
equilibrium with cardiovascular system mechanisms happening

in the short- and long-term time scales. Figure 2 shows an
example of a HRV signal.

HRV is probably the mostly analyzed index in the
cardiovascular risk stratification technical literature, and an
important number of models and methods have been developed
for this purpose. The European Society of Cardiology and
American Heart Association made a first attempt to organize
this large amount of initiatives in the field of HRV, trying to
propose a set of methodological standards (Malik et al., 1996),
which however were limited to a set of recommendations for the
compiled signal processingmethods to the date. Nevertheless, the
large number of techniques for HRV analysis are often organized
into families, including statistical, geometrical, spectral, time-
scale, and non-linear algorithms. Only those methods applied
to SCD prediction are next briefly described, and the interested
reader can find the low-level computational details in (Malik
et al., 1996; Hossena et al., 2005; Rajendra Acharya et al., 2006;
Bilgin et al., 2009; Colak, 2009; Figuera et al., 2013).

4.2.1. Statistical Methods
Among all methods, the less sophisticated and yet the mostly
used ones, are the statistical indices. These ones are based
on the quantification of the RR range or spread from simple
statistical measures, such as the mean, the standard deviation,
the pNN50, and the HRV index. The first three mentioned have
been paid major attention in the medical literature, whereas the
last one is the only statistical index providing a robust behavior
against artifacts (Acharya et al., 2007). In practical terms, and
very roughly speaking, the rationale behind these methods is
the greater HRV, the healthier cardiovascular system. Some of
them target to measure the short-term variation (5 min) and
some others the long-term variation (daily) in the averaged RR
time intervals. Several sets of statistical indices have been also
proposed for calculation from the first difference of the RR-series,
showing differences in their behavior and predictive capabilities.

Statistical methods have been widely used in the prognosis
of SCD and for neuropathy detection, establishing a
relationship between the heart enervation degree and the
HRV intensity (Acharya et al., 2007), as well as for the diagnosis
of diabetic neuropathy in predicting SCD in postinfarction
patients (Malik et al., 1996). The SCD prognosis in postinfarction
patients has been proposed by using long–term measures of
SDNN, pNN50, r − MSSD, HRVindex, and LoadIndex. Among
them, SDNN and HRVindex are absolute measures of HRV
(influenced both by the sympathetic and the parasympathetic
branches), whereas pNN50, r − MSSD reflect vagal activity, and
the LoadIndex provides a method to evaluate medium and long
term variability (see Malik et al., 1996; Acharya et al., 2007 for
details).

4.2.2. Geometric Methods
This set of indices aims to improve the robustness of the HRV
measurements in RR tachograms, and for this purpose, they
distribute the series of observed RR intervals by following a
specific geometric pattern, based on the probability density
function of normal RR intervals or their first difference, or
on the sampling distribution density of normal RR interval
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FIGURE 2 | Example of HRV signal tachogram, or signal given by the times elapsed between consecutive beats as a function of the beat number (A),

and the analysis with Lorentz plot (B), power spectral density (C), and nonlinear techniques in terms of detrended fluctuation analysis (D).

durations. Emerging patterns are then measured and classified
in different categories and measuring the range or the geometric
figure scatter. For instance, when trying to match a given RR
histogram with a triangle pattern shape, the parameters better
approximating the histogram provide with a measurement of the
scatter by means of the triangle basis. The most usual geometrical
methods are the the triangular index, the differential index, and
the logarithmic index (see Malik et al., 1996 for further details).

4.2.3. Spectral Methods
Spectral methods have the capability of distinguishing in the
frequency domain the contribution of the sympathetic and the
vagal branches, which are mostly confined in specific bands.
There are no formal criteria for establishing the limits of each
band, as they must be flexible depending on the application, but
there is a standard de-facto for short-term recordings (from 3
to 5 min long), usually separating into three bands (Montano
et al., 1994), namely, Very Low Frequency (VLF, frequencies
below 0.04 Hz), Low Frequency (LF, in 0.04 − 0.15 Hz), and
High Frequency (HF, in 0.15 − 0.4 Hz). Many indices have
been proposed according to the many different spectral analysis
techniques, but the LF/HF power ratio is probably the most
useful among the short-termmeasurements. The spectral analysis
mostly used is the Fast Fourier Transform (FFT) and the
periodogram, though many advantages have been claimed for
the autoregressive methods (Yan and Zheng, 1995), despite their
need for a good choice of the model order [often relied to

Akaike information criterion (Akaike, 1981)] and for a set of
tests (whiteness, residuals) which often are ignored. From a
signal processing point of view, special mention is that the HRV
signal is a non–uniformly sampled sequence, requiring either
working on the beat–frequency (beatquency) domain (Lisenby
and Richardson, 1977), or interpolation, which can distort the
HF power estimation content. An elegant representation for the
HRV signal, which aims to overcome the tachogram limitations
in this setting, is given by the Integral Pulse FrequencyModulator
(IPFM) model (Mateo and Laguna, 2000), which has been widely
followed subsequently in the technical literature, though it has
not been proven to be more effective in the SCD risk stratification
medical literature.

