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Abstract

Background: Unsupervised analyses such as clustering are the essential tools required to interpret time-series
expression data from microarrays. Several clustering algorithms have been developed to analyze gene expression
data. Early methods such as k-means, hierarchical clustering, and self-organizing maps are popular for their simplicity.
However, because of noise and uncertainty of measurement, these common algorithms have low accuracy.
Moreover, because gene expression is a temporal process, the relationship between successive time points should be
considered in the analyses. In addition, biological processes are generally continuous; therefore, the datasets collected
from time series experiments are often found to have an insufficient number of data points and, as a result,
compensation for missing data can also be an issue.

Results: An affinity propagation-based clustering algorithm for time-series gene expression data is proposed. The
algorithm explores the relationship between genes using a sliding-window mechanism to extract a large number of
features. In addition, the time-course datasets are resampled with spline interpolation to predict the unobserved
values. Finally, a consensus process is applied to enhance the robustness of the method. Some real gene expression
datasets were analyzed to demonstrate the accuracy and efficiency of the algorithm.

Conclusion: The proposed algorithm has benefitted from the use of cubic B-splines interpolation, sliding-window,
affinity propagation, gene relativity graph, and a consensus process, and, as a result, provides both appropriate and
effective clustering of time-series gene expression data. The proposed method was tested with gene expression data
from the Yeast galactose dataset, the Yeast cell-cycle dataset (Y5), and the Yeast sporulation dataset, and the results
illustrated the relationships between the expressed genes, which may give some insights into the biological
processes involved.
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Background
In the last two decades, the development of medicine
and molecular biology has been significantly improved
by DNA microarray technology applications. The tech-
nology allows variations in expression levels to be moni-
tored simultaneously for thousands of genes, even in some
multiple experiments in which data are collected across
various time points. During distinct biological processes,
high-throughput data of time-series gene expression are
recorded to explore the complex dynamics of biologi-
cal systems. The expression data can reveal gene activ-
ities in conditional reactions such as cell-cycle, disease
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progression, and response to external stimuli (e.g., drugs
and stress).
Analyses of microarray data are essential in several

time-series expression experiments such as biological sys-
tems, infectious diseases, and genetic interactions [1]. Pat-
tern recognition techniques are helpful [2] to explore and
exploit high-throughput screening data frommicroarrays.
By using these techniques, similar expression patterns
can be organized into a group. In addition, phenotypic
responses triggered by the production of proteins coded
by the expressed mRNAs are assumed to have a causal
relationship with the gene expression [3]. Therefore,
numerous efficient clustering algorithms have been devel-
oped to analyze gene expression data. Some of the older
methods such as k-means, hierarchical clustering, and
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self-organizing maps [4] are popular for their simplicity.
However, the accuracy of these common algorithms is
low because of background noise caused by experimental
errors and uncertainty of measurement. Gene expression
is a temporal process, therefore the relationship between
successive time points should be considered. Some algo-
rithms have been designed for time-series clustering,
which involves temporal dependency as a critical fac-
tor. Model-based clustering methods, for example, use
statistical and probabilistic models to determine the char-
acteristics of data ([5-9]). The main advantage of model-
based methods is their tolerance toward experimental
errors, including noises andmissing values frommeasure-
ment. Model-based approaches are based on probabilistic
models rather than raw expression values to maximize
the likelihood of time-series expression data. However,
model-based clustering methods require profitable pre-
training and, in particular, suffer from computation inef-
ficiency while modeling the gene expression profiles for
clustering. In addition, considering that a biological pro-
cess is a continuous function, the datasets collected from
experiments are often found to contain an insufficient
number of data points. Therefore, generating these miss-
ing data is another problem that researchers need to
address [10]. To solve this problem, we used cubic B-
splines [11] interpolation to compensate for missing data
in time-course datasets, which may help disclose some
unobserved details.
Affinity propagation [12] is an effective unsupervised

clustering scheme. Based on this concept, with some
restrictions relaxed, a method called soft-constraint affin-
ity propagation (SCAP) [13] has been proposed for use in
gene expression clustering.
In this paper, we combined the cubic B-splines inter-

polation, affinity propagation, and consensus clustering
([14-17]) to analyze the dependency on various time
intervals between genes. Using a sliding-window mech-
anism, clustering results obtained from affinity propa-
gation were merged for final clustering partition with
consensus clustering.

