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Adenosine is a purine nucleoside that, via activation of distinct G protein-coupled
receptors, modulates inflammation and immune responses. Under pathological
conditions and in response to inflammatory stimuli, extracellular ATP is released from
damaged cells and is metabolized to extracellular adenosine. However, studies over the
past 30 years provide strong evidence for another source of extracellular adenosine,
namely the “cAMP-adenosine pathway.” The cAMP-adenosine pathway is a biochemical
mechanismmediated by ATP-binding cassette transporters that facilitate cAMP efflux and
by specific ectoenzymes that convert cAMP to AMP (ecto-PDEs) and AMP to adenosine
(ecto-nucleotidases such as CD73). Importantly, the cAMP-adenosine pathway is
operative in many cell types, including those of the airways. In airways, b2-
adrenoceptor agonists, which are used as bronchodilators for treatment of asthma and
chronic respiratory diseases, stimulate cAMP efflux and thus trigger the extracellular
cAMP-adenosine pathway leading to increased concentrations of extracellular adenosine
in airways. In the airways, extracellular adenosine exerts pro-inflammatory effects and
induces bronchoconstriction in patients with asthma and chronic obstructive pulmonary
diseases. These considerations lead to the hypothesis that the cAMP-adenosine pathway
attenuates the efficacy of b2-adrenoceptor agonists. Indeed, our recent findings support
this view. In this mini-review, we will highlight the potential role of the extracellular cAMP-
adenosine pathway in chronic respiratory inflammatory disorders, and we will explore how
extracellular cAMP could interfere with the regulatory effects of intracellular cAMP on
airway smooth muscle and innate immune cell function. Finally, we will discuss therapeutic
possibilities targeting the extracellular cAMP-adenosine pathway for treatment of these
respiratory diseases.
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INTRODUCTION

Adenosine is an endogenous purine nucleoside that, via
activation of specific adenosine receptors, modulates
inflammation and immune responses (1–3). Adenosine
receptors are seven transmembrane G-protein coupled
receptors (GPCRs) (4, 5), and consist of a family of four
adenosine receptor subtypes called A1, A2A, A2B and A3. These
four receptors are encoded by different genes and present high
affinities for the a subunit (Ga) of heterotrimeric G-proteins that
regulate adenylyl cyclase (AC) activity (6). A1 and A3 receptors
are preferentially coupled to the inhibitory Ga (Gi/o) subunit
that inhibits AC1, AC5 and AC6, decreasing 3’,5’-cAMP (from
here forward referred to as simply cAMP) production, whereas
A2A and A2B are strongly coupled to stimulatory Ga (Gs)
subunits, which can activate all nine membrane-bound AC
isoforms, increasing intracellular cAMP concentrations (7, 8)
and triggering one or more cAMP-dependent intracellular
signaling pathways (9). cAMP-dependent protein kinase (PKA)
is by far the best studied effector of cAMP signaling and regulates
many cellular processes including cell proliferation and
differentiation, among others (10). By interacting with specific
domains in the PKA regulatory subunits, cAMP releases the two
catalytic PKA subunits to phosphorylate serine and/or threonine
residues in target proteins (11). A2 receptor signaling may also be
mediated by cAMP/EPAC (exchange protein directly activated
by cAMP) pathways (12). Notably, adenosine receptors can also
activate other signaling molecules via canonical GPCR pathways,
such as phospholipase C b (PLC b) and Ca2+ via activation of A1,
A2A and A3 receptors (4) or by G protein-independent
mechanisms mediated by b-arrestin (A1 and A2) (13).

Although cAMP is capable of diffusing throughout the cell,
cAMP signaling occurs in microdomains or even nanodomains
(14), which are at least in part created by intracellular
phosphodiesterases (PDE), metallohydrolases involved in the
degradation of cyclic nucleotides and distributed in 11 families
(PDE 1–11). While members of PDE 4, 7 and 8 families
selectively hydrolyze cAMP, PDE 1-3 and 10-11 are able to
hydrolyze both cAMP and 3’,5’-cGMP (15). Intracellular
compartmentalization of cAMP signaling also involves A
kinase anchoring proteins (AKAPs), which bind to specific
domains of PKA regulatory subunits and thereby guide PKA
to different subcellular location (16). AKAPs also associate with
PDEs, thus influencing the phosphorylation of target proteins
and the termination of PKA activation.
ADENOSINE AND INFLAMMATORY/
IMMUNE RESPONSES