4.2.4. Time–Frequency and Time–Scale Methods
Spectral methods should be used only for stationary processes,
and for this reason, time-frequency methods have been
proposed instead from the technical literature for analyzing
long recordings and transients. A first approach is given
by the spectrogram, a simple extension of the frequency
analysis in time segments. A second approach, given by the
generalized time frequency methods, provide with a continuous
surface corresponding to the time sliding windows applied
over time. Depending on the window and the frequency
domain transformation, a number of different time-frequency
representations have been obtained, including the distributions
from Choi–Williams, Margenau–Hill, Page, Smooth Pseudo
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Wigner–Ville, Wigner–Ville, Modified Spectrogram, among
others (Mainardi, 2009). A third approach comes from the so
called time–scale methods and the popular wavelet transform.
These transforms perform the signal decomposition on a set
of functions obtained from the so-called mother wavelet and
its expansion-contraction and time displacement, hence we talk
about time–scale distributions, although the wavelet scale may be
readily related to the frequency. Both the continuous (CWT) and
the discrete (DWT) wavelet transforms have been proposed for
HRV analysis (Mallat and Zhong, 1992; Rajendra Acharya et al.,
2006).

4.2.5. Non-Linear Methods
Special mention requires the characterization of the RR series
from the field of nonlinear dynamics, which has recently gained
great interest to study the complexity of the cardiac signals.
Specifically, Chaos Theory, together with the characterization of
a system fractal dimension and the Hurst exponent techniques,
have shown possibilities for direct application in the analysis of
HRV recordings. Also, the application of higher order statistics
(i.e., the bispectrum) has been proposed for highlighting the
degree of nonlinearity of the auto-regulation system affecting the
HRV (Toledo et al., 2001; Rajendra Acharya et al., 2006). RR
series can be analyzed as a complex signal including a certain
random behavior. Chaos Theory and Fractal Analysis describe
and quantify the complexity of HRV. Fractal dimension and
Hurst exponent are the main methods to quantify the complexity
for chaotic signals. The Hurst exponent is a fractal index, and as
such, it provides a similarity measurement of the signal for the
different scale views. In this case, it is calculated as the regression
analysis of the averages of the ratio of maximum dispersion
over standard deviation, for different window sizes. Based on the
Hurst exponent (H), many studies define the Fractal Dimension
as the difference of the Euclidean Dimension and the previously
defined H. In our particular case, HRV has been shown to behave
as a multi-fractal signal, meaning that presents different patterns
of fractal behavior over the time. According to recent research,

this multi-fractality character is lower when some heart problems
are present (Sassi et al., 2009).

4.3. T–wave alternans
TWA is a particular type of ECG alternans that is related to
changes in amplitude, waveform, and duration of the ST–T
complex occurring on an every–other–beat basis. Also known as
repolarization alternans, it has been shown to be a clinical marker
for stratifying risk in SCD patients (Walker and Rosenbaum,
2003). Figure 3 depicts an example of a severe TWA where the
periodic pattern of two beats is clearly observed on the ECG of
the left panel. The case corresponds to an alternant wave of 300
µV. To better identify this variation, even and odd heartbeats
can be separated into two subsets to be posteriorly aligned
and averaged. The resulting even and odd beats can then be
superimposed as in Figure 3B, enhancing the differences between
them and making thus easier the visualization of alternans.
Also in this plot, but in a separate graph, the estimate of the
alternant wave is depicted, which is determined as the difference
between the averaged even and odd beats. This phenomenon
is generated at the myocites level and it may be caused by
differences among action potential shapes. Thus, alternation
can be given because different regions have distinct and non-
natural action potential durations (modified spatial dispersion of
repolarization), or by alternate duration of action potentials of a
single cell (temporal dispersion) (Narayan, 2006; Bakhshi et al.,
2013).

Ventricular repolarization alternans is usually referred to as
microvolt–TWA (MTWA) because in most cases the fluctuations
are so small in surface ECG that visual assessment is impractical.
In consequence, its manual identification is almost unfeasible
and the introduction and use of signal processing techniques is
unavoidable for its analysis, detection, and estimation. Despite
this unnoticeable manifestation, the physiological and clinical
importance of these subtle variations might be explained because
at the cellular level the magnitudes may be several orders
greater (Walker and Rosenbaum, 2003).