Methods
Here, the proposed algorithm based on B-splines inter-
polation [10], affinity propagation [12], and consensus
clustering [14] is described. The time-course gene expres-
sion clustering problem was formulated as follows: for a
set of genes G = {G1,G2, . . . ,Gn} where n is the num-
ber of genes, and each gene Gi includes τ time points
for the gene expression values, the n genes are grouped
into K disjoint clusters C1,C2, . . . ,CK . Based on the clus-
tering, various groups of genes with similar expressions
can be identified and organized for further analyses. The
framework of the proposed algorithm is shown in Figure 1.
First, the original τ time points are doubled to give 2τ − 1
points using the cubic B-splines interpolation algorithm
[11]. Second, a sliding-window mechanism is applied to
extract the possible features within the extended time-
course gene expression profiles. Then, affinity propaga-
tion is performed to form the gene cluster. Third, a voting
mechanism for gene grouping is applied and construction
of the gene-relativity graph is performed. Noted that Steps
2-3 are corresponding to the construction of the gene rel-
atively graph, which is the time consuming part. Once the
graph is settled, we generate 31 grouping results corre-
sponding to 31 different thresholds σ = 0.50, 0.51, . . . , 0.80.
In Step 4, each of these grouping results is fine-tuned by
the re-clustering algorithm to reduce the size of clusters.
Step 3 evaluates the SI (Silhouette Index) of each grouping
and output the one with the largest SI value finally.

Spline interpolation
Cubic B-splines were used to represent gene expression
curves to obtain a continuous time formulation. After
spline interpolating, the curve can be resampled to esti-
mate expression values at any time point; for example, for
the case shown in Figure 2, the spline-interpolated gene
data are smoother than the original data. However, too
many resample points may cause fallacy and inefficiency.
In the proposed algorithm, one point in each time inter-
val is resampled, which doubles the number of expression
data points to 2τ − 1.

Figure 1 Framework of the proposed affinity propagation-based clustering algorithm with 6 steps.
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Figure 2 An example. (a) The original gene data. (b) The corresponding spline-interpolated gene data.

Affinity propagation clustering with interval selection
Affinity propagation [12] was proposed by Frey andDueck
in the spirit of massage passing which is approximated fol-
lowing the concepts of belief-propagation [18]. It chooses
the viewpoint of all data points could be exemplars poten-
tially, and takes the measure similarity between pairs of
data points as input. Besides, the preference of each data
point has also been taken as input to decide whether a
data point should be chosen as an exemplar for larger
value of preference. The preference can be used to con-
trol the number of clusters and is suggested to be the
median of the input similarities for a moderate number of
clusters.
The traditional clustering algorithm, such as k-centers

clustering, generally begins with a set of randomly
selected exemplars (i.e., centroid in clusters) and mini-
mizes the error function for convergence iteratively. Com-
pared to k-centers clustering, affinity propagation avoids
the drawback of improper exemplars initialization which
is far to a correct solution.
To take the temporal relationship and interval between

time points into account, we used a sliding-windowmech-
anism to evaluate all sub-intervals as features. It should
be noted here that, unlike pattern recognition in image
processing where the feature selection is employed for

dimensionality reduction because of the rich information
available in an image, time-courses in gene expression are
relatively small. Therefore, we applied the sliding-window
mechanism for informative feature selection so that all
possible segments could be explored.
Affinity propagation clustering [12] is self-organized

without the need to input the anticipative number of clus-
ters K . Based on this, affinity propagation was applied
to group genes in each window while discovering the
relationship between genes in different time intervals in
unsupervised mode.
For each gene expression of Gi with 2τ − 1 time points,

the sliding-window mechanism with size w first generates
a series of time patterns, (Gi(t) to Gi(t + w − 1))s, as
depicted in Figure 3. A total of 2τ − w time patterns are
obtained for each gene.
To measure the similarity of two genes Gi and Gj, the

feature Corr(Gi,Gj), which corresponds to the subpattern
(Gi(t) to Gi(t + w − 1)), is calculated by the Pearson
correlation coefficient as:

Corr(Gi,Gj) =∑t+w−1
l=t (Gi(l) − Gi)(Gj(l) − Gj)√∑t+w−1

l=t
(
Gi(l) − Gi

)2 ∑t+w−1
l=t

(
Gj(l) − Gj

)2 (1)

Figure 3 Sliding-window mechanism for interval selection.
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where Gi(l) and Gj(l) are the expression values at the lth
time point ofGi andGj, respectively, andGi andGj are the
mean values of w expression data of the two genes.
Let CM be the correlation matrix, where entry rij is the

similarity Corr(Gi,Gj). As suggested in [12], we choose
the median of those similarities as the preference value for
affinity propagation input. For each geneGi, affinity prop-
agation is applied to assign a categorized label yi as the
most similar exemplar of Gi. After the affinity propaga-
tion clustering is completed, the categorized label for each
gene can be obtained. Accordingly, an adjacency matrixM
is formed with an entrymij defined as:

mij =
{
1 if yi = yj
0 if yi �= yj

(2)

where yi and yj are the labels of the genes Gi and Gj,
respectively.