Several studies associate adenosine with a pro-inflammatory
response (17), but many others have linked high concentrations
of extracellular adenosine to a protective anti-inflammatory (18–
20) and pro-resolving functions (2, 21). It seems that adenosine
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can limit the progression of inflammatory processes by reducing
leukocyte infiltration and the production of inflammatory
mediators, as well as by inducing apoptosis of inflammatory
cells and promoting tissue repair; for review see (22). In general,
these protective effects of adenosine have been associated with A2A

receptor activation, since they are drastically reduced in A2A-
deficient mice, resulting in increased tissue damage and
accumulation of pro-inflammatory cytokines (23, 24).

In fact, because adenosine binds with different affinities to its
receptor subtypes (Ki: A1 = ~100 nM; A2A = ~310 nM; A3 = ~290
nM and A2B = ~15,000 nM) (4), its final effect will depend on
both the receptor subtype expressed in the target cell and the
extracellular concentration of adenosine. Thus, while at early
stages of inflammation, neutrophil recruitment, phagocytosis
and adhesion to the vascular endothelium are promoted by
low concentrations of adenosine via activation of A1 and A3

receptors (25–27), during the healing phase, neutrophil
recruitment is inhibited by high concentrations of adenosine
via A2A receptors (28).

By activating A2A and A2B receptors, adenosine inhibits
inflammatory functions of neutrophils, reducing phagocytosis,
degranulation, production of reactive oxygen species (ROS) (25,
29–32) and release of pro-inflammatory mediators (33–35). Via
A2A and A2B receptors, adenosine also inhibits monocyte
proliferation and differentiation into macrophages, reduces
macrophage phagocytosis, attenuates the oxidative burst, and
decreases the production of pro-inflammatory mediators such as
TNF-a and IL-12 (36). Regarding lymphocytes, activation of A2A

receptors by adenosine reduces the production of inflammatory
cytokines by T helper cells (37), and inhibits the development and
activation of effector cells (38). Finally, adenosine also influences
mast cells and eosinophils (17), important players in physiological
innate immunity and allergic inflammatory diseases.
ADENOSINE SIGNALING AND THE
REGULATION OF AIRWAY
INFLAMMATORY DISEASES

Many of adenosine effects on airways involve modulation of
intracellular cAMP concentrations on innate and adaptive
immune cells (39). Although complex, in general, elevated
intracellular cAMP concentrations mediate anti-inflammatory
effects and immune suppression; for review see (40). By
activating PKA, cAMP inhibits release of pro-inflammatory
cytokines from dendritic cells (IL-12 and TNF-a) (41) and
macrophages (TNF-a, MIP-1a, and LTB4) (42). cAMP also
inhibits T cell chemotaxis (43) and antigen-stimulated B cell
proliferation (44).

In the airways, the extracellular adenosine concentrations are
relatively low under normal physiological conditions, ranging
from 20 to 300 nM (45, 46). However, adenosine concentrations
drastically increase in bronchoalveolar lavage fluid and
exhaled breath condensate in patients with asthma, COPD and
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cystic fibrosis (18, 47–50), reaching micromolar to millimolar
range. These high concentrations of adenosine are associated
with bronchoconstriction and airway smooth muscle
hyperresponsiveness (51–54), indicating the involvement of
adenosine in the pathophysiology of pulmonary inflammatory
diseases. Adenosine induces bronchoconstriction mainly
through direct activation of A1 receptors expressed by smooth
muscle cells (55). Other studies have associated adenosine-
induced bronchoconstriction with release of inflammatory
mediators, such as histamine and leukotrienes from mast cells;
accordingly, adenosine-induced airway smooth muscle
contraction is attenuated by H1‐histamine and CysLT1

leukotriene antagonists (56–58). Moreover, indirect
bronchoconstriction induced by adenosine may also involve
activation of A1 receptors on vagal afferent neurons. The
evidence for this is that vagotomy and inhibitors of
chol inerg ic pathways at tenuate adenosine- induced
bronchoconstriction (59).

The contribution of adenosine to airway inflammation is
multifaceted and involves different receptors and intracellular
signaling pathways in dendritic cells, monocytes, macrophages,
neutrophils, bronchial smooth muscle and epithelial cells. Pro-
inflammatory or anti-inflammatory airway responses are largely
dependent on adenosine concentration and disease state over
time. Particularly during acute airway inflammation, adenosine
induces pro-resolving and tissue-protective actions, while in
chronic airway inflammation it promotes deleterious effects
such as tissue damage, fibrosis and release of pro-inflammatory
cytokines (60, 61). Activation of A2B receptors induces release of
pro-inflammatory cytokines such as IL-6 from bronchial smooth
muscle cells (62) and lung fibroblasts (63). Adenosine also affects
the function of airway epithelial cells (e.g., ciliated cells, mucous
cells, secretory cells, and basal cells) (64). While activation of A1

receptors increases production and secretion of mucus (65, 66)
and modulates Cl- transport in normal and cystic fibrosis human
airway epithelial cells (67, 68), activation of A2A receptors elicits
a robust release of pro-inflammatory IL-6, IL-8 and TNF-a from
airway epithelia (60, 69, 70). Adenosine also potentiates the
recruitment of eosinophils and mast cells (53, 71) and induces
airway inflammation by stimulating mast cell degranulation and
release of pro-inflammatory mediators such as of IL-5, IL-13 as
well as IL-4 (72, 73).

Investigations using adenosine deaminase (ADA)-deficient
mice have also provided compelling evidence that accumulation
of adenosine in the lung can lead to the development and
exacerbation of chronic lung disease (74). ADA-deficient mice
exhibit severe pulmonary inflammation and pathological features
resembling those seen in asthma and chronic obstructive
pulmonary diseases. These features include accumulation of
macrophages and eosinophils, enlargement of alveolar spaces,
increased production of mucus, higher concentrations of pro-
inflammatory cytokines such as IL-5 and IL-13 and increasedmast
cell degranulation (75–77). Interestingly, all of these changes can
be reversed by lowering the adenosine concentrations or by
adenosine receptor antagonists (75, 78).
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EXTRACELLULAR cAMP AS A SOURCE
OF ADENOSINE

The canonical pathway of adenosine formation involves
sequential dephosphorylation of ATP into ADP and AMP
mediated by intra- or extracellular nucleoside triphosphate
diphosphohydrolases (NTPDases), alkaline phosphatases
(APs), nucleotide pyrophosphatase/phosphodiesterases (NPPs)
and 5’-nucleotidases (5-NTs) (79). A second pathway requires
intracellular hydrolysis of S-adenosyl-homocysteine by the
enzyme S-adenosyl-L-homocysteine hydrolase (80), and a third
mechanism is mediated by the metabolism of extracellular NAD+

to adenosine by a CD38/CD203a/CD73 ectoenzymatic
pathway (81).

In addition to the aforementioned pathways of adenosine
production, cAMP is now widely recognized as an important
source of extracellular adenosine (82). This biochemical route
was originally described in the kidney by Jackson in the early
1990s (83) who named this mechanism the “extracellular cAMP-
adenosine pathway” (84, 85). This pathway involves the
sequential metabolism of extracellular cAMP to 5’-AMP and
adenosine by ecto-phosphodiesterases (ecto-PDE) and ecto-5’-
nucleotidases (CD73), respectively (86–88) (Figure 1).

Ecto-PDE activity has been described in many tissues,
including vascular smooth muscle, kidney, intestine, skeletal
muscle and airway, and in bovine seminal plasma and
epididymal fluid (85, 88–92). Few research groups, however,
have attempted to characterized ecto-PDE. Pharmacological
studies using selective inhibitors of the intracellular cAMP-
specific PDE isoforms demonstrate that ecto-PDEs obtained
from the kidney, seminal plasma and vesical fluid present
characteristics similar to those of the intracellular PDE8 and
PDE10 families (89, 91).

The canonical pathway of extracellular adenosine
production requires extracellular ATP as a precursor. In this
regard, ATP can be specifically released via vesicular exocytosis
and membrane pores upon cell activation or from damaged
cells after transient or persistent inflammatory stimuli (93, 94).
In contrast, the extracellular cAMP-adenosine pathway
requires transport of intracellular cAMP to the extracellular
compartment, a process that is mediated by members of ATP-
binding cassette (ABC) transporters, subfamily C (ABCC). Due
to their ability to extrude various chemotherapeutic agents
from tumor cells, ABCC transporters are also referred to as
multidrug resistance proteins (MRPs or MDRs). This family of
transporters consist of nine members (ABCC1-ABCC9) that
use ATP hydrolysis to mediate the efflux of multiple cellular
substrates (95). Currently there are four well-defined ABCC
proteins (ABCC1/MRP1, ABCC4/MRP4, ABCC5/MRP5 and
ABCC11/MRP8) that can transport cAMP out of the cell, with
specific kinetic parameters (96, 97); all of these cAMP
transporters are expressed in human airway smooth muscle
and epithelial cells (98–102). Recent studies analyzing GSE
datasets from GEO (Gene Expression Omnibus) show that in
airway epithelial cells the rank order of ABCC gene expression is
April 2022 | Volume 13 | Article 866097
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ABCC5 >ABCC1 >ABCC4 >ABCC11 (101), whereas in the airway
smooth muscle cells it is ABCC1 >ABCC4 >ABCC5
>ABCC11 (102).
EXTRACELLULAR cAMP-ADENOSINE
PATHWAY IN AIRWAYS AND
POTENTIAL ROLE IN CHRONIC
INFLAMMATORY DISEASES

Because of the importance of intracellular cAMP in the
physiological modulation of airway smooth muscle tone and as a
signalingmolecule that mediates the action of bronchodilator agents
(e.g., b2-adrenoceptor agonists used for rescue treatment of
asthmatic patients suffering acute bronchoconstriction), we have
focused our studies on the potential role of extracellular cAMP in
Frontiers in Immunology | www.frontiersin.org 4
the regulation of airway smooth muscle tone and as a source of
adenosine. Using isolated rat trachea, we have shown that fenoterol
(short-acting) and formoterol (long acting) b2-adrenoceptor
agonists induce a time-dependent increase in extracellular cAMP
concentrations (54). Interestingly, extracellular cAMP triggers a
concentration-dependent contraction of airway smooth muscle
that is mimicked by adenosine and increased by drugs that
inhibit adenosine degradation (EHNA) and uptake (uridine),
indicating that the contracting effects of extracellular cAMP
depends on extracellular adenosine formation (54). Indeed,
treatment of trachea segments with the adenosine receptor
antagonist GCS-15943 increases the potency of fenoterol with
regard to inducing smooth muscle relaxation, indicating that the
extracellular cAMP-adenosine pathway compromises, via activation
of adenosine receptors, the efficacy of b2-adrenoceptor agonists as
bronchodilators. Further supporting this idea, using
ultraperformance liquid chromatography–tandem mass
FIGURE 1 | Schematic representation of canonical and non-canonical pathways involved in extracellular adenosine formation in airway cells. Classically, extracellular
adenosine is generated mainly via the dephosphorylation of ATP, ADP and AMP by the action of a series of ecto-enzymes. An alternative source of adenosine is the
second messenger cAMP. In this scenario, intracellular cAMP synthetized by adenylyl cyclases can be transported to the extracellular compartment and sequentially
metabolized into AMP and adenosine by ecto-PDE and CD73, respectively. Increased concentrations of adenosine activate adenosine receptors coupled to Gs or Gi
proteins, which in turn regulates the activity of adenylyl cyclases leading to an increase or decrease in cAMP concentrations and stimulation of downstream effectors.
AC, adenylyl cyclases; Gs, stimulatory G protein; Gi, inhibitory G protein; PDE, phosphodiesterase; PKA, cAMP-dependent protein kinase; EPAC, exchange protein
directly activated by cAMP; CD39, NTPDase-1; CD73, ecto-5’-nucleotidases and Ecto-PDE, ecto-phosphodiesterase.
April 2022 | Volume 13 | Article 866097
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spectrometry (LC-MS/MS), we found that incubation of isolated rat
tracheas with cell impermeable cAMP leads to increases in
extracellular concentrations of 5’-AMP, adenosine and inosine
(92). The involvement of ecto-phosphodiesterases and ecto-5’-
nucleotidase/CD73 in the extracellular metabolism of cAMP is
demonstrated by the fact the selective inhibitors of these ecto-
enzymes (DPSPX and AMP-CP, respectively) significantly reduce
adenosine concentrations (92). Consistent with these observations,
studies by Huff et al. (103) demonstrate that cAMP efflux from
human airway epithelial cells occurs and is mediated by ABBC4/
MRP4 transporters. More recently, Cao and coworkers (102)
showed that stimulation of b2-adrenoceptors or AC with
formoterol or forskolin, respectively, also promotes extrusion of
cAMP from human airway smooth muscle cells in culture. cAMP
efflux is markedly reduced by pharmacological inhibition or
downregulation of ABCC1 transporters with siRNA, resulting in
potentiation of b-agonist induced airway smooth muscle relaxation
(102). Collectively, these findings reveal the existence of a functional
extracellular cAMP-adenosine pathway in airways.

Increase in plasma concentration of cAMP is observed in
physiological and pathological conditions such as during
spontaneous or PGE-induced labor (104), insulin-induced
hypoglycemia (105) in malignant hyperpyrexia susceptible
individuals (106) or following traumatic injury. In fact,
according to Cock et al. (107),, there is a positive correlation
between the plasma concentrations of cAMP and neutrophil
count following injury, which supports the idea that neutrophil
mobilization can be activated by extracellular cAMP. Also,
cAMP extrusion from neutrophils is stimulated by PGE1,
isoproterenol, or forskolin (108), indicating that many cells are
able to release cAMP. Regarding the airways, based on the
extracellular fluid volume of rat trachea (~1 ml/g of dry tissue
weight) (109), we have estimated that after b2-adrenoceptors
stimulation, extracellular cAMP can reach micromolar
concentrations (54), which are those required to induce
smooth muscle contraction.

Studies addressing the expression of transporters and ecto-
enzymes responsible for efflux and extracellular degradation of
cAMP in the airway cells support a potential role for the
extracellular cAMP-adenosine pathway in the pathophysiology
of different respiratory diseases. Airway epithelial cells from
tobacco smokers and asthmatic patients have increased
expression of ABCC1, in comparison with those of healthy
individuals (101), which is consistent with the increased
concentrations of serum cAMP in asthmatic patients (102).
With regard to ecto-enzymes, several studies using human
tissues or animal models of respiratory diseases reveal
increased expression and enzymatic activity of ecto-5’-
nucleotidase/CD73, which could explain the higher level of
extracellular adenosine associated with mechanical ventilation-
induced lung injury (110), chronic obstructive diseases (111) or
long-term cigarette smoking (112). In allergic animal models,
airway inflammation and tracheal hyperresponsiveness are
largely dependent on CD73 (113). On the other hand, in CD73
deficient mice (CD73-/-) sensitized with ovalbumin, there is an
exacerbation of airway inflammation, as reflected by increased
Frontiers in Immunology | www.frontiersin.org 5
formation of mucus and release of pro-inflammatory mediators
such like IL-1b, TNFa, IL-4 and IL-5 (114, 115). Other studies
have shown that cAMP released from human CD4+ T
lymphocytes inhibits T cell proliferation (116) and modulates
differentiation of human monocytes into dendritic cells, effects
that are mediated via A2A and A2B receptors (117). Likewise, in
the experimental autoimmune uveitis mice model, cAMP
released from T cells functions as an important source of
extracellular adenosine, which in turn contributes to the
immunosuppressive function of regulatory T cells (118).
Finally, expression of A2B receptors is increased in lungs of
patients with COPD or idiopathic pulmonary fibrosis (60). The
precise role of the cAMP-adenosine pathway in inflammatory
pulmonary diseases is still not clear but it might function as a
negative or positive feedback loop limiting or enhancing the
output signal initiated by intracellular cAMP.

Currently, there are no clinical trials exploring compounds
that target molecules involved in the extracellular cAMP-
adenosine pathway (ABCC/MRP, ecto-phosphodiesterases and
CD73) for chronic inflammatory airway diseases. However, some
Phase I and II studies are testing CD73 inhibitors (e.g., HLX23,
LY3475070, IPH5301, AK119, cpi-006, Sym024, IBI325, ORIC-
533 and MEDI9447) alone or combined with other agents in
different solid tumors, metastatic cancer and COVID-19 (NCT:
04797468, 04148937, 05143970, 04516564, 04572152, 05173792,
03454451, 04672434, 05246995, 05227144, 03381274 and
04668300) with promising results (119, 120). In addition,
Phase I and II clinical trials evaluated the safety and efficacy of
an MRP-1 inhibitor (sulindac) in patients with advanced
melanoma (121)(EUCTR: 2006-006051-12); however, this
study was terminated prematurely. Several other clinicals trials
(NCR: 00430300, 01640990, 05262218, 03774290, 02635945,
01939587, 04606069) investigated the role of selective
adenosine receptor agonists and antagonists (e.g., GW328267X,
UK-432097, EPI-2010, CVT-6883, QAF 805, PBF-680 and
Regadenoson) in various respiratory diseases, including
asthma, COPD, allergic rhinitis, acute lung injury and COVID-
19, however, almost all of them were discontinued due to
insufficient therapeutic efficacy and/or incidence of side effects
(61, 122–124). Since cAMP efflux depends on the preceding
increase in intracellular cAMP, future preclinical studies and
clinical trials should explore the therapeutic effects of combining
treatment with bronchodilator or anti-inflammatory drugs, such
as corticosteroids, b2-adrenoceptor agonists, or PDE inhibitors,
with inhibitors of either cAMP efflux or the extracellular cAMP-
adenosine pathway, to elucidate the potential therapeutic role of
this biochemical pathway in inflammatory airway diseases.
CONCLUSION AND
FUTURE PERSPECTIVES

The discovery of cAMP by Sutherland and colleagues almost 60
years ago provided the basis for the concept of cAMP as an
intracellular second messenger (125). Nevertheless, as illustrated
in Figure 1, we are now beginning a new phase of understanding
April 2022 | Volume 13 | Article 866097

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Pacini et al. Extracellular cAMP-Adenosine Pathway in Airways
the role of cAMP as an autocrine and/or paracrine signaling
molecule, in which the extracellular cAMP-adenosine pathway is
able to modify cAMP signaling initiated in the intracellular
environment (82).

In the airways, cAMP is the main signaling molecule
implicated in bronchodilation caused by endogenous
catecholamines or beta-adrenergic agents. Even after the
identification of membrane transporters capable of exporting
cAMP out of cells, the efflux of cAMP from airway epithelial or
smooth muscle cells was considered a simple mechanism to
reduce intracellular cyclic nucleotide concentrations (102).
However, the discovery of an extracellular enzymatic system in
airways that converts cAMP into adenosine (92) and can affect
the primary cellular response initiated by intracellular cAMP
(54) opened new perspectives on how to envision the role of
cAMP in airway physiology, highlighting the importance of the
mechanisms of cAMP extrusion and its function as an alternative
source of extracellular adenosine.

As observed with adenosine, the regulatory effects of
extracellular cAMP on the airways will depend on the
Frontiers in Immunology | www.frontiersin.org 6
ectoenzymes and adenosine receptor subtypes expressed in each
cell, and on the amount of cAMP released into the extracellular
compartment. Although we have revealed bronchoconstrictor
effects of the extracellular cAMP-adenosine pathway, the
relevance of the extracellular cAMP in inflammatory lung diseases
is just beginning to be explored. Considering that increases in
intracellular cAMP concentrations are usually followed by efflux of
cAMP (88), it is important to explore the impact of the extracellular
cAMP-adenosine pathway on the therapeutic effects of
bronchodilators and anti-inflammatory drugs used in chronic
respiratory diseases, such as glucocorticoids and classical PDE
inhibitors, known to increase intracellular cAMP (126–129).

In view of the modulatory effects of adenosine on inflammatory
responses and innate immune cell function, there is a potential role
for cAMP efflux in airway inflammation/immune responses and
bronchial reactivity (Figure 2). The existence of the extracellular
cAMP-adenosine pathway in the airways also suggests innovative
therapeutic possibilities and new pharmacological targets in airway
cells, such as distinct ABCC/MRP transporters and ectoenzymes
such ecto-PDEs. Future studies will be needed to decipher the
FIGURE 2 | Potential roles of the extracellular cAMP-adenosine pathway in the airways. Part of the cAMP formed in epithelial and smooth muscle cells is
transported by ABCC/MRP transporters to the extracellular milieu, giving rise to extracellular adenosine, which in turn can modulate the airway immune response and
bronchial reactivity.
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precise role of the extracellular cAMP-adenosine pathway in airway
inflammation and immune responses.
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