FIGURE 3 | Illustrative example of TWA. (A) ECG signal with periodic pattern alternation in the repolarization segment with a period of two beats. (B) Visual

interpretation of TWA as the difference between the averaged event beat and the averaged odd beat.
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Alternans depend on heart rate, which is a modulating factor
for TWA, i.e., the alternans magnitude increases at increasing
heart rates. In fact, ventricular repolarization alternations can
be very well found at higher cardiac frequencies in healthy
individuals, yet the onset heart rate for TWA is considerably
lower in patients at risk. Thus, during atrial pacing to predict
induction of ventricular tachyarrhythmias, the onset heart rate
was found to be 95 ± 15 bpm, and the specificity at 120 bpm
was very low, i.e., amounts of alternans were detected in control
group at 120 bpm. It was fount that the most suitable cardiac
rhythms for predicting were under 110 bpm (Tanno et al., 2000,
2004). In summary, in common practice, heart rate must be
elevated to pass a TWA test for assessing cardiac risk and it
has to be done with care and under supervision. Atrial pacing
during EPS is one means to increase cardiac frequency, but other
methods less harmful and noninvasive, such as exercise testing,
are currently more extensively used because they have shown
comparable results (Hohnloser et al., 1997).

Although most clinical studies have relied on this heart rate
dependency procedure to find predictive TWA, the analysis in
ambulatory ECG records has yielded promising results (Verrier
et al., 2011). Therefore, the use of this type of data, which
avoids the exercise–based test described above, is opening a new
perspective of great interest toward amore versatile way of testing
with less intervention from clinicians and in a more convenient
fashion for patients.

So far, plenty of methods to automatically tracking TWA have
been reported due to the strong evidences that tie ventricular
repolarization alternans with risk stratification. However, the
difficulty of visually identifying alternans has prevented the
design of specific annotated databases, and consequently, the
definition of a gold standard to accomplish the performance
validation of the proposed methods. Therefore, from a clinical
standpoint, there are to date only two methods that have
demonstrated their validity because they have been employed in
a number of clinical studies (Verrier et al., 2011): the Spectral
Method (SM) (Rosenbaum et al., 1996) and theModifiedMoving
Average (MMA) (Nearing and Verrier, 2002). For these reasons,
and also for the sake of simplicity and their illustrative capacity,
we center our attention on them to introduce the basics of
alternans detection and estimation. Both methods are briefly
explained in their simplest version.

In finding TWA, the attention is driven to the ventricular
repolarization segments of the ECG with the purpose of
characterizing a periodic pattern every–other–beats. Thus, the set
of N samples from the m–th ST–T complex can be enclosed into
the N dimensional vector

xm = [xm(0), xm(1), · · · , xm(N − 1)]T (2)

We then row–wise allocate the repolarization segments into the
M × N matrix:

M =
[

xT0 , xT1 , · · · , xTM−1

]T
= [s0, s1, · · · , sN−1] (3)

so as to gatherM consecutive beats for testing. Column–wise, the
M × 1 vector sn = [sn(0), sn(1), · · · , sn(M − 1)]T contains the

samples of M consecutive heartbeats collected at the same time
latency n. This sequence is known as a beat series.

When analyzing TWA in surface ECG, the signal coexists with
severe level of noise and artifacts due to exercising or ambulatory
recording. As this undesirable component interferes with a
correct interpretation, many different preprocessing blocks for
signal conditioning are considered, such as linear filtering,
baseline wander elimination, QRS detection and delineation, beat
alignment and rejection, among others (Martínez and Olmos,
2005). Matrix M in Equation(3) can be seen as the outcome of
several of these preprocessing stages. The design of these blocks
is accomplished from different viewpoints and according tomany
different approaches.

The SM identifies TWA in the spectral domain of the beat
series, also referred to as beatquency domain. Thus, the periodic
pattern of 2, which for existing TWA is inherent in each column
of M, is reflected as the component at 0.5 cycles/beat (repetition
every two beats). Thus, the SM estimates the power spectrum
density function of each beat series through the periodogram:
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for n = 0, 1, · · · ,N − 1. These spectra, generated at each
point of the repolarization segment, are averaged to gather
the contribution of the whole ST–T segment into an aggregate
spectrum :

P
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f
)
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1

N
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∑

n=0

Pn
(

f
)

(5)

The K score, also known as TWA ratio, determines the
magnitude of the power spectrum at the alternans frequency over
the noise:

K =
P(0.5)− µnoise

σnoise
(6)

where P(0.5) is the value of the aggregate spectrum (Equation
5) at 0.5 cycles/beat, and µnoise and σnoise are the mean and the
standard deviation of noise, which is estimated in an adjacent
reference band close to the alternans frequency, typically around
0.4 cycles/beat. A K score is taken as statistically significant when
the alternans component exceeds three times the level of noise,
i.e., K > 3. The estimate of the alternant wave is determined as

Valt =
√

P(0.5)− µnoise (7)

which represents the mean magnitude of the difference between
the amplitude of an even or odd beat with respect to the mean
beat (Rosenbaum et al., 1996). As the SM is based on spectral
analysis, it requires quasi–stationary conditions during long
period of times. Typically, the number of heartbeats to obtain an
aggregate spectrum is set to beM = 128. At the same time during
exercise, the patient is suitably guided so that its heart rate can be
raised up to the valid range.