Gene-relativity graph construction
As mentioned, there are (2τ −w) windows; thus, (2τ −w)

adjacency matrices M1,M2, . . . ,M2τ−w, will be con-
structed to represent the temporal dynamics between
genes in the sliding-window mechanism. Next, the
(2τ − w) adjacency matrices are summarized into one
consensus matrixMc

w by simply merging as:

Mc
w = 1

2τ − w

2τ−w∑
u=1

Mu (3)

where the entrymij in the consensus matrixMc
w indicates

the possibility that the genes Gi and Gj are in the same
class.
The window size w can be changed to further observe

the relationship between genes. For each w, one consen-
sus matrix is constructed for each window size, so, for l
window sizes w1, w2, . . . , wl, l corresponding consensus
matricesMc

w1 ,M
c
w2 , . . . ,M

c
wl

are obtained.We also defined
an aggregated consensus matrix R as:

R = 1
l

l∑
u=1

Mc
wu (4)

where each entry in the aggregated consensus matrix R
denotes the probability of two genes,Gi andGj, appearing
in the same class.
Afterwards, a graph is constructed to represent the rela-

tionship between genes from the aggregated consensus
matrix R, called the gene-relativity graph P = (G,R).
The vertices of the gene-relativity graph correspond to the
genes in G, and the edges indicate the probability that two
genes will eventually appear in the same class.

Graph partitioning for class discovery
The gene-relativity graph P can be used to investigate the
relationship between genes. A relativity threshold σ ≥ 0.5
was chosen to convert the graph P into a binary graph Pb:

pbij =
{
1 if pij ≥ σ

0 if pij < σ
(5)

where pij and pbij are the edge weights between genes Gi

and Gj of P and Pb, respectively.
Next, a depth-first search algorithm was employed

to find connected components of the undirected graph
Pb. Suppose L connected components C1,C2, . . . ,CL, are
found, then these L connected components could be con-
sidered to be the L disjoint clusters C1,C2, . . . ,CL. How-
ever, some edges weighing more than 0.5 but slightly less
than the relativity threshold σ in the gene-relativity graph
P are eliminated from the binary graph Pb, which pro-
duces several connected components (i.e., clusters) with
a few vertices (i.e., genes) when the depth-first search
algorithm is applied. In our experience, this is a com-
mon problem in processing affinity propagation results.
Connected components with a few vertices, called sub-
clusters, can influence the clustering results, so, in our
algorithm, the current clustering results are rearranged
using a refinement process to reduce the influence of
noise.
To determine which cluster is minor (sub-cluster), a

threshold parameter ϕ was used to restrict the number of
genes in one cluster. That is, a cluster is denoted as sub-
cluster if the number of genes in the cluster is less than ϕ.
For each cluster Cp, 1 ≤ p ≤ L, the number of genes is
compared with the parameter ϕ to identify L′ sub-clusters
with n1, n2, . . . , nL′ number of genes in each.
Next, the refinement process is applied by merging each

L′ minor sub-clusters with L−L′ major clusters with more
than ϕ genes.
Consider each sub-clusters Cq with the nq number of

genes. If nq is equal to one, this is a singleton clus-
ter with one gene, say Gq. Our algorithm first identifies
the gene Gh that has the highest relativity to Gq in the
gene-relativity graph P. Then, Cq is processed using the
following rule:

Rule 1:

(1.1) If the relativity between Gq and Gh is below 0.5, the
merging process stops and Cq survives as a singleton
cluster.

(1.2) If Ch is a major cluster, Cq is merged into Ch.
(1.3) Otherwise (Ch is a sub-cluster), Cq and Ch are

merged to form a new cluster with nq+nh number of
genes; and the type, sub-cluster or major, is checked.
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When Cq is not a singleton, the algorithm calculates the
mean valuesGm

q of these nq gene profiles. Then, the maxi-
mum Pearson correlation coefficient is compared with the
mean value Gm

h , which belongs to Cq in all major clusters.
Next, Cq is merged using the following rule:

Rule 2:

(2.1) If the Pearson correlation coefficient between Gm
q

and Gm
h is below 0, the merging process is stopped.

(2.2) Otherwise, Cq and Ch are merged.

The above rules are performed repeatedly until no sub-
cluster exists and, finally, the K number of disjoint clusters
C1,C2, . . . ,CK are obtained.
The proposed algorithm is listed below.

Algorithm 1 Interpolation based consensus clustering
Input: A set of gene expression time-series of length τ .

1. The original τ time points are doubled to give 2τ − 1
points using the cubic B-splines interpolation.

2. Gene relativity graph construction (A sliding-window
mechanism is applied to extract the possible features
within 2τ − 1 points).

2-1. For each window size w (w will be discussed
later)

2-2. For each of 2τ − w intervals (See Figure 3),
apply Affinity Propagation clustering to
measure gene clustering.

2-3. If two genes Gi and Gj are in the same cluster,
their graph edgemij increases one vote (Eq. 2).

2-4. Calculate gene relativity graph by summing all
2τ − w number ofmij (Eqs. 3 and 4).

3. For each relativity threshold (There are 31 different
thresholds, 0.50, 0.51, . . . , 0.80).

3-1. Based on a relativity threshold to form the
binary version of relativity graph (Eq. 5).

3-2. Discovery the connected components using
the depth-first Search, each connected
component corresponds to a gene cluster.

3-3. Choose the optimal relativity threshold based
on the results of Silhouette index values.

4. For the connected components with a few vertices,
refine the clustering partition using Rule 1 and Rule 2
iteratively. (at most 500 times)

The computational complexity of the proposed algorithm
The main idea of our proposed clustering algorithm is
to collect enough consensus votes so as to estimate the

matching probability between each pair of genes. So we
construct the gene relativity graph in Step 2. Within this
step, the affinity propagation procedure will be called
several times, normally the number is

∑u
w=l(2w − τ),

where l = � 2τ−1
2 � and u = � 3(2τ−1)

4 �. Since the AP
algorithm has a quadratic complexity [19]. Thus, the com-
putational complexity of Step 2 is O(n2)O(τ 2), where n is
the number of genes and τ is the number of time points.
Consider Step 3. The kernel is to discover the partition
(the set of connected components) using the depth-first
search for each threshold, thus the computational com-
plexity of Step 3 is 31 × O(|E|), where |E| is the number
of edges in the relativity graph. Since |E| = O(n2), the
computational complexity of Step 3 is O(n2). Notice that,
the optimal relativity threshold can be located (Step 3-3)
with the help of the Silhouette index. As for the refine-
ment step (Step 4), we iteratively apply both the Rules
1 and 2 to merge each of small-size clusters with some
of the major clusters. Let c denote the number of con-
nected components. In each iteration we need O(c2) for
merging. Thus, the computational complexity of Step 4 is
O(c2) because the number of iterations is 500 in our set-
tings. Therefore, the overall computational complexity is
O(n2τ 2) + O(c2), where n is the number of genes, τ is
the number of time points, and c is the number of initial
clusters. Notice that, the number c is much small than n
generally.

Extended version of the proposed algorithm
As mentioned, in some datasets, the collection of data
points is insufficient. To alleviate the possible unsatisfac-
tory performance of the proposed algorithm because of
the lack of information of short time-series (τ < 10), an
extended version of our algorithm was proposed.
Recall that the degree of investigation of the relation-

ship between genes is influenced by the window sizew and
the number of time-points τ because the number of times
affinity propagation clustering is repeated is decided by w
and τ .
For τ (τ < 10) time points, the window size is w and the

number of times for affinity propagation would be (2τ −
w). To increase the degree of investigation of the rela-
tionships between genes, combinationsCτ

w of sub-features
selection were suggested. That is, w time points are cho-
sen randomly from τ time points as feature vectors for the
affinity propagation clustering. As depicted in Figure 4,
the feature is a subset instead of a segment. Because Cτ

w is
more than (2τ −w), the relationships between genes are
more precise and clustering accuracy is enhanced. How-
ever, the efficiency of the algorithm will decrease because
extra affinity propagations are performed. Therefore, we
strongly suggest that the extended version of the algo-
rithm is executed only when analyzing short time-series
datasets (τ < 10).
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Figure 4 Extended version of the sliding-window mechanism for
interval selection.

Prediction of optimal threshold values
As discussed before, Steps 2-3 are corresponding to the
construction of the gene relatively graph P = (G,R).
The vertices of the graph correspond to the genes in
G, and the edges indicate the probability that two genes
may appear in the same class. And for each relativity
threshold σ , a depth-first search algorithm was employed
to find connected components, which correspond to the
initial clustering for σ . Thus, we adopt these 31 initial
clusters to predict the optimal threshold value using the
Silhouette index. And Step 4 (re-clustering) is excluded in
the determination because it is unstable in our experience.
We mainly trust on the probability matrix R.

Results and discussions
The adjusted Rand index and the Silhouette index are
adopted to judge the clustering accuracy of our algorithm
are described. Then, several real gene expression datasets
were used to evaluate the proposed algorithm. Finally, the
parameter settings and the performance evaluation are
discussed.

Measure of agreement
Adjusted Rand index
The adjusted Rand index (Hubert and Arabie [20];
Yeung and Ruzzo [21]) is a popular similarity measure
of agreement between two partitions against external
criteria. Using this validity index, the partition U =
{u1,u2, . . . ,uR} given by the clustering result and V =
{v1, v2, . . . , vC} a priori classification can be compared.
The adjusted Rand index (ARI) is defined as:

ARI =
∑R

i=1
∑C

j=1
(nij
2
) −

∑R
i=1 (

ni∗
2 )

∑C
j=1 (

n∗j
2 )

(n2)∑R
i=1 (

ni∗
2 )+∑C

j=1 (
n∗j
2 )

2 −
∑R

i=1 (
ni∗
2 )

∑C
j=1 (

n∗j
2 )

(n2)

(6)

where nij is the number of objects in clusters ui and vj, and
ni∗ and n∗j are the number of objects in clusters ui and
vj, respectively. From this definition, ARI gives the value
[0, 1] to assess the degree of agreement. High values indi-
cate that U is more similar to V ; in particular, the value
1 indicates absolute agreement between the partitions U
and V .

Sensitivity, specificity, Jaccard index andMinkowski measure
Schliep et al. [7] suggested the use of sensitivity and speci-
ficity as complementary to the use of ARI. Let TP denote
the number of pairs in the same cluster inU and same pri-
ori classification class in V ; FP denote the number of pairs
in the same cluster inU and distinct class in V ; FN denote
distinct cluster in U and same class in V , TN denote
distinct cluster in U and distinct class in V . The index
sensitivity is defined as #TP

#TP+#FN and specificity defined as
#TP

#TP+#FP .
The Jaccard index JC is defined as #TP

#TP+#FN+#FP , another
agreement between U and V , while, Minkowski measure
illustrates the proportion of disagreements to #TP+ #FN .
Noted that all indices except ARI (or RI), do not involve
the term TN , because this term would dominate the other
three terms in both good and bad solutions [22].

Minkowskimeasure =
√

#FP + #FN
#TP + #FN

(7)

Silhouette, Dunn’s and Davis-Bouldin index
The Silhouette index (Rousseeuw [23]) is an internal clus-
ter validity index that is used when true class labels are
unknown. With a clustering solution C, the Silhouette
index is used to judge the quality and to determine the
proper number of clusters within a dataset. For each data
point i, the Silhouette index is defined as:

s(i) = b(i) − a(i)
max(a(i), b(i))

(8)

where a(i) is the average dissimilarity of i with other
data points in the same cluster, and b(i) is the minimum
average dissimilarity of i with other data points in other
clusters. The Silhouette index s(C) is the average of the Sil-
houette width for all data points the value [-1, 1] reflects
how appropriately the data has been clustered. A high Sil-
houette index indicates a good clustering result, which
indicates the data are classified appropriately.
The Dunn’s validation index (DI) is defined as

DI = min
1≤i≤R

{
min

1≤j≤R,j �=i

{
δ(ui,uj)

max1≤k≤R{�(uk)}
}}

(9)

where δ(ui,uj) defines the distance between clusters ui
and uj (inter-cluster distance); �(uk) represents the intra-
cluster distance of cluster uk , and R is the number of
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clusters of partition U . Likewise, the large values DI cor-
respond to good clusters.
The Davies-Bouldin index (DBI) is defined as

DBI = 1
R

R∑
i=1

max
i�=j

{
�(ui) + �(uj)

δ(ui,uj)

}
(10)

Unlike SI andDI, inter-cluster distance δ(ui,uj) is in the
denominator [24], small values ofDBI correspond to com-
pactness, thus, the cluster configuration that minimizes
DBI indicates a good clustering result.
Besides, some recent and effective measures ([25-27]) of

the reliability of the clusters can be used to evaluate the
results as well.

Time-series datasets
Yeast galactose dataset
The Yeast galactose dataset (Ideker et al. [28]) was built
to study integrated genomic data and is composed of
gene expression measurements for 205 genes involved
in galactose use in Saccharomyces cerevisiae. The gene
expression profiles were measured with four replicate
assays across 20 time points (20 perturbations in the galac-
tose pathway) and the genes have been annotated in four
functional categories in the Gene Ontology (Ashburner
et al. [29]) listings. For external validation, we chose the
mean of four replicates at each time point to judge the
clustering results against the four published functional
categories.

Yeast cell-cycle dataset
The Yeast cell-cycle dataset (Cho et al. [30]) includes more
than 6000 yeast genes and their expression levels mea-
sured during two cell cycles at 17 time points. Schliep
et al. [7] used a subset of the Yeast cell-cycle dataset, called
Y5, and identified the peak time points of 17 time points
as the 5-phase of the cell-cycle. The Y5 dataset consists
of 384 genes that are all annotated with five phases: early
G1 (G1E), late G1 (G1L), S, G2, and M. We used the stan-
dardized expression levels to enhance the performance of
our algorithm and compared the results with other stud-
ies. Figure 5 and Figure 6 represent the gene expression
profiles for the Yeast cell-cycle dataset (Y5). Different peak
time points can be seen for the five annotated phases in
Figure 5.

The Yeast sporulation dataset
The Yeast sporulation dataset (Chu et al. [31]) contains
the expression levels of more than 6000 genes measured
during the sporulation process of budding yeast across
seven time points (0, 0.5, 2, 5, 7, 9, and 11 h). Genes with

missing expression values and genes that showed no sig-
nificant changes in expression during the process were
excluded from the experimental analyses (Bandyopadhyay
et al. [32]). The final dataset consisted of 474 genes for
which no annotation could be assigned. Figure 7 repre-
sents the gene expression profiles for the Yeast sporulation
dataset.

Parameter settings
Here, we discuss the parameter settings used in our algo-
rithm for the experimental evaluation. The similarities s
for affinity propagation were chosen as the similarities
between gene expression profiles based on the Pearson
correlation. The preferences p were chosen as the medi-
ans of the similarities s. In addition, the window size
w and the number of windows l are tradeoff between
clustering accuracy and algorithm efficiency. Smaller win-
dow sizes could miss the dynamic of the temporal gene
expression while larger ones could decrease the number of
votes, making the relationships between genes difficult to
determine. The parameter relativity threshold σ for graph
partitioning ranged from 0.5 to 0.8 in the experimental
evaluation.

Choosing proper window sizes
In our implementation we prefer to apply a large amount
of windows (O(τ 2), τ is the number of points) to collect
enough consensus votes to reach the precise probability
between each pair of genes. Thus, we recommend that the
proper window sizes w range from � 2τ−1

2 � to � 3(2τ−1)
4 �

where τ is the number of time points for the gene expres-
sion values being analyzed, and the appropriate number
of windows l is more than or equal to 	 2τ−1

4 
. Please note
that the small window size might not yield a suitable clus-
tering because insufficient informationmay let the affinity
propagation procedure perform unstable (that is, large
variation of the number of clusters). Thus, some bad votes
will be included in the aggregated consensus matrix. In
our experience, especially in the case of yeast sporulation,
expanding the window size is necessary.

Experimental results
For datasets which have been annotated, the clustering
results are compared with the adjusted Rand index, speci-
ficity and sensitivity; otherwise the Silhouette index and
Davies-Bouldin index are used for validation. As men-
tioned before, in the implementation we adopt 31 parti-
tions to predict the optimal threshold value using the Sil-
houette index. Our program are coded in MATLAB, been
running on Intel Core-i7(3.33 GHz) with 8GB memory
using Windows 7 64-bit.
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Figure 5 Gene expression profiles for the five phases of Y5. (a) Early G1 (G1E) phase. (b) Late G1 (G1L) phase. (c) S phase. (d) G2 phase. (e)M phase.
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Figure 6 Combined gene expression profiles of Y5. The colors
represent the same phases as those listed in this figure.

The Yeast galactose dataset
Consider Figure 8. As the indication in the curve of SI,
our algorithm has a maximum value of the adjusted Rand
index of 0.92576 with relativity threshold 0.67 (the left-
most point with SI value 0.75451). All of the results show
that the true number of clusters are captured as the four
clusters in the dataset which is annotated as four GO cat-
egories. Please note that we do not perform the spline
interpolation because this dataset is simple. And the range
of window size is set as (10, 15), our regular setting.
We compare our results with other methods in the liter-

atures as shown in Table 1. Four experimental evaluation,
including CRF [9], CORE [33], Ng et al. [8], and Yeung

Figure 7 Combined gene expression profiles of the Yeast
sporulation dataset.

Figure 8 The clustering performance for the Yeast galactose dataset.

et al. [5]. This dataset is quite simple thus most of the
algorithms perform well, ARI > 0.925.

The Yeast cell-cycle dataset (Y5)
In Figure 9(a), the ARI and SI plots are varying signif-
icantly even if we have built the aggregated consensus
matrix of probabilities of pairs of two genes being in the
same group through the collection of enough votes. Only
two thresholds 0.67 and 0.68 let the ARI of value 0.60789.
So, for this tough case, our algorithm exhaustively checks
31 partitions (corresponding to 31 thresholds, 0.50,
0.51, . . . , 0.80) to locate the threshold with the help of SI.
Here the largest SI value is 0.24416, thus we have the cor-
responding ARI value 0.57113. After interpolation with 33
time points, the range of window size is set as (16, 24), our
regular setting.
In Figure 9(b) and 9(c), the other five measurements:

sensitivity, specificity, Rand, Jaccard and Minkowski are
depicted.
Compare with the results of other methods without

partial learning of labeled data including k-means, cubic
splines [10], different HMMmodel [7], CRF [9], and Chiu
et al. [34]. The contrasts between these methods are listed
in Table 2.

Table 1 The comparison of performance for the Yeast
galactose dataset

Method The adjusted rand index

Our algorithm 0.92576

Ng et al.’s (2006) [8] 0.9780

Yeung et al.’s (2003) [5] 0.9680

CRF (Li et al., 2008) [9] 0.9478

CORE (Tjaden, 2006) [33] ∼ 0.7
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Figure 9 The clustering performance for Y5. (a) ARI and SI.
(b) Sensitivity and Specificity. (c) RI, Jaccard index and Minkowski
measure.

Table 2 The comparison of performance for the Yeast
cell-cycle dataset (Y5)

Method ARI Specificity Sensitivity

Our Algorithm 0.57113 0.69285 0.57083

Chiu et al. [34] 0.51290 0.60372 0.66061

CRF [9] 0.48080

HMM [7] 0.46700 0.559 0.684

K-means 0.43000 0.563 0.557

Splines [10] 0.36200 0.494 0.516

Consider Table 2. The performance of our algorithm is
superior to k-means algorithm which needs the number
of clusters as parameter for input, and also outperforms
the Splines model which using spline curves to represent
gene expression profiles [10] and our early works (Chiu
et al. [34]). Furthermore, the performances of probabilis-
tic sequence data models such as HMM (Hidden Markov
models) [7] and CRF (conditional random fields) [9] are
also inferior to ours.We also applied six different ranges of
window size, (15, 23), (16, 24), . . . , and (20, 28) to demon-
strate the average performance. The corresponding ARI
values (fixed by SI values as discussed in Figure 9(a)) are
0.58330, 0.57113, 0.52061, 0.51881, 0.40816 and 0.53399,
the average value is 0.52267.
Even though, in contrast to the results derived from the

Yeast galactose dataset, our best result of 0.57113 of the
adjusted Rand index is not looking good. To take a closer
look on the phenomenon, we demonstrate the cluster-
ing result with five groups derived from our algorithm in
Figure 10. Due to the ambiguities of the peak time points
as annotation among the five groups in the Yeast cell-cycle
dataset (Y5), the clustering result can not be improved
to higher values. Besides, the outliers and noises of the
dataset also impact on the clustering accuracy even if our
algorithm applies voting mechanism for diminishing the
influence of noises.
The relationship between normalized gene expression

values of the genes and the time points for each cluster
are indicated by cluster profile plots. The best clustering
results of cluster profile plots evaluated by our proposed
algorithm are shown in Figure 11 and Figure 12 (green).
In Figure 11, the clusters with 33 time points are extracted
from original Yeast cell-cycle dataset (Y5) by using the
spline interpolation. In addition, the original 17 time
points of Y5 are depicted in Figure 12.
The clustering performance can be observed by the

gene expression of each cluster shown in Figure 11 and
Figure 12 from (a) to (e). The first (a), second (b) and fifth
(e) clusters are almost perfectly separated. The mean val-
ues and the confidence intervals (95%) are plotted as red
lines.
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Figure 10 The gene expression results for Y5. (a)-(e) are five resulting classes categorized from our algorithm.
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Figure 11 The gene expression results for Y5 with 33 time points (interpolated). (a)-(e) The corresponding five resulting classes categorized from
our algorithm.
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Figure 12 The gene expression results for Y5 with original 17 time points. (a)-(e) The corresponding five resulting classes categorized from our
algorithm.
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The Yeast sporulation dataset
Due to the lack of annotations on the Yeast sporula-
tion dataset, we use two internal validity measurements,
i.e., the SI and DBI to judge the clustering performance.
Amongst all 31 relativity thresholds, our algorithm has
a maximum value of the Silhouette index of 0.72923 as
shown in Figure 13. To take a closer look at the results,
a lower σ causes distinct groups combined into a larger
group including all 474 genes. The effect is caused by
the insufficient number of time points which impacts
the number of votes for investigating the relationships
between genes. Noted that there are only seven time
points on the Yeast sporulation dataset. As discussed in
the window-size setting, for this Yeast sporulation dataset,
we have to expand the window size to prevent some bad
votes been included in the aggregated consensus matrix.
The range of window size is suggested as (9, 12), not (6, 9)
the regular setting.
To resolve the problem with short time-series gene

expression datasets, Ernst et al. present an algorithm to
analyses and retain significant gene expression profiles
(Ernst et al. [35]). In this paper, we use our extended
version of proposed algorithm for choosing more combi-
nations from interval selection as the number of times to
apply affinity propagation in order to increase the num-
ber of votes for investigating the relationship between
genes. Our extended algorithm has a better value of the
Silhouette index 0.75976 depicted in Figure 14.
Compare with the results of other methods including

SiMM-TS [32], Chiu et al. [34], VGA [36], SOM [4], and
CRC [37], our result shows better performance, which are
shown in Table 3.
In the implementation of the extended version

of our algorithm, the execution time may rapidly
increase because the number of combinations grows
exponentially. Our suggestion is applied this version on

Figure 13 The clustering performance for the Yeast sporulation
dataset with spline interpolated data (13 time points).

Figure 14 The clustering performance of our extended version of
the proposed algorithm for the Yeast sporulation dataset.

those datasets with small size of time points, say 10 at
most.
We demonstrate the clustering result with five groups

derived from our algorithm in Figure 15. The cluster-
ing performance of our proposed algorithm for the Yeast
sporulation dataset with the original 7 time points in
Figure 16.
The statistics of the execution time for three dataset is

shown in Table 4. A large amount of features extracted
using our sliding-windowmechanism can help to enhance
the accuracy practically. Even though the affinity prop-
agation is performed many times, the execution time of
each dataset is appropriate. For the case of Y5 dataset, our
interpolation version costs 177.851 seconds; the interpo-
lation version of the Yeast sporulation dataset of 13 points
costs 32.803 seconds; and for the Yeast galactose dataset,
the execution time is 27.243 seconds. Note that the max-
imum number of iterations is 1000, if the AP procedure
cannot converge.

Table 3 The comparison of performance for the Yeast
sporulation dataset

Method The Silhouette index

Our Extended Version 0.75976

Our Algorithm (13 points) 0.72923

Chiu et al.’s [34] 0.63920

SiMM-TS [32] 0.62470

VGA [36] 0.57030

Average linkage 0.50070

SOM [4] 0.58450

CRC [37] 0.56220
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Figure 15 The gene expression results of our proposed algorithm for the Yeast sporulation dataset with 13 time points.

Conclusion
In this paper, we present an unsupervised clustering algo-
rithm to analyze time-series gene expression data, which
requires no prior knowledge, such as the number of clus-
ters or the cluster exemplars (centroids). The algorithm

combines affinity propagation and consensus clustering
with various intervals of time points, which provided pro-
gressive robustness and accuracy by overcoming the inter-
ference from background noises and experimental errors.
Besides, the interactions between genes across distinct
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Figure 16 The clustering performance of our proposed algorithm for
the Yeast sporulation dataset with the original 7 time points.

time points were investigated by interval selection based
on a sliding-window mechanism.
Because of the efficiency of affinity propagation, the

proposed algorithm provides appropriate and effective
analyses of time-series gene expression data. Based on
three real gene expression datasets, our algorithm sig-
nificantly outperformed other methods when the same
datasets were used in the evaluation. The experimental
results on the Yeast galactose dataset, the Yeast cell-cycle
dataset (Y5), and the Yeast sporulation dataset, confirmed
that our method can successfully illustrate biological rele-
vance between the expressed genes.
In the future development of our method, we aim to

integrate the problem of absent features at some time
points, which is a critical issue in bioinformatics and
machine learning. The standard treatments for absent
features such as Zero (missing values set to zero), Mean
(set to the mean value of the feature over all the data),
and kNN (set with the average value obtained from the
K nearest neighbors) in time-series data neglect the tem-
poral dependence, causing improper results. We also aim
to improve the semi-supervised clustering analyses, which
are currently affected by the incompleteness of the gene
annotations. By combining un-annotated data with the
small amount of annotated data that is available, we expect

Table 4 Execution time and the number of genes for the
proposed algorithm on three different datasets

Dataset Exec. time # of genes Points # of votes

Y5 177.851 384 33 126

Sporulation 32.803 474 13 14

Galactose 27.243 205 20 51

to see considerable improvements in the clustering accu-
racy of our method.
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