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Abstract: The study of human activity recognition (HAR) plays an important role in many areas such
as healthcare, entertainment, sports, and smart homes. With the development of wearable electronics
and wireless communication technologies, activity recognition using inertial sensors from ubiquitous
smart mobile devices has drawn wide attention and become a research hotspot. Before recognition,
the sensor signals are typically preprocessed and segmented, and then representative features are
extracted and selected based on them. Considering the issues of limited resources of wearable devices
and the curse of dimensionality, it is vital to generate the best feature combination which maximizes
the performance and efficiency of the following mapping from feature subsets to activities. In this
paper, we propose to integrate bee swarm optimization (BSO) with a deep Q-network to perform
feature selection and present a hybrid feature selection methodology, BAROQUE, on basis of these
two schemes. Following the wrapper approach, BAROQUE leverages the appealing properties
from BSO and the multi-agent deep Q-network (DQN) to determine feature subsets and adopts a
classifier to evaluate these solutions. In BAROQUE, the BSO is employed to strike a balance between
exploitation and exploration for the search of feature space, while the DQN takes advantage of the
merits of reinforcement learning to make the local search process more adaptive and more efficient.
Extensive experiments were conducted on some benchmark datasets collected by smartphones or
smartwatches, and the metrics were compared with those of BSO, DQN, and some other previously
published methods. The results show that BAROQUE achieves an accuracy of 98.41% for the UCI-
HAR dataset and takes less time to converge to a good solution than other methods, such as CFS,
SFFS, and Relief-F, yielding quite promising results in terms of accuracy and efficiency.

Keywords: bee swarm optimization; deep Q-network; feature selection; human activity recognition;
hybrid metaheuristic; wearable sensors; multi-agent reinforcement learning

1. Introduction

In daily life, human beings keep performing all kinds of activities, such as walking,
typing, eating, smoking and so on, and it is of great significance to explore these behaviors.
Human activity recognition (HAR) is a hot but challenging research topic. It aims at using
some technical means to determine the activity patterns or types of a person [1]. This is
crucial for a wide range of applications, such as long-term healthcare monitoring [2,3],
active and assisted living systems [4], monitoring and surveillance systems [5], and smart
homes [6].

The earliest research on HAR can be traced back to the 1990s when Foerster et al. [7]
collected data from an accelerometer in a laboratory environment to assess tremor activity
as well as to detect posture and motion. Since then, human activities have often been
investigated by inertial sensor-based systems using accelerometers, gyroscopes, and other
sensors. With the rapid development of MEMS technology, these sensors are embedded
into wearable devices thanks to their decrease in size and the increase in precision [8].
Smartphones and smartwatches (or wristbands) are two typical examples of popular
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wearable smart devices [9]. They both usually come with a wealth of sensors to facilitate a
better user experience, including accelerometers, gyroscopes, magnetometers, and some
others, like GPS, light intensity. Nowadays, these off-the-shelf commercial devices are
becoming easily available, increasingly popular and an indispensable part of our daily
lives. Such wearable devices are lightweight, portable, and unobtrusive with low power
consumption, which makes them suitable and convenient to monitor daily activities for
people. Based on such wearable devices and wireless communication technology, a wireless
body area network (WBAN) can be deployed to track users’ everyday activities [10], which
brings unlimited possibilities for online or offline HAR applications.

Human activity recognition is essentially a supervised classification problem. The
data collected from the wearable sensors is processed and then mapped to a predefined set
of activities, like walking, writing, or smoking. Although a motion sensor can obtain the
local inertial information of one’s body, its readings are abstract and uninterpretable, and
there exists a gap between these raw data and the corresponding activity being performed.
Therefore, it is intractable to be fully aware of what’s going on in terms of the motion
context of the whole body. In order to fulfill the mapping, the usual practice is to extract as
many features from the sensor data as possible to represent the corresponding activity and
then select the most relevant ones to ensure a good recognition performance.

When carrying out classification, machine learning-based methods require a very
large amount of data. And the data required for an accurate recognition increases dramati-
cally as the number of feature dimensions increases, which tends to cause the “curse of
dimensionality” problem and ends up with degraded classification performance. Unlike
cameras or binary sensors, the readings of wearable sensors are not visually intuitive
to people, and manually labeling a great number of different types of daily activities is
labor intensive or even infeasible, which makes it very difficult to obtain sufficient labeled
data. Furthermore, not all the features have the same representation ability. Some of them
make a great contribution to enhance the following classification performance, while some
others may be irrelevant, or even redundant, to human activity recognition tasks, which
deteriorates the classification performance badly. Therefore, it is critical to keep the more
representative features in and remove the others.

Generally, WBAN-based HAR applications have a multi-layer framework and mainly
involve communication and computation. For example, in a WBAN consisting of a smart-
phone and smartwatch, the smartphone plays the role of a computing center and route
hub due to its remarkable computing and communication capacities, while both the smart-
watch and smartphone act as a sensor node. In the online scenario, model inference may be
performed directly on the phone, and features may be extracted on the watch locally and
then transmitted to the phone for fusion. Such mobile devices have limited resources, like
battery capacity, memory, and computing resources. More features to extract mean more
computing and communication operations carried out on the mobile devices, and more
features mean more computational cost for classification. It speeds up power consumption
and reduces standby time for these devices.

In this study, to address the aforementioned issues, we propose a hybrid feature selec-
tion method, BAROQUE, to enhance human activity recognition based on wearable sensors
in a smartphone or/and smartwatch. To search through the feature space, the biggest
challenge is that the space increases exponentially with respect to the number of features.
Considering this, BAROQUE integrates bee swarm optimization (BSO) metaheuristic with
a multi-agent deep Q-network to ensure a good performance. Among these, the BSO
implements the intensification and diversification mechanisms, which guarantee a good
balance between exploitation and exploration of the search space; and the DQN takes
advantage of the merits of reinforcement learning (RL) to make the local search process for
each agent more adaptive and more efficient.

This work is organized as follows: Section 2 introduces previous related studies and
their outcome. Section 3 describes in detail human activity recognition system architecture
with focus on the proposed hybrid feature selection method. Section 4 presents the exper-



Sensors 2021, 21, 6434 3 of 25

imental setup for evaluating the proposed approach, and the corresponding results are
provided and analyzed in this section too. Section 5 concludes this research with future
scopes.

2. Related Works

Some recent research works [11–14] presented a detailed review of human activity
recognition solutions based on wearable sensors from different angles, involving the
adopted sensors, recognition approaches, and application scenarios. From these, we can
see that inertial sensors, especially accelerometers, are the most commonly used wearable
sensors for action/activity recognition due to their ability to measure attributes related to
the user’s movement. Bao et al. [15] used five two-axis accelerometers worn on the user’s
right hip, dominant wrist, non-dominant upper arm, dominant ankle, and non-dominant
thigh to recognize 20 different activities using decision tables, instance-based learning,
C4.5, and naïve Bayes classifiers. They claimed that a recognition accuracy of over 80%
on a variety of 20 everyday activities was achieved and multiple accelerometers aided
in recognition. This study was one of the most classic works in the early days of HAR
research based on wearable sensors, and the framework it proposed became an important
reference for follow-up research works.