The MMA is a different approach that relies on nonlinear
averaging to estimate an alternant wave. This method operates
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in the time domain to determine even and odd ST–T segment
estimates as follows:

x̂m = x̂m−2 + hm−2 (8)

where m = 2, 3, · · · ,M. Notice that the MMA works over
separated even and odd beats. The variable x̂m stands for the
estimate of xm and at the initial instance: x̂0 = x0 and x̂1 = x1.
The array hm is a correcting factor that depends on a fraction of
the error estimate

em =
xm − x̂m

8
(9)

Each entry of hm is determined as follows:

hm(n) =







































−32, em(n) 6 −32
em(n), −32 < em(n) 6 −1
−1, −1 < em(n) < 0
0, em(n) = 0
1, 0 < em(n) 6 1

em(n), 1 < em(n) 6 32
32, em(n) > 32

(10)

where em(n) is the n–th element of em and n = 0, · · · ,N − 1.
Whit this simple processing, a measure of the alternant wave is
achieved as the difference between even and odd estimates

vl = x̂2l−1 − x̂2l−2 (11)

where l = 1, · · · ,
⌊M

2

⌋

, and the TWA detection parameter,
referred to as maximum alternans magnitude, is computed as the
maximum of the absolute value

Vl = max
n

|vl| (12)

The MMA can be well applied during exercise testing because
it has some noise reduction capacity due to the nonlinear limit
function in Equation (10), and it can report an outcome with
less delay than that of SM. Typically, the TWA level is reported
every 10–15 s (Nearing and Verrier, 2002), making the MMA
more versatile and more appropriate if we want to deal with
ambulatory recordings and hence avoid the exercise tests. Risk
stratification is analyzed by means of the maximum alternans
magnitude, Vl, though the exact cutpoint has not been defined
yet. Thus, values such as Vl > 60 µV and > 47 µV have been
associated with high level of SCD risk (Nearing andVerrier, 2002;
Verrier et al., 2011).

TWA is a very well defined signal processing problem,
and this is another encouraging reason to address this
matter from different viewpoints. Among them, we can
highlight the following methods, which are described within
an unified framework in Martínez and Olmos (2005): the
Complex Demodulation method (Nearing and Verrier, 1993);
the Correlation Method (Burattini et al., 1999); a method based
on the Karhunen–Love Transform (Laguna et al., 1999) and
Capon filtering (Martínez et al., 2000); methods using the
Poincar mapping (Strumillo and Ruta, 2002), the periodicity

transform (Srikanth et al., 2002a), statistical t–test (Srikanth
et al., 2002b), and the Laplacian Likelihood Ratio (Martínez
et al., 2006). Recently, matched filtering (Bashir et al., 2014)
and wavelet transform (Romero et al., 2008) have been used
in this issue. As well, the subject of TWA has been tackled
from a multilead perspective (Monasterio et al., 2010), and
other approaches are aimed at improving the performance by
introducing additional preprocessing blocks or modification of
existing methods (Cuesta-Frau et al., 2009; Blanco-Velasco et al.,
2010; Ghoraani et al., 2011; Nemati et al., 2011). Regarding
the preprocessing blocks, it is well known that a correct choice
influences the behavior of posterior stages. However, there is
no consensus about the design of these systems, as well as the
need of their presence. Given that the final detection-estimation
performance can be significantly affected for the choice of a
preprocessing blocks, the study of the impact of these parts to the
whole detector deserves specific attention (Goya-Esteban et al.,
2014).

5. TECHNOLOGY TRANSFER

The analysis of technology transfer is not an easy task. In this
work, we restrict ourselves to a compilation on the number of
patents related with each of the kind of computational indices
in the preceding section, and a comparison with examples of the
algorithms used in commercial systems. It has to be kept in mind
that the interpretation of the number of patents as technology
transfer can be controversial, as far as it can be more related with
the expectations in the commercial field and even with fashion
in the research and development of the electro-medicine field.
Nevertheless, we consider that interesting conclusions can be
obtained from this analysis.

5.1. HRT Computational Indices
The technology transfer in the HRT environment can be explored
from two different points of view, namely, the patents that have
been generated from this concept, and the use in medical systems
and devices.

The original proposal for HRT was patented by Schmidt
(2002), as a method for evaluating patients with successive
heartbeats directly before and after a VPB, while using the
time intervals from the sequence before as a reference value.
The patented method is claimed for comprising two steps: (a)
determining characteristic attributes of heartbeats occurring in
a continuous sequence immediately preceding and following
the VPB; and (b) quantifying these attributes using an analysis
method to produce a result, to be compared to a reference value.

Other patents have followed disclosing technology related to
HRT, but mostly focused on their use in ICD. A representative
example is delivered in (Kornet and Schneider, 2011), where
a set of techniques is proposed for predicting the occurrence
of an arrhythmia based on HRT indications, in the domain
of medical devices sensing electrical signals within a patient.
Accordingly, a medical device may identify abnormal heartbeats
and measure HRT resulting from them, or even providing one or
more pacing pulses to the heart, and when the measured HRT
related parameter deviates from a baseline, the medical device

Frontiers in Physiology | www.frontiersin.org 10 March 2016 | Volume 7 | Article 82

http://www.frontiersin.org/Physiology
http://www.frontiersin.org
http://www.frontiersin.org/Physiology/archive


Gimeno-Blanes et al. Cardiac Risk Stratification - A Review

may predict the arrhythmia occurrence. HRTmeasurements may
be derived based on heart rate, e.g., from an EGM or ECG,
but also from pressure, impedance, movement, sound, flow,
optic, or chemical signals. The medical device may provide a
therapy configured to prevent the predicted arrhythmia from
occurring, reduce an effect of the arrhythmia, or terminate the
arrhythmia.

In Farazi (2011), a method and apparatus for using vagal
stimulation to detect autonomic tone and assess a patients
risk of SCD are presented, involving the stimulation of the
patients vagus nerve in order to induce a drop in arterial
blood pressure, hence simulating the patients cardiovascular
response to a VPB. Sinus rhythm just before and after the
stimulation is recorded and analyzed. In an embodiment, the
method is implemented in an ICD, which can deliver arrhythmia
prevention therapy based on the risk of SCD. In Burnes
et al. (2006), a similar device is envisioned being capable of
gauging hemodynamic status, yielding any issues as quickly
and appropriately treated, as well as providing diagnosis for
hemodynamic status within an implantable device, or providing
a criterion for optimizing the performance of a pacemaker. The
implanted device determines the hemodynamic status of the
patient by observing the perturbation in the heart rate (natural
or stimulated), measuring HRT and quantifying it. In Messier
et al. (2013), sets of techniques are disclosed for generating a
risk stratification indicator based on HRT measurements in ICD,
among them the HRT measurements.

With respect to implementations, the MARS system from
GE for Holter analysis (GE, 2005) uses the method originally
proposed by Schmidt for ECG, including the TO, the TS, and
the turbulence correlation (i.e., the steepest correlation coefficient
of the linear regression through five consecutive measurements
in the averaged tachogram). This implementation is strongly
supported by scientific evidence in (Schmidt et al., 1999;
Watanabe et al., 2002; Barthel et al., 2003). The system consists
of an analysis program for ECG signals, providing measurements
of HRT in patients undergoing cardiovascular disease testing
for interpretation by qualified health care practitioners for the
purposes of risk stratification and prediction of SCD. The HRT
analysis program is stated to only provide measurements, not
interpretations, and to be used in conjunction with the patient’s
clinical history, symptoms, and other diagnostic tests for final
clinical judgment.

5.2. HRV Computational Indices
Several thousands of patents referring to HRV can be found,
where the HRV methods are implicit in a given specific
device or defined as a method for different identifications and
measurements. Just on a Google patent search, about 12.000
entries can be found containing the keyword HRV, and then no
surprisingly a few dozens of them are related to SCD, were almost
80% of them were issued after 2005. According to Espacenet
database of European Patent Office, 325 patents are related to
HRV, and following the same intensification as the woldwide
patents, this effort that is being enhance in recent years (see
Figure 4). Information found in Scopus, Espacenet, and Google
suggests that the same shape in terms of intensification in the

last 3–7 years is coincident in the patents and publications with
regards to HRV to predict or analyze SCD, although as far as
existing commercial devices is concerned, virtually none of them
are effectively providing scientific evidence to be used from a
clinical point of view.

There is a variety of software for free distribution that
supports the analysis of HRV in its differentmodalities. Physionet
repository (Goldberger et al., 2000) conveys most of signal
processing proposed indices in the literature, and is a world-
wide domain in this setting. On the other hand, Kubios-HRV
is a free software allowing to perform HRV analysis, including
a variety of time-domain, frequency-domain and nonlinear
analysis methods (Tarvainen et al., 2014). Up to 2014, it had
over 16,000 downloads, and it has become a very popular tool,
specially in sports applications.

With respect to software implementation in commercial
systems, a wide variety of them can be found. For instance, GE-
HRV (GE, 2005) offers a software program for the measurement
of HRV in conjunction with theMARS Ambulatory ECG System.
GE system performs an interpolation to obtain clean an equally
spaced sequences, and provides with frequency-domain indices
based on the periodogram spectrum estimation, using a 1024
point FFT and a Hanning window. As another example, Mortara
(Mortara Instrument Inc., 2008) offers an HRV module in the
H-Scribe system, which is a complete Holter ECG analysis
package allowing the user to analyze Holter recordings, and
it incorporates several well-known HRV time-domain indices,
namely, pRR50, RMSSD, or SDNN. As a final example, Sorin
SyneScope (Sorin Group , 2007) is a Holter ECG package
which allows the user to analyze Holter recordings, and it
can be extended with a specific HRV analysis package. This
package allows to remove ectopic beats and artifacts by using
linear interpolation, and it computes usual time-domain and
frequency-domain HRV measurements.

FIGURE 4 | Number of issued patents by year at European Patent

Office (adapted from Espacenet).
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5.3. TWA Computational Indices
Currently, the feature that mainly hinders the development
and transfer of novel and powerful methods for TWA
characterization is the lack of a gold standard. Therefore, the
assumption of this type of technology relies on the number of
developed clinical prospective studies as the means to testify
scientific evidence. So far, most of this prospective studies have
been conducted with the SM (Verrier et al., 2011), and for
this reason is the most widely accepted analysis. Thus, this
method (originally patented in Cohen and Smith, 1989) is used
by Cambridge Heart, Inc. in several of their products such
as HearTwave II and CH2000. The procedure here is applied
under ergometry, either in a treadmill or bicycle ergometry,
and supervised by trained professionals. Although the effort
level during exercise is mild and just enough to attain the
target heart rate for finding pathological TWA, the amount
of noise and artifact is significant, so the method requires
additional special electrodes to reduce these non-desirable
components. As the SM method has been utilized in many
clinical studies, it has been accepted by Medicare in USA for
reimbursement.

The MMA method has also been fairly tested in clinical
studies, although in less occasions than the SM. Due to its
robustness and nice time domain achievement, it is enclosed
within the Marquette analysis programs by GE for ECG
processing, and it is applied in two different products. On
the one hand, given its capability to find TWA in ambulatory
ECG, it is implemented in the ambulatory MARS system, but
as it can also interpret alternans during stress testing, it is also
working on the Case Assessment System for Exercise Testing
(CASE).

Beyond the methods that have participated in large clinical
prospective studies, Sorin Group includes in its Holter system,
SyneScope, a feature for the analysis of the T wave variability
based on the patent (Couderc and Zabera, 2007). It is a time
domain method aimed at detecting repolarization alternans.
It works over beat series obtained as a sequence of samples
corresponding each one to a single value per beat, which could
be, for instance, the mean values of a portion of the ST–T
segments. The variability is assessed by means of an index whose
computation is based on the analysis of alternation changes of the
referred beat series.

6. SCIENTIFIC EVIDENCE

After we have revised technical and technological considerations
on the use of ECG based indices for SCD risk stratification, it
is useful to address now, with all the previous information in
mind, the current status of the clinical viewpoint in terms of their
application in practice. Whereas, a number of clinical studies
exist on the subject, and deep clinical reviews are available in
the medical literature, this section aims to give a landscape on
several of the main trials in the field, their relationship with the
technical considerations, and the points to be taken into account
for a better understanding on the current state of art in the signal
processing setting.

6.1. Patients with Coronary Artery Disease
The topic of SCD risk stratification started with Ischemic
Cardiopathy patients. In the 70s, patients with usual VPB and
(or) NSVT inHolter were associated to highermortality, specially
when associated to ventricular disfunction. In the 80s and 90s,
the study of the autonomic factors was intensely scrutinized, and
a number of studies were made on the predictive value of HRV,
together with other non-invasive parameters (see e.g., Farrell
et al., 1991), with St. George’s Hospital in London being probably
the most relevant contributing group by then.

Initially encouraging results turned complicated later, due
to several different reasons. First, many new spectral indices
of HRV were proposed, from both spectral and non-spectral
domains, which made complicated to make comparisons among
series. In addition, HRV was dependent on many factors (age,
diabetes, drugs) which also made data difficult to interpret.
Second, it was established that treatment with beta-blockers was
an essential approach in post-infarction patients, hence making
measurements on the autonomic tone in beta-blocked patients
was a contradiction. Third, St. George’s group suggested that the
averaged heart rate as such had a value which was comparable
to HRV, hence the search for sophisticated HRV indices could be
questioned (Copie et al., 1996). And fourth, many groups started
to publish many other measurements on the autonomic tone,
such as HRT, response to drug infusion, heart rate acceleration
and deceleration, oscillations, or changes in repolarization. This
made complicated to put all the pieces together and created a
maze of knowledge in this setting, from a clinical point of view.
The ATRAMI study was designed aiming to clarify the field
(La Rovere et al., 1998), and it showed the independent predictive
value of autonomic indices. However, the study presented many
limitations, as far as important variables which were not included
in the multivariate analysis (Barron and Viskin, 1998), and also,
one of the methods that were used for the autonomic evaluation
was adrenaline perfusion, which is an uncomfortable test. The
study was not convincing, hence it reached no practical impact.

In the meantime, there were changes in handling patients
with myocardial infarction, including the early revascularization,
the use of beta-blockers and of angiotensin converter enzime
inhibitors, so that the clinical profile of post-infarction patient
had changed. The new reevaluation of classical risk factors (LVEF,
frequent VPB in Holter, NSVT in Holter) and of HRV indices
in this modified population with the new treatments showed the
LVEF being the determinant factor. One of the main scientific
supporters of the role of the nervous autonomous system in the
post-infarction mortality risk, who participated in ATRAMI trial,
admitted that: In the modified situation created by thrombolysis
and advanced therapeutic regimens, depressed LV function is the
only risk stratifier that has not lost its predictive value. Ongoing
primary prevention trials with ICDs and mortality trials with
antiarrhythmic drugs randomize mainly on the basis of EF, and
there is growing evidence for accentuated benefit of ICDs among
patients with greater impairment of systolic function (La Rovere
et al., 2001).

On the other hand, LVEF is easy to obtain (it just needs an
ecography), it is a routinely used parameter by the cardiologist,
and it is universally obtained in patients with anterior myocardial
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infarction (AMI). On the contrary, parameters based on nervous
autonomous system activity require a 24 h Holter (not fully
comfortable, and not always well accepted by the patient), which
has to be be carefully read and annotated (between 20 and 30
m of time from a cardiologist), and a specific HRV analysis
software (until recently, not available in all current Holter
systems). Moreover, it can not be used in a number of patients
(including atrial fibrillation, pacemakers, or frequent VPB),
and cut-off values and parameters are unclear and probably
change with age, treatment, and other factors. Then, it seems
natural that the big multicenter trials first trying to show
that ICD implantation in primary prevention (i.e., in patients
with no documented arrhythmia to that moment) reduced the
mortality, were designed according to the classical factor of EF.
Several relevant trials were driven, including MADIT I (1996),
MUSTT (1999), MADIT II (2002), and SCD-Heft (2005), all
of them showing significant mortality reduction with ICD and
all of them using LVEF as inclusion criterion, so these studies
have defined the clinical practice until now. In two additional
studies, other inclusion criteria for the study were applied in
addition to LVEF, namely, late potentials in Cabg-Patch and a
HRV parameter in DINAMIT, both with negative results. Both
studies had limitations to this respect, and other factors to
be taken into account, but they contributed to the idea that
LVEF is the valid approach for SCD risk stratification and ICD
indication.

In this scenario, risk stratification of post-AMI SCD with
autonomic parameters derived from 24 h Holter is seldom
used in the clinical practice. It seems evident that patients with
depressed LVEF have bad prognosis and they need an implanted
ICD, and it seems unlikely that the analysis of the autonomous
function will gain interest in this group. Greater interest can
be present in the patients with relatively well-conserved LVEF
(> 0.35), in which there is low incidence of SCD, but in turn
it represents a much larger population, specially with current
AMI treatment that are capable of avoiding the severe ventricular
disfunction in most of patients. If it were possible to find a
high-risk subgroup with other criteria within the well-prognosis
group according to LVEF, then the ECG based indices techniques
could be extremely useful. This is the direction followed by trials
like REFINE (Exner et al., 2007a), which included patients with
LVEF < 0.50 and measured HRT and TWA, and like ISAR-
Risk (Bauer et al., 2009), which used HRT and deceleration
capacity. Both of them obtained interesting results in terms of
SCD risk prediction with these variables, and for these results
to be adopted by the clinical practice, a study randomizing
high SCD risk patients to ICD vs. non-ICD should be required.
An effort in standardization of existing techniques should also
be required, as their inclusion in conventional Holter systems,
and pruning of variables that can lead to confusion, among
others.

6.2. Non-Ischemic Dilated Myocardiopathy
and Others
In non-ischemic dilated myocardiopathy (NDM) patients, the
only study showing ICD efficacy for preventing the mortality

was the SCD-Heft, and it was based on the LVEF. Moreover,
the largest study in NDM to evaluate the predictive value
of other non-invasive parameters (including HRV, HRT, T
wave micro-alternans, and late potentials), was the Marburg
trial, and it yielded negative results, as LVEF was the only
predictive factor for ventricular arrhythmias (Grimm et al., 2003).
After these precedents, no big-scale trial has been subsequently
designed with other potentially predictive factors derived from
the autonomous nervous system or from the TWA.

Finally, there are no long series reported in other
cardiac pathologies with SCD risk (such as the hypertrophic
myocardiopathy, the Brugada syndrome, or the right ventricular
arrhythmogenic dysplasia), and the few available research
suggests that these pathologies do not significantly modify
the HRV parameters, and that these alterations have no clear
prognostic value. On the other hand, these patients have few
VPB, so the HRT cannot be estimated in a number of them.
In this setting, the SCD risk stratification depends on specific
factors for each pathology, which are radically different from
those ones used in post-AMI and in NDM.

6.3. On Scientific Evidence for TWA
The TWA analysis has many disadvantages shared with the
autonomous nervous system analysis. It is not easy to measure,
and it is recommended to analyze with increased heart
rate, which requires a stress test (to be performed under
ergometry, unavailable in many centers, and it requires the
cardiac patient to be capable of exercising). Other options are
cathecolamins infusion (long and uncomfortable procedure) or
atrial stimulation (invasive procedure). However, an expensive
additional tool is required, with special electrodes (low-noise
designed) and complex to handle and to interpret. As a
consequence, it is not widely extended. The option of measuring
TWA from the Holter is also complicated, it is not fully validated,
and it requires specific software. In both cases, this set of indices
are not useful in patients who are not in sinus rhythm, and
it is not clear how to manage beta blockers if they are being
administered.

Though several methods have been described for measuring
TWA, their cut-off values are not yet well established. Some series
have provided with positive results for this technique, such as
ABCD trial (Costantini et al., 2009), and others with negative
results, such as MASTER trial (Chow et al., 2008). There has
been no random study to date on ICD implantation suitability
as a function of the results of TWA indices. The ABCD trial
was somehow close to this approach, but it compared TWA
with invasive EPS, which is used only in some groups today,
and the ICD is implanted in most of patients in this group of
assumed low risk. Hence, these results are not much applicable
in practice. In summary, this technique seems to be still far
from its use in the clinical practice. It should be helpful to
have a simple and inexpensive estimation technique, as well
as a clearer standardization. These advances would allow us
to have clinical results more quickly, to extend its use to a
larger number of centers, and in the middle term, to design an
international randomized and powerful study showing its actual
usefulness.
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7. DISCUSSION AND CONCLUSIONS

The computational techniques used for measuring ECG derived
markers of SCD are quite diverse. A qualitative summary of
several processing methods for a selected set of representative
indices has been presented. In this setting, the scientific evidence,
as given by the conduction of populational clinical studies in
representative patients databases, is not always strong enough
to support the different proposed algorithms. The limitations
of many of the previous studies do not allow their reliable
generalization, so that the ability to discriminate patients at SCD
risk is still far from satisfactory. The fluid technology transfer
from scientific evidence to practical applications also remains a
pending issue in the field. Some of the scientific evidences already
present in literature, as well as some patents recently issued, do
not correspond to the state of the art in clinical applications,
but instead they can be seen as belonging to the future of the
technology. This rationale motivates the evaluation of recent
findings, together with a prospective open approach, in seeking
for new indices and methods.

Current data gathering techniques allow the analysis of
different types of risk markers to determine whether a patient
may suffer sudden death. However, the causes of SCD come
from many ways and may be due to different mechanisms, so
the current cardiac risk markers cannot be arbitrarily applied
to any situation. Basically, predicting sudden death is strongly
dependent on the risk group to be analyzed. As a simple
example, SCD prediction in general population is different than
prognosing long QT patients, and neither of them has to do with
hypertrophic myocardiopathy or myocardial infarction. Thus,
every group has their own useful predictors, e.g., HRV may be
valuable in infarction, but not for channelopathies. In summary,
we may not assert that one specific marker can be used in general
to stratify cardiac risk due to the aforementioned reasons.

Many techniques for SCD risk stratification have been
proposed to date, but according to the clinical studies that have
been carried out, they still show limited capabilities mainly due
to their poor sensitivity and positive predictive value (Exner
et al., 2007b; Goldberger et al., 2008; Kreuz et al., 2008). In

general, there is no universal marker to predict SCD and the
best choice may strongly depend on the pathology under study.
Moreover, clinical markers arise from many different sources
(ECG, echocardiogram, blood analysis), which are more or less
informative depending on the specific cardiac disease group.
Therefore, an approach for studying these cardiacmarkers should
take into account the way they are collected, but special attention
must be driven to the origin and causes of SCD.

Finally, we only have transversal data from HRT, HRV, and
TWA, in the sense that we measure them one day and we
analyze whether they have predictive value in the middle or
long term. With new technologies allowing repetitive and long-
term monitoring, it seems possible to have longitudinal data
and include the time evolution of these parameters in the
stratification algorithm, its usefulness being pending of the future
research. New scenarios like electronic health recordings, big
data, long-term monitoring, and cloud databases, could provide
with suitable new paradigms in the near future.
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