Since then, some similar HAR systems, requiring users to wear four or more accelerom-
eters [16,17], or carry heavy recording devices [18], were presented. However, wearing too
many devices is obtrusive and intrusive and can cause additional burdens to users. As
smartphones are increasingly popular, they become an integral part of people’s daily life.
A growing number of studies began to adopt smartphones for context-aware activity recog-
nition in pervasive and ubiquitous environments, benefitting from their embedded various
sensors and lightweight, portable characteristics. The research works [19–27] presented
different approaches to recognize various human activities using smartphone sensors.
Additionally, Paul et al. [28] took the sensor readings from mobile sensors as inputs and
predicted a human motion activity using online classification algorithms; Cao et al. [29]
proposed an efficient group-based context-aware classification method for human activity
recognition on smartphones. These two studies carried out online activity recognition
on smartphones using the embedded sensors, thanks to their ever-growing computing,
networking, and sensing abilities. Likewise, as another kind of commonly used wearable
device, wrist-worn devices represented, for example, by smartwatches or wristbands, are
employed to provide HAR solutions using their embedded accelerometers, gyroscopes,
magnetometers, or even heart rate monitors. For example, Mekruksavanich et al. [30]
suggested the use of data from the accelerometer and gyroscope in a smartwatch to detect
sitting for curbing the sedentary habit. Kwon et al. [31] proposed a human activity recog-
nition system that collected data from an off-the-shelf smartwatch and used an artificial
neural network for classification. To take advantage of richer context information from
both devices, some studies carried out activity recognition by fusing smartphone and
smartwatch sensors [32–34]. Shoaib et al. [9] used motion sensors from a smartphone at the
right trouser pocket and a smartwatch at the right wrist to recognize 13 different activities,
and the results showed that the combination of these two positions outperformed either of
them alone. When there are more than two devices worn on the body, it is necessary to use
a wireless body area network to integrate sensing, computing, and wireless communication
into a unified framework, as in studies [10,35].

Bulling et al. [36] provided a comprehensive introduction to the standard procedures
and best practices for HAR tasks, and claimed that feature selection is needed to minimize
memory, computational power, and bandwidth requirements, particularly for real-time
processing on embedded systems, for the reason that the dimensionality of the feature
space is proportional to the quantity of training data and computational resources. Feature
selection solutions can be categorized into three different groups: filter, wrapper, and
embedded [37]. Suto et al. [38] presented a conceptually simple naïve Bayesian wrapper
feature selection method and compared it with some widely used filter feature selection
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algorithms, and the results demonstrated that the wrapper technique outperformed fil-
ter algorithms in HAR tasks. Many other previous works focus on one of these feature
selection solutions to HAR problems [39–45]. Among these, some typical feature selec-
tion schemes are often used in the literature, such as correlation-based feature selection
(CFS) [43,46], Relief-F [43,47,48], and sequential forward floating search (SFFS) [48,49].
Also, some other projection-based dimensionality reduction techniques are commonly
applied for HAR tasks, like principal component analysis (PCA) [49–51] or kernel principal
component analysis (kPCA) [22]. Nowadays, deep learning techniques have begun to be
adopted in place of well-established analysis techniques that rely on hand-crafted feature
extraction and selection, and have demonstrated their effectiveness in HAR tasks [23,52,53].
Chen et al. [54] presented a survey of the state-of-the-art deep learning methods for sensor-
based HAR and formed an overview of the current research progress. From this study,
we can see that although layer-by-layer structures of deep neural networks are good at
encoding and selecting features from multiple perspectives, they still face many challenges,
such as the interpretability of features, which makes it difficult to understand which part
of features facilitates recognition and which part deteriorates that. Moreover, there exist
some studies using reinforcement learning for feature selection in HAR tasks. For example,
considering the multi-modality feature of sensor-based HAR, Chen et al. [55,56] proposed
to use reinforcement learning combining attention mechanisms for activity recognition,
respectively. Bhat et al. [57] applied an online neural network classifier with reinforcement
learning to recognize common daily activities in real-time while consuming low power.
The RL-based methods make the feature selection process more adaptive.

Among existing works on feature selection using the wrapper approach, metaheuris-
tics based on swarm intelligence, such as ant colony optimization (ACO) [58], genetic algo-
rithm (GA) [59], and particle swarm optimization (PSO) [60], have been shown to be very
promising approaches. Inspired by the foraging behavior of natural bees, Sadeg et al. [61]
proposed a metaheuristic algorithm, BSO-FS, to solve the feature selection problem, and
the results showed that it could select efficiently relevant features while improving the
classification accuracy for some public datasets. On basis of BSO-FS, a hybrid metaheuris-
tic, QBSO-FS, was presented to make the search process more efficient and adaptive by
integrating Q-learning with BSO, which gave very satisfactory results compared to recently
published algorithms [62]. However, a Q-learning scheme depends on the stored lookup
table of Q-values. Once the state and action space expand and become too big, it will
become computationally intractable. As an extension of Q-learning, a deep Q-network has
stronger learning ability. In this paper, we take advantage of the merits of BSO and DQN,
design a new feature selection scheme for human activity recognition tasks by integrating
these two algorithms, and try to improve activity recognition performance.

3. Proposed Method

Human activity recognition based on wearable sensor data is essentially a multi-class
classification problem. It aims at mapping the readings of wearable sensors to a predefined
set of human activities. Since the sensor data is often noisy, it needs to be denoised first.
Then, the data stream of wearable sensors can be segmented into small time windows,
each of which reflects the current motion context in this time range. To perform activity
classification, it is necessary to extract as many features as possible heuristically from the
data sequence in a window and form a feature vector. Usually, there exist irrelevant features
in the vector, and the dimensionality of the vector is too high for real-time applications on
devices with limited resources. Therefore, dimensionality reduction processing is required,
which is fulfilled by feature selection operation. Finally, the feature vectors after selection
are obtained and taken as the input into a classifier. During the training phase, the feature
vectors are used to train the classifier model. In the prediction phase, they are used to
recognize unlabeled activities.

Among them, feature selection is one of the critical steps to ensure performance and
efficiency. In this paper, the schematic diagram of human activity recognition is shown in
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Figure 1. It consists of two major stages. In the first stage, we employ the proposed hybrid
feature selection method to search through the feature space and design a deep neural
network model to evaluate the selected features. According to the recognition accuracies
obtained using different feature subsets, we can obtain the optimal feature subset and
its trained evaluation model. In the second stage, the real-time data stream is obtained
and preprocessed, the features in the optimal subset are extracted, and the activity type is
predicted based on the corresponding trained model.
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Figure 1. Structure of the proposed scheme for human activity recognition. It is made up of two stages: feature analysis and
model building, and real-time human activity prediction.

3.1. Data Collection and Preprocessing

At the beginning of a typical HAR task, raw wearable sensor data is acquired using
several sensors attached to different locations on the body. For convenience to be used
anytime, anywhere, HAR applications usually employ off-the-shelf commercial devices,
such as smartphones and smartwatches. The sensors embedded in these lightweight
devices can unobtrusively quantify activities of daily living and provide long-term objective,
insightful measures for HAR applications. Among them, accelerometers and gyroscopes
are the two most common sensors that are adopted for human activity recognition.

For example, the UCI-HAR dataset [63] was collected by 30 volunteers each perform-
ing six activities, namely walking, walking upstairs, walking downstairs, sitting, standing,
and laying, when wearing a smartphone on the waist. The WISDM dataset [64] was ac-
quired at a rate of 20 Hz from 51 test subjects wearing a smartphone and smartwatch as
they conducted 18 activities for 3 min apiece. For these two datasets, in addition to the raw
accelerometer and gyroscope sensor signals, pre-extracted feature sets were also provided,
with 561 features for the former and 92 features for each sensor in the latter. UT_complex
dataset [9] was collected by 10 participants performing 13 human activities, e.g., walking,
jogging, sitting, standing, biking, using stairs, typing, drinking coffee, eating, giving a talk,
and smoking, with each carrying two mobile phones, one in the right pocket and the other
on their right wrist to emulated one smartwatch. The data were obtained at 50 samples
per second from each phone’s accelerometer, linear acceleration sensor, gyroscope, and
magnetometer. Similarly, the SMT dataset [35] was obtained by recording sensor data at
50 Hz from the three-axis accelerometer and three-axis gyroscope from both a smartphone
and wrist-worn device worn by nine participants when performing 12 daily activities.
These datasets all have been used and tested in some previous related works and will be
utilized for evaluation and analysis here. For more detailed experimental setup on these
datasets, please refer to the relevant references cited therein.
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The raw signals from these IMUs are generated over time continuously, and they can
be collected at a certain sampling frequency into a long time series. For example, the sensor
signals in the UCI-HAR dataset were captured at a constant rate of 50 Hz, which means
50 samples were obtained per second from each sensor channel such as the X-axis of the
accelerometer. Given the complexity of application scenarios, the collected data may have
some errors, like missing values or high-frequency noise, and it should be preprocessed
before being put into the subsequent operations. First, the missing values are estimated
and replaced according to a certain rule, for example, using the mean of available items.
Then, the long sequence is divided into time-series segments of constant or variable length
using sliding window techniques. Next, there follows a low-pass filter operation to remove
noise. Additionally, some other preprocessing methods can be used here, like data re-
sampling, data normalization, and standardization, etc. Taking the UCI-HAR dataset as a
case, to obtain the pre-extracted features, the sensor signals were divided into fixed-width
sliding windows of 2.56 s and 50% overlap, and a median filter and a 3rd order low pass
Butterworth filter with a corner frequency of 20 Hz were used to remove noise.

3.2. Feature Extraction

Classification algorithms for human activity recognition usually do not directly op-
erate on the raw data, but rely on various features computed from that data. Feature
extraction is known as the conversion of given raw data into a set of features. By operating
on the raw data, it expects to generate descriptive, meaningful and non-redundant infor-
mation, which makes it possible to analyze data from a high-level perspective, simplify
the consequent learning process, and improve the recognition performance eventually.
Extracting features locally on the mobile devices and transmitting just the results can also
reduce the communication load compared with full transmission of the raw data. To ensure
good classification performance, all kinds of miscellaneous features should be taken into
consideration. The usual practice is to extract as many features as possible heuristically
and then select the most relevant ones by feature selection.

The features are calculated over the aforementioned time-series windows of con-
stant length, which are largely overlapping. Let us assume the window size is W, for
each window of time series, the corresponding data Sw needs to be mapped into a well-
defined feature space with problem specific dimensionality D to form a feature vector
FD = ( fw,1, fw,2, . . . , fw,D). Therefore, a feature can be regarded as a function to learn
the statistical distribution of data points. Regarding human activity recognition tasks,
different patterns will be generated for different activities. For example, the “jogging”
activity shows a particular pattern due to the way the user moves his/her body, which is
quite different from the “bicycling” activity pattern. The extracted statistical distribution
by feature extraction from the raw sensor data provides vital information to distinguish
between the patterns for “jogging” and “bicycling”.

Table 1 shows some popular features extracted from three axial data from both an
accelerometer and gyroscope for HAR tasks, many of which are commonly used across
existing studies of activity recognition [36]. Such features mainly involve three different
types, including time, frequency, and time-frequency domain features. Time-domain
features are the most popular in related studies, such as mean value, median, variance,
skewness, kurtosis, percentiles and interquartile range, and so on. To quantify the similarity
between signals coming from different axes, cross-correlation coefficients are also used. To
obtain descriptions of the energy and power contained in signals, the Fourier transform
is first applied on the time series, and then the statistical features are calculated, such as
signal power and spectral entropy.
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Table 1. Common features extracted from inertial sensor data.

Extracted Features Equation Extracted Features Equation

Mean µ = 1
N ∑N

i=1 xi Cross Correlation ρi,j = Xi,j/
√

σ2
i σ2

j

Variance σ2 = [∑N
i=1(xi − µ)2]/N Frequency Center FC =

√
f1 f2

Absolute Mean Value AM = µ(absX) Energy E = ∑N
i=1|xi|2

SRA SRA = µ
(

2
√

absX
)

Entropy H(X) = −∑N
i=1 p(xi) log2 p(xi)

Standard Deviation STD =
√

1
N−1 ∑N

i=1(xi − x)2 RMS Frequency RMS f r = µ
(√(

f rx
2
1 + f rx

2
2 . . . + f rx

2
n
))

Zero Crossing Rate ZC = ∑N
i=1|sgn(xi)− sgn(xi−1)|/2N Minimum Min(xi) i ∈ {1, . . . , N}

Median M =
(

n/2−c f
f

)
(w) + Lm Maximum Max(xi) i ∈ {1, . . . , N}

Interquartile Range IQR = 3
4(n+1) th term− 1

4(n+1) th term Peak to Peak PPV = Max(xi)−Min(xi)

Root Mean Square Xrms =
√

1
N
(

x2
1 + x2

2 + . . . + x2
n
) Impulse Factor IF = xpeak

xmean

Correlation coefficient γ = n(∑ xy)−(∑ x)(∑ y)
[n ∑ x2−(∑ x)2][n ∑ y2−(∑ y)2]

Margin Factor MF = xpeak/xsra

Skewness SV = 1
N ∑N

i=1

(
xi−x

σ

)3 Shape Factor SF = Xrms/µ(absX)

Kurtosis KV = 1
N ∑N

i=1

(
xi−x

σ

)4 Crest Factor CF = |xpeak|
xrms

3.3. Feature Selection

In real-world application scenarios, to ensure the best possible representation, it
is necessary to introduce as many features as possible due to the absence of a priori
knowledge about what features are relevant to predict the activities in the current HAR
application. Unfortunately, irrelevant or redundant features can result in classification
performance degradation and an unnecessary increase of computational overhead. In the
online HAR scenario using a mobile phone in particular, it may become an impossible task.
Therefore, choosing relevant features among a large initial set to generate a representation
subset often allows delivering better recognition results. Furthermore, it brings some other
advantages, for example, making data visualization and data understanding easy, avoiding
overfitting issues during training, reducing training and prediction time, and addressing
the curse-of-dimensionality issue.

Generally, feature selection schemes are grouped into three categories: filter methods,
wrapper methods, and embedded methods [37]. Simply put, a feature selection method
falls into one of the three categories according to whether it uses a learning algorithm or
not and the way it uses it. In the filter approach, the algorithm evaluates the usefulness
of features according to heuristics based on general characteristics of the data without
involving a learning procedure. By contrast, the wrapper and embedded methods are
different in both using a modeling algorithm. Among these two kinds of method, the former
considers feature subsets by their quality of the performance on the modeling algorithm,
while the latter performs feature selection during the modeling algorithms execution. The
proposed feature selection scheme, BAROQUE, follows the wrapper approach, which
combines a bee swarm optimization metaheuristic with a multi-agent deep Q-network to
select the most relevant feature subset and evaluate it using a classifier for HAR tasks.

3.3.1. Bee Swarm Optimization Metaheuristic

In nature, foraging behavior is essential for a hive to survive. To fulfill such a task, in
the beginning some bees are sent out to discover food sources and gather nectar. When
they come back home and unload the nectar, they dance to share information such as the
distance, direction, and quality of the food source with other bees in the hive. Relying on
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instinct, the other bees figure out the bee with the optimal solution and follow it to get to
the best nectar source.

Inspired by the foraging behavior of natural honey bees, researchers present an inno-
vative collective intelligence-based scheme, the BSO metaheuristic, to solve optimization
problems. It provides the capability of self-organization and self-adaptation to the environ-
ment and dynamic task assignment. Based on this idea, some BSO-related algorithms are
proposed to deal with different problems in the last few years. These algorithms have been
proved to perform better in solving certain numerical optimization problems than some
other collective intelligence-based algorithms [61].

Specifically, BSO is devised as an iterative search process to provide solutions to an
optimization problem based on a population of cooperating artificial bees. The iterative
algorithm mainly includes three steps: determining the search region for each bee based
on an initial reference solution, carrying out the local search by each bee and obtaining the
best local solutions, and selecting the new reference solution from these best local solutions.
To be specific, in the beginning a solution is created as the initial entry point of the search
procedure, randomly or via a heuristic. It is going to act as the reference solution, ref_sol,
from which a set of candidate solutions named search_region are determined. Then, each
of these solutions is designated to act as the starting point of the local search process of
a corresponding bee. For each bee, it carries out a local search procedure and obtains the
best solution at the end of the search. Then, it delivers the best-found solution to the other
bees via a table called dance. From this table, one of the solutions will be selected to be the
new reference solution for the next iteration. To avoid getting stuck in cycles, the reference
solutions are saved into a Tabu list.

There are two important parameters in BSO, i.e., flip and max_chances. The former
is employed to generate the set of solutions that define the search region. It manages
to keep each of the solutions in the same distance with ref_sol by a distance inversely
proportional to flip. Therefore, the flip parameter should be chosen carefully for the sake
of good coverage of the search space. The latter is mainly used by the reference solution
selection subprocess to avoid getting stuck in local optima. Based on it, the subprocess
maintains a record of the number of remaining chances to hang around the current search
region. When the number of attempts reaches max_chances, the corresponding bee will
escape this search area to exploit another one.

To be specific, during the subprocess of reference solution selection, by implementing
judicious intensification and diversification mechanisms, BSO wisely takes into consid-
eration both exploiting the current promising search region and exploring new search
regions to achieve good coverage of the search space quickly. It makes a choice between
intensification and diversification according to the results obtained in a search region
during one search iteration. The new reference solution ref_sol for the next iteration will
be set to the current best global solution as long as its performance gets improved. Apart
from that scenario, if the best local solution performs better than the current ref_sol, then
an intensification is carried out, and the number of chances minus one. Until the number
of chances decreases to 0, the furthest solution among all the solutions stored in the Tabu
list will be chosen as the new ref_sol to perform a diversification. The algorithm will keep
running until the predetermined termination goal or the maximum number of iterations is
reached. The overall algorithm flow can refer to Algorithm 1 in Section 3.3.5.

3.3.2. BSO for Feature Selection

Some previous related works have applied BSO to feature selection by adapting the
general algorithm to specific problem domains. Taking the application scenario of feature
selection in HAR tasks as an example, each bee is just like a worker employed to search a
local region of the whole feature space, aiming to find the optimal feature subset with other
bees collectively. In this paper, we follow the way of BSO on how to encode a solution or
determine a search region, as well as the way to evaluate the quality of the selected feature
subset for HAR tasks.
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Here, we define a solution as a selected feature subset out of the initial feature set.
To represent a solution, a binary vector of length N is used, with N standing for the
number of all the original features. If the i-th entry of the vector is set to 1, this means the
corresponding i-th feature is selected, otherwise it is set to 0. Moreover, the quality of the
solution is represented by fitness and denoted as f (s). Many commonly used evaluation
metrics can act as fitness, such as classification accuracy, precision, and f1-score. It is worth
noting that if two solutions have the same fitness, it is wise to consider the one using fewer
features, due to the fact that fewer features mean less computation and high efficiency.

Based on the reference solution, a set of solutions are generated, which defines the
search region. The number of the solutions equals that of the bees, which is denoted as
nb here, because each bee will be assigned a solution to act as a starting point of its local
search. These nb solutions are obtained by flipping some bits in the ref_sol vector, and the
subscriptions of these bits can be calculated by two parameters, N and flip, where flip is
an empirical value. As the value of flip determines the distance between ref_sol and the
solutions defining the search region, it plays a pivotal role in performance optimization
for the search process. If the value of flip is too small, BSO tends to favor the exploration
instead of exploitation of the search space. If the value is too big, BSO tends to converge
to a local optimum. Therefore, an appropriate value should be chosen to achieve a good
tradeoff.

Specifically, to obtain the solutions spread as evenly as possible in the search space,
three different strategies are used to generate the solutions. In the first strategy, the i-th
solution is created by flipping the bits in ref_sol at a regular interval defined by flip and
starting at the i-th entry. For example, let us assume N = 16, nb = 10, and flip = 4, and
then the first four solutions, s0, s1, s2, and s3, will be obtained by flipping the bits with
following subscripts: (0,4,8,12), (1,5,9,13), (2,6,10,14), and (3,7,11,15), respectively. In the
second one, a number k is obtained, and N/flip contiguous bits are flipped starting by the
k-th bit. Therefore, the next four solutions following the previous example, s4, s5, s6, and s7,
are obtained by flipping the following bits: (0,1,2,3), (4,5,6,7), (8,9,10,11), and (12,13,14,15),
respectively. In the third one, the last two solutions, s8 and s9, are generated randomly
according to Pareto’s law.

3.3.3. Deep Q-Network

Deep Q-network is one of the classic deep reinforcement learning methods, which
combines two different strategies: deep neural networks and Q-learning, and it is a pow-
erful tool for feature selection. As in typical reinforcement learning tasks, we formulate
the feature selection problem through a Markov decision process (MDP) in this work.
An MDP is denoted by a 5-tuple 〈S, A, R, T, γ〉, where S is the agent’s state space; A is
the agent’s action space; T(s, a, s′) = P(s′|s, a) represents the transition dynamics, which
returns the probability that taking action a in state s will result in the state s′; R(s, a, s′) is
the reward function, which returns the reward received when transitioning to state s′ after
taking action a in state s; and γ is a discount factor, which is a value between 0 and 1 to
discount the value of the future rewards. A policy π : S→ A is a mapping from states to
actions, according to which an agent chooses to take a specific action for each state in the
environment. The goal of the agent is to find the policy π∗ that maximizes the expected
discounted total reward over the agent’s lifetime.

As a key term related to MDPs, Q-function is the mapping from state-action pairs
to real space, which is denoted as Qπ : S× A→ R. For a given state-action pair (s, a),
Qπ(s, a) defines the expected future discounted reward for taking action a in state s and
then following policy π thereafter. The best value function Q∗(s, a) obeys the Bellman
equation below, and it can be obtained by calculating the following Q-value recursively:

Q∗(s, a) = ∑
s′∈S

T
(
s, a, s′

)[
R
(
s, a, s′

)
+ γmax

a′
Q∗
(
s′, a′

)]
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Then, the optimal policy, π∗, can be easily obtained by greedily selecting the action
with the highest Q-value in the current state: π∗(s) = argmax

a∈A
Q∗(s, a). This characteristic

has incubated many different learning algorithms that seek to directly estimate Q∗(s, a)
and retrieve the optimal policy from it. Among these, one of the most popular and widely
used algorithms is Q-learning.

Q-learning is a model-free reinforcement learning algorithm to learn a policy, telling an
agent what action to take under what circumstances, by gradually improving the quality of
Q-values. Before learning begins, Q-value for an agent is initialized to a possibly arbitrary
fixed value. Then, its estimate will get improved by iteratively carrying out the steps:
taking an action in the environment, observing the reward and next state, and updating its
Q-function estimate. Specifically, at each time t the agent selects an action at, observes a
reward rt, enters a new state st+1 depending on both the previous state st and the selected
action at, and then the Q-value is updated by using the weighted average of the old value
and the new information according to:

Qnew(st, at)
update← Q(st, at) + α ·

[
rt+1 + γ ·max

a′
Q(st+1, a′)−Q(st, at)

]
where α ∈ (0, 1] is a parameter, called learning rate, used for step size smoothing, and
rt+1 represents the reward received when the state transitions from st to st+1. Note that,
Qnew(st, at) equals the sum of three parts: (1− α)·Q(st, at) is the original Q-value weighted
by the learning rate, which means the held portion of the original Q-value; α·rt+1 is the
reward weighted by the learning rate, which can be obtained by taking action at when
in state st; α·γ·max

a′
Q(st+1, a′) stands for the maximum reward that can be obtained from

state st+1 by taking the most appropriate action, which is weighted by the learning rate
and discount factor.

Implementing classic Q-learning depends on the stored lookup table of Q-values,
which caches the Q-values for all possible action-state pairs (s, a). It is guaranteed to
converge to an optimal and stable joint strategy as long as it meets some conditions. For
example, each Q-value is associated with one unique state–action pair, and the agent
visits each state and action infinitely often. When the state and action space expand and
become too big, it will become computationally intractable. Moreover, when there are too
many states, most of them will not have the chance to be accessed frequently. Therefore,
Q-learning performs well for small-scale tasks rather than large-scale tasks.

To address such issues, the Q-value estimate in Q-learning is often implemented
with function approximation instead of a tabular function, which allows generalization
of experience. To avoid inappropriate function approximation causing divergence, deep
Q-learning (DQN) is introduced. DQN is a variation of the classic Q-Learning algorithm. It
approximates the Q-function values with a deep neural network that outputs a set of action
values Q(s, ·; θ) for a given state s, where θ are the parameters of the network. There are two
primary contributions of DQN that make this work. First, it uses a separate target network,
which is copied every few steps from the regular network, to estimate the Q-values of the
next state, so that the Q-function estimation is more stable. Second, the agent adds all of its
experiences to a replay buffer, which is then sampled uniformly to build mini-batches of
training data and update the network based on it.

Specifically, DQN caches a history of the most recent experiences with each of them
being a 5-tuple (s, a, r, s′, T). The 5-tuple means an agent taking action a in state s, tran-
sitioning to state s′ and receiving reward r, with T being a boolean indicating whether
s′ is a terminal state. After each step in the environment, the 5-tuple is appended to the
experience list. After some predefined number of steps, a mini-batch of samples are ran-
domly selected from the list, on the basis of which the parameters of the Q-network are
updated. This process of reusing previous experiences to update a Q-function is also called
experience replay. It is typically used in reinforcement learning to accelerate the backup
of rewards. The practice of taking fully random samples in a mini-batch from history to
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update the Q-network avoids bias in the function approximation estimate and decorrelate
the samples from the environment. Furthermore, it is useful to estimate the Q-value for
the next state using stale network parameters in an experience and updating the network
parameters every few steps. By doing so, it provides a stable training target for the network
function to fit and gives it reasonable time to do so, which keeps the errors in the estimation
under control.

3.3.4. Multi-Agent DQN for Feature Selection

Let us consider the scenario that there exist N features in the initial feature set. To
be intuitive, we treat each feature in the set as one agent u ∈ {0, 1, . . . , N}. Then, the
observation of the whole environment at time slot t for agent u is denoted as ou(t), which
is a list of binary values with a length of 2N. The former N entries in the list denote all the
features being selected, while the remaining N entries represent the one-hot encoding of
the partial observation for agent u. If the u-th feature is selected, then the u-th entry of the
partial observation will be set to 1, with the other entries being set to 0. Otherwise, all the
N entries will be set to 0.

Accordingly, we denote the action of agent u at time slot t as au(t). The action space
for every agent is au(t) ∈ {0, 1}. When au(t) = 0, it represents the u-th feature not being
flipped, Otherwise, it is flipped. It is worth noting that there is no competition among the
agents, which means selecting a feature does not affect the selection of other features. So,
the Markov chains for the N features are mutually independent. After agent u takes the
action au(t− 1) at time t− 1, whether the corresponding feature entry is flipped or not, it
will receive a reward denoted by ru(t). Here, we design a reward mechanism for each user
as follows: Assuming that we take classification accuracy as the evaluation metric, if the
classification accuracy based on the selected features at time t− 1 (denoted as acct−1) is
lower than that at time t (denoted as acct), i.e., acct−1 < acct, then ru(t) is set to the value of
acct; If acct−1 > acct, then ru(t) is set to the value of 0.5×(acct − acct−1), which is a negative
decimal to discourage such action. Additionally, when the values of acct−1 and acct are
equal, ru(t) is set to the product of acct and a design factor, whose sign is determined by
the number of the selected features. When the number of selected features at time t− 1 is
bigger than that at time t, the factor is a positive decimal. Otherwise, the factor is negative.
In this way, the subset with fewer features is encouraged to be selected as the solution. After
many iterative simulation steps, a set of the previous observations and actions up to time
t− 1, Hu(t− 1) = {ou(k), au(k)|k = (1, . . . , t− 1)}, are obtained. The learning objective is
to find an optimal policy π∗ to maximize the cumulative discounted reward denoted by

R =
U
∑

u=1

T
∑

t=1
ru(t) from the above interaction history. During the learning process, a neural

network is needed to choose actions and estimate the Q-value associated with the selected
actions, and we design the network with the following architecture.

The first component of the DQN is the input layer Iu(t), which is a neuron vector
of size 2N corresponding to each observation ou(t) at time t. Next follows one fully
connected (FC) layer with hid_num hidden nodes and using ReLU (rectified linear units)
as its activation function. ReLU is a non-linear activation function that can be formulated
as max(x, 0), which has the advantage of running fast and avoiding vanishing gradient
problems. This hidden layer has full connections to all neurons in the input layer, and it is
capable of learning non-linear combinations of such neurons and mapping them to a vector
of size hid_num. Then, the vector is connected to the output layer Qu(t), a linear FC layer
with a specific number of neurons, and the number of its neurons equals the number of
available actions, i.e., 2. Each of the two neurons represents the Q-value for agent u taking
actions to flip the u-th entry in the feature vector or not at time t, respectively.

3.3.5. BAROQUE: The Proposed Hybrid Scheme

By integrating a multi-agent DQN with BSO, BAROQUE is proposed as a hybrid
feature selection scheme for HAR tasks. It has two main functions: search and evaluation.
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In BAROQUE, to fulfill the search for optimal feature subset, BSO is used to guide the
search process and determine the search region for all bees, while a multi-agent DQN is
adopted to improve each bee’s local search. In original BSO, after the solutions defining
the search region are generated and assigned to all bees, each bee carries out the local
search in the neighborhood of its allocated solution heuristically and finds out the best
local solutions by evaluation. Instead, BAROQUE uses a multi-agent DQN to implement
the local search for each bee. In this way, all bees can learn from their own experience,
which will guide the search process to converge more quickly. Note that, a solution in
BSO is encoded as a binary vector of length N with ‘1’s indicating the selected features,
while a state in the multi-agent DQN is a vector of length 2N, so there exists a process
of conversion. Assuming N = 5 and taking solution (10110) as an example, the current
state for the 3rd agent is (0010010110). To narrow down the search space, when the agents
choose actions to transition from present to next states for each bee, the resultant states are
restricted to the neighborhood of best_global_sol as mentioned in Algorithm 1. In the case of
solution = (10110) and best_global_sol = (01101), the 1st, 2nd, 4th, and 5th bits of these two
are different, and we can easily obtain this conclusion by XOR operation. Therefore, when
the agents choose actions, only the operations of flipping these bits are accepted.

Algorithm 1. Overall algorithm flow for BSO and BAROQUE.

Input: An instance of a combinatorial optimization problem
Output: The best solution found
1: Initialize a reference solution, ref_sol, at random or via a heuristic
2: while not stopping criterion do
3: Determine search_region from ref_sol
4: Set the value of n_chances as max_chances
5: Assign a solution from search_region to each bee
6: for each bee b do
7: Carry out a local search
8: Store the result in the dance table
9: end for
10: if best_sol is better than best_global_sol then
11: Set the value of best_global_sol as best_sol
12: Set the value of n_chances as max_chances
13: Intensification
14: else
15: if n_chances > 0 then
16: n_chances minus one
17: Intensification
18: else
19: Diversification
20: end if
21: end if
22: end while
23: return best_global_sol

Step by step, by taking turns to carry out search and evaluation operations iteratively
in BAROQUE, the best local solutions are discovered, the best global solutions are updated,
and the corresponding optimal feature subsets will eventually reveal themselves.

3.4. Evaluation and Prediction

In human activity recognition, a classifier is needed for both major stages as shown in
Figure 1. In the first stage, the classifier is used to evaluate the quality of solutions during
the feature selection and model building process. In the second stage, the classifier is used
to carry out real-time activity prediction during an application process.

As for the evaluation and prediction, any algorithm capable of resolving non-linear
classification problems will theoretically work, like kNN and SVM. Here, we also design a
multi-layer neural network to act as the classifier to improve the classification accuracy.
The input layer of the neural network consists of a number of neurons, the number of
which is equal to that of selected features. The output of the neural network represents the
classification probabilities for all the available activity types, so the corresponding neurons
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and the activity types share the same number. Between them, there are two convolutional
blocks and three fully connected (FC) layers. Each of the convolutional blocks is made up
of three parts: a convolution layer, a rectified linear unit (ReLU) activation function, and a
max pooling layer. Due to the inertial sensor data being one-dimensional time-series, we
set the kernel size for these two convolutional blocks to 5 × 1 and 3 × 1, and use 32 filters
and 64 filters in them, respectively. As an elementwise activation function thresholding
at zero, ReLU outputs the input directly if it is positive, otherwise, it outputs zero. It is
non-linear and leaves the size of the layer unchanged. Each max pooling layer performs a
down-sampling operation with a kernel size of 1 × 2 and a stride of 2. The convolutional
blocks are followed by three FC layers, and the output of these prior layers is flattened
and taken as the input into the FC layers. The number of neurons in the first FC layer
equals that of the flattened output of the prior layers. We set the number of neurons in
the following two FC layers to 256 and 64, respectively. After layer-by-layer learning, the
classifier can map the selected features into activity types and obtain the classification
probability for each type.

To carry our evaluation and prediction, the classification metric, accuracy, is adopted
here. It can be calculated by the formula below based on the chosen classifier:

accuracy =
TP + TN

TP + FP + TN + FN

where TP, FP, TN, and FN represent the number of true positives, false positives, true
negatives, and false negatives, respectively. Based on this, the fitness in BSO and rewards
in DQN can be calculated.

As the main part of the learning process, training the multi-agent deep Q-network
and the neural network classifier is a computationally intensive operation, which is usually
carried out offline on a powerful server or platform commonly with GPU resources. After
learning, the obtained optimal feature subset can be extracted directly on wearable devices
like smartwatches or smartphones, and the corresponding models can be used to predict
the real-time human activity on mobile devices like smartphones.

4. Experimental Results and Analysis

To evaluate the proposed hybrid algorithm BAROQUE on feature selection for HAR
tasks based on wearable sensors, we implemented it as well as some previous related
studies in Python and used the results for analysis. Here, Pytorch was used to build neural
network models for DQN and the evaluation classifier, and Scikit-learn was also used to
provide auxiliary utilities, such as classification algorithm implementation of kNN and
SVM, data-processing libraries, and evaluation metrics. Experiments were conducted on a
PC running Windows 10 system and equipped with an Intel Core i7-7740x CPU @ 4.30 GHz,
32 GB of RAM memory, and an NVIDIA GeForce GTX 1080 Ti. The available GPU can be
used to speed up the training process in some experiments. In this section, four datasets
were utilized for evaluation and analysis, i.e., the UCI-HAR, WISDM, UT_complex, and
SMT datasets. Among these datasets, the first two datasets were downloaded from the
UCI machine learning repository. One dataset was from a research program working on
complex human activity recognition. The other one was collected for our previous related
study. Based on them, we first analyzed the raw inertial signals for HAR tasks and explored
the impact of feature selection by BAROQUE. Then, we compared the proposed hybrid
approach with some existing related methods and performed a detailed analysis in terms
of accuracy and efficiency.

4.1. Analysis of Raw Signals

First, let us take a look at the raw signal data in these datasets. Figure 2a–f show the X,
Y and Z-axis values of linear acceleration and the X, Y and Z-axis values of angular velocity
in the UCI-HAR dataset, which can be seen as the raw features for activity recognition.
From them we can see that there are some patterns in the raw inertial signals for the
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three kinds of activities including walking, walking upstairs and walking downstairs.
However, for the activities of sitting, standing and laying, it is intractable for the raw
features to distinguish from each other since these are stationary activities and there
exists no relative acceleration at all. Figure 2g shows the X, Y and Z-axis values of total
acceleration including gravity, from which we can see that the three activities of sitting,
standing and laying can be distinguished from each other due to the sensors’ different
orientation relative to gravity. Therefore, we can know that one extra kind of feature may
bring about additional information about the performing activities and it is necessary to
introduce as many features as possible to ensure a better performance.
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Figure 2. Data samples from accelerometers and gyroscopes. (a–f) The X, Y and Z-axis linear acceleration data and angular
rate data in the UCI-HAR dataset; (g) the X, Y and Z-axis values of total acceleration including gravity when performing
sitting, standing and laying in the UCI-HAR dataset; (h) the X, Y and Z-axis values of acceleration both from the smartphone
and smartwatch when performing walking in the WISDM dataset.
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Figure 2h shows the X, Y and Z-axis values of acceleration from the smartphone and
smartwatch when performing walking in the WISDM dataset. The solid lines stand for the
raw signal readings from the accelerometer in the smartphone and the dotted lines stand
for those data in the smartwatch, while different colors indicate different axes. From the
figure, we can see that the same kinds of sensor mounted in different parts of the human
body convey different motion contexts and it is reasonable to select different features for
the data from different sensors.

4.2. Analysis for Feature Selection

To validate the impact of feature selection, we first constructed three feature subsets
with a capacity of three for the convenience of visualization from the pre-extracted 561 fea-
tures in the UCI-HAR dataset. Let us denote the original set as O and denote the feature
subset obtained by BAROQUE as B, then the subset of unselected features corresponding
to the difference of the above two sets was denoted as U = O− B. The constructed feature
subsets included the top three features selected from B, the worst three features selected
from U, and the three features randomly selected from O. They were represented as T3
(including the No. 3, 53, and 65 features in the pre-extracted 561 feature set), W3 (including
the No. 64, 82, and 448 features) and R3 (including the No. 284, 300, and 429 features),
respectively. Then, we split the UCI-HAR dataset into two parts with 70% as training data
and 30% as test data. In order to verify the performance of the different feature subsets, an
SVM model was trained using Scikit-learn package in Python based on the training data
for each of the feature subsets, and then the prediction results and error rates for the test
data were obtained on the basis of the trained model and shown in Figure 3 and Table 2,
respectively.

Table 2. Error rates on test data for each activity for the three feature subsets, T3, R3, and W3.

Walking Walking Upstairs Walking Downstairs Sitting Standing Laying

T3 18.55% 25.69% 24.05% 19.14% 20.3% 23.28%
R3 52.82% 46.71% 32.62% 54.79% 67.86% 42.27%
W3 88.51% 100% 100% 99.79% 49.06% 74.86%

We use six different colors to mark data samples from six different activity types and
use different point sizes to stand for different prediction confidence as shown in Figure 3d.
Visually, from Figure 3a–c we can see that T3 demonstrates the strongest representation
ability, W3 has the worst representation ability, and R3 falls in between these two extremes.
Numerically, this is supported by the error rates in Table 2. More specifically, in Figure 3a,
the test data space is divided into several almost disjoint regions, the confidence for one
sample being predicted as the ground truth annotation is high, and the error rate for each
activity is low. In Figure 3b, all the data samples from different categories mix together
chaotically, the corresponding confidence for one sample being predicted to fall in its
actual category is unacceptably low, and the error rate for each activity is high, which will
lead to poor human activity recognition performance. In Figure 3c, some data samples
are correctly predicted with considerable confidence and some others are not. The above
experiments tell us a truth that all the features are not contributing equally to aid the
recognition process. Due to there being no prior knowledge when confronted with a HAR
task, the usual practice is to extract a series of features heuristically and manually and then
select the most relevant ones.
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Figure 3. The prediction results for test data using the constructed 3 subsets with each having a capacity of three features
from the pre-extracted 561 features in the UCI-HAR dataset. (a–c) Schematic illustrations of the recognition results for test
data consisting of feature subset T3, W3, and R3, respectively; (d) two legends of the above illustrations, one using point
sizes to distinguish different confidence levels, the other using different colors to represent different activity types.

Next, we conducted several experiments based on the WISDM dataset. At first, we
converted the provided ARFF files containing pre-extracted features into CSV files and
replaced all missing values in each file using the mean of the corresponding feature. Then,
the data subset containing eight types of activities, namely clapping, writing, eating soup,
climbing stairs, folding clothes, playing catch, dribbling a basketball, and kicking a soccer
ball, was selected, and the BAROQUE feature selection process was conducted based on
the smartphone sensor data and the smartwatch sensor data, respectively. The number of



Sensors 2021, 21, 6434 17 of 25

bees, flip and max_chances were set to 10, 5, and 3, respectively, which were also the default
settings for BAROQUE for the following experiments. The obtained feature subset for the
smartphone was denoted as sfp and the subset for the smartwatch was denoted as sfw, and
they were used to evaluate the performance for both the smartphone sensor data and the
smartwatch sensor data. After getting the dataset ready by splitting it randomly into 90%
training and 10% test data for 10-fold cross-validation, based on the dataset, the evaluation
was carried out using a kNN classifier with the parameter for neighbor number set to 2.
From the results in Table 3, we can see that the obtained sfp has 83 selected features and sfw
has 61 selected features. There exist only 28 common features, less than half of the features
in sfp or sfw. When applying sfw to test the smartwatch sensor data, we got an accuracy of
95.35%; While applying sfw to test the smartphone sensor data, a poor result of 86.01% was
obtained. And sfp has the same characteristics. This conveys the idea that different sensors,
or even the same kinds of sensor worn on different parts of the body, need different feature
subsets to ensure a better performance. The proposed BAROQUE can select the suitable
feature subset for different sensor data.

Table 3. Performance of different feature subsets extracted by BAROQUE from the smartphone and smartwatch sensor data
in the WISDM dataset, respectively.

Smartphone Sensor Data Smartwatch Sensor Data

Used Activities clapping, writing, eating soup, climbing stairs, folding clothes, playing catch, dribbling a
basketball and kicking a soccer ball

Selected Features

Feature number of sfp:
0,2,3,5,6,7,9,12,14,15,20,21,22,23,25,33,

35,36,37,39,40,42,43,44,45,46,47,49,50,53,
55,56,59,60,61,63,65,66,68,69,70,71,73,

78,80,81,88,89,90,91,92,104,105,109,118,
119,122,125,127,128,129,133,135,136,138,

139,141,145,148,150,152,155,156,159,
161,164,169,171,175,178,179,180,181

Feature number of sfw:
0,5,9,10,11,15,16,20,21,27,31,36,45,50,51,

54,58,59,61,64,70,76,80,81,82,85,86,90,
91,96,98,99,105,108,110,111,116,123,125,
126,128,130,131,137,141,145,146,148,150,

151,156,158,160,161,164,166,167,168,
172,178,181

Accuracy using sfp 92.22% 93.49%

Accuracy using sfw 86.01% 95.35%

Joint Features 0,5,9,15,20,21,36,45,50,59,61,70,80,81,90,91,105,125,128,141,145,148,150,156,161,164,178,181

Overlap Ratio 0.337 (28/83) 0.459 (28/61)

4.3. Analysis on Hybrid Combination

As two independent kinds of method, bee swarm optimization and reinforcement
learning can be used to carry out feature selection on their own, and some previous studies
did just that. Based on them, Sadeg et al. [62] presented an algorithm, QBSO-FS, by
integrating Q-learning, a reinforcement learning algorithm, with bee swarm optimization
metaheuristic to solve feature selection problems. BAROQUE is a hybrid version of BSO
with a deep Q-network for generating feature subsets, and it is an improvement of QBSO-
FS. To observe the effect of the hybrid combination of the BSO and DQN, BAROQUE was
compared with its components, BSO and DQN, as well as QBSO-FS in terms of performance
and efficiency.

To set up the experiments, the SMT dataset was used here. We first selected a subset
of the data from the three-axis accelerometer and gyroscope in the wrist-worn device as
the evaluation dataset, which involved the following nine activities, i.e., walking, jogging,
bicycling, walking upstairs, walking downstairs, typing, writing, eating, and drinking.
Then, 102 features in total were extracted from the three-axis acceleration and three-axis
gyroscope sensor signals in the evaluation dataset with a window size of 10 s and an
overlap of 8 s, including average, variation, and short-term power spectrum for each
channel of data, and the cosine distances and correlation between every two channels of the
three-axis data from either of the two sensors. Finally, the obtained feature set was split into
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training (80%) and test (20%) subsets for evaluation. Based on the training subset, we ran
each of the four algorithms, BSO, DQN, QBSO-FS, and BAROQUE, to obtain the relevant
features, and evaluated them using these features on the test subset. It is worth noting
that the BSO or DQN component in BAROQUE algorithm has the same parameter settings
with the corresponding standalone BSO algorithm or DQN algorithm, such as the same
learning rate, the same flip value, the same max_chances value, and the same ε as well as its
decay value. And this property still holds when in QBSO-FS algorithm. During each search
process, we recorded the changing prediction accuracies over time. For each algorithm, we
repeated the process four times and obtained the final results by calculating their average
values. Moreover, we drew a curve of the prediction performance over time as shown in
Figure 4, in which every turning point means a change in prediction performance.

Sensors 2021, 21, 6434 10 of 17 
 

 

as shown in Figure 4, in which every turning point means a change in prediction perfor-

mance. 

 

Figure 4. The prediction accuracies of four algorithms, BSO, DQN, BAROQUE, and QBSO-FS, over 

time based on the 102 features extracted from the three-axis accelerometer and three-axis gyroscope 

sensor data in the evaluation set from the SMT dataset. 

From Figure 4 we can see that there is an upward trend in prediction performance 

over time for all four algorithms. Generally speaking, in the beginning, a relatively lower 

accuracy is obtained for each of the algorithms due to the randomly heuristic feature se-

lection initialization. Then, in the first few iterations, the performance improved quickly. 

During the following many iterations, the speed of performance improvement gradually 

slows down. Eventually, the accuracy curve converges smoothly to a stable high value. 

To be specific, among the four algorithms, the BSO algorithm has the advantage of keep-

ing a steady and smooth growth in accuracy, while DQN algorithm is capable of achieving 

a good performance very quickly. However, from another perspective, the former takes a 

long time to obtain a good performance, and the latter tends to get trapped in local optima 

after the first few training steps. As a hybrid approach by integrating BSO with DQN, 

BAROQUE can leverage the merits of these two algorithms, reach a high prediction accu-

racy quickly in the first few iterative steps, and then keep steady growth until converging 

to a better result. As for the QBSO-FS algorithm, it takes more time to achieve a certain 

accuracy than BSO algorithm at the beginning, but after some training steps, the perfor-

mance is improved greatly and reaches a better performance than either BSO or DQN. 

From Figure 4, we can also see that in a certain time range BAROQUE achieves the best 

performance among the four algorithms. 

4.4. Comparison with Other Feature Selection Methods 

One of the main purposes of feature selection is dimension reduction in a large multi-

dimensional data set, which is essential when the number of features is large. There are 

some classic dimension reduction methods in the field of machine learning, like PCA and 

kPCA, and they have been widely used in HAR tasks [22,49–51]. Some other feature selec-

tion algorithms can also be often found in HAR-related research works, like CFS, Relief-

F, and SFFS. Here, we carry out feature selection on the UT_complex dataset using each 

of them and compare our BAROQUE with these methods in terms of prediction accuracy. 

PCA is an exploratory data analysis tool for reducing the dimensionality of large da-

tasets, increasing interpretability but at the same time minimizing information loss. It does 

so by computing the principal uncorrelated components and using them to perform a 

change of basis on the data, which can successively maximize the variance. kPCA is an 

extension of PCA with kernel techniques. It enables the originally linear operations in 

Figure 4. The prediction accuracies of four algorithms, BSO, DQN, BAROQUE, and QBSO-FS, over
time based on the 102 features extracted from the three-axis accelerometer and three-axis gyroscope
sensor data in the evaluation set from the SMT dataset.

From Figure 4 we can see that there is an upward trend in prediction performance
over time for all four algorithms. Generally speaking, in the beginning, a relatively lower
accuracy is obtained for each of the algorithms due to the randomly heuristic feature
selection initialization. Then, in the first few iterations, the performance improved quickly.
During the following many iterations, the speed of performance improvement gradually
slows down. Eventually, the accuracy curve converges smoothly to a stable high value. To
be specific, among the four algorithms, the BSO algorithm has the advantage of keeping a
steady and smooth growth in accuracy, while DQN algorithm is capable of achieving a good
performance very quickly. However, from another perspective, the former takes a long time
to obtain a good performance, and the latter tends to get trapped in local optima after the
first few training steps. As a hybrid approach by integrating BSO with DQN, BAROQUE
can leverage the merits of these two algorithms, reach a high prediction accuracy quickly in
the first few iterative steps, and then keep steady growth until converging to a better result.
As for the QBSO-FS algorithm, it takes more time to achieve a certain accuracy than BSO
algorithm at the beginning, but after some training steps, the performance is improved
greatly and reaches a better performance than either BSO or DQN. From Figure 4, we can
also see that in a certain time range BAROQUE achieves the best performance among the
four algorithms.

4.4. Comparison with Other Feature Selection Methods

One of the main purposes of feature selection is dimension reduction in a large multi-
dimensional data set, which is essential when the number of features is large. There are
some classic dimension reduction methods in the field of machine learning, like PCA
and kPCA, and they have been widely used in HAR tasks [22,49–51]. Some other feature
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selection algorithms can also be often found in HAR-related research works, like CFS,
Relief-F, and SFFS. Here, we carry out feature selection on the UT_complex dataset using
each of them and compare our BAROQUE with these methods in terms of prediction
accuracy.

PCA is an exploratory data analysis tool for reducing the dimensionality of large
datasets, increasing interpretability but at the same time minimizing information loss. It
does so by computing the principal uncorrelated components and using them to perform
a change of basis on the data, which can successively maximize the variance. kPCA is an
extension of PCA with kernel techniques. It enables the originally linear operations in
PCA to be performed in a reproducing kernel Hilbert space by using a kernel. Relief-F is
a commonly used filter method, and it uses a statistical approach rather than a heuristic
search to rank the features and prune insignificant features. The algorithm assigns a
relevant weight to each of the potential features and selects the ones above the preset
threshold. Feature relevance is based on the ability for instances from different classes and
instances from the same class to be distinguished. Instead of providing a subset of features,
Relief-F weights all features according to relevance. Therefore, an appropriate number
of features to include in each subset needs to be determined by processing the ranked
feature list with a classifier. CFS evaluates the relevance of features from a correlation-
based heuristic, which examines inter-correlation among features as well as their ability to
predict classes. Since the features are expected to correlate with each other, it is necessary
to identify features that can be used together to increase performance, without being
redundant. Therefore, CFS selects features that are highly correlated with the class and
uncorrelated with each other. SFFS is a greedy algorithm for finding the most discriminative
features, and it is computationally costly. It adds features one at a time to the selected
feature subset, and feature selection is performed sequentially in SFFS. To be specific, SFFS
is first used to produce a series of feature subsets, and then a discriminatory feature subset
candidate is determined among them using a classifier.

To prepare for the experiments, 648 features were extracted from the sensor data
in the UT_complex dataset. Specifically, 26 features were extracted from each of the
12 data channels, which are three-axis acceleration, three-axis linear acceleration, three-axis
gyroscope data, and three-axis magnetic data. The features consist of two main parts,
the time-domain part including mean, variance, standard deviation, mode, median, max,
min, zero crossing rate, interquartile range, skewness, and kurtosis for the raw signals,
and the frequency-domain part including DC component, the top three frequencies, and
the four features for shape and amplitude of the spectra, i.e., mean, standard deviation,
skewness, and kurtosis, respectively. Additionally, the Pearson product-moment correlation
coefficients for every two channels of the three-axis data from each of the four sensors were
also extracted. On basis of the feature set, we carried out feature selection using PCA, kPCA
(with a linear kernel), CFS, Relief-F, SFFS, and BAROQUE, respectively, and the results are
shown in Table 4. To make the evaluation more efficient, we split the training data into
10 parts with one of them as the test set, and used a kNN classifier with the parameter for
neighbor number set to 5 for each scheme.

Table 4. Performance comparison among different feature selection algorithms.

Algorithms Need All Features Time Cost (s) Prediction Accuracy (%)

PCA Yes 1.38 99.65%
kPCA Yes 100.2 99.65%

Relief-F No 161.74 99.83%
CFS No 6147.22 95.54%
SFFS No 160,817.5 99.98%

BAROQUE No 32.46 99.91%

After a certain number of iterations for BAROQUE learning, we obtained 134 relevant
features. Then, we configured the other algorithms to let each of them output 134 features.
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From Table 4 we can see that BAROQUE achieves a better performance than other methods
except for SFFS, although the differences among these methods are not obvious, and
BAROQUE consumes less learning time than other methods except for PCA. Furthermore,
we can find that PCA needs the least computing time, and kPCA takes a little more time
for the usage of a kernel. However, when performing online prediction once the selection
process has finished, these two algorithms have to extract all features and transform them
into a lower dimension, while other schemes only need to extract the selected features. We
find that the kPCA using a linear kernel achieves a better accuracy than those with a sigmoid,
poly, or rbf kernel here. Moreover, SFFS performs closest to the optimal solution, but it
takes much longer during the feature selection phase. It is worth noting that Relief-F takes
acceptable computing time and achieves a satisfactory accuracy, which makes it a good
alternative feature selection scheme. By contrast, CFS consumes a considerable amount of
computing time and obtains a much worse accuracy than the others.

4.5. Comparison with Other Swarm-Based Methods

As a swarm-based algorithm, we compare the results of BAROQUE with other popular
swarm-based algorithms to evaluate its performance. Nowadays, genetic algorithm (GA),
ant colony optimization (ACO), particle swarm optimization (PSO) and other algorithms
based on swarm intelligence have been applied to select features for HAR tasks [65–67].
Table 5 presents the results of No-FS (i.e., without feature selection at all), GA, Binary PSO
(BPSO), ACO, and BAROQUE for the previously mentioned datasets.

Table 5. Comparison between BAROQUE and other swarm-based algorithms in terms of accuracy.

Dataset No-FS GA BPSO ACO BAROQUE

UCI-HAR 97.86% 97.37% 97.48% 97.38% 97.48%
WISDM_W 81.09% 78.60% 80.00% 76.12% 80.93%
WISDM_A 89.30% 86.35% 88.84% 87.91% 88.99%

UT_complex 99.83% 99.83% 99.91% 99.83% 99.91%

As for the datasets, we use the 561 features for the UCI-HAR dataset as explained
in Section 4.2, and we use the 648 features for the UT_complex dataset as explained in
Section 4.4. Moreover, there are two feature sets for WISDM, which are based on the
smartphone or smartwatch sensor data, respectively. We name them as well as the fused
dataset as WISDM_P, WISDM_W, and WISDM_A, and use them in the experiments.

To facilitate performance comparison, we implemented GA, BPSO, ACO algorithms
in Python, and an SVM classification algorithm with gamma = 0.001 from Scikit-learn was
adopted as the classifier. To set up the experiments, we configured the algorithms using the
following settings: the threshold value, crossover rate, and mutation rate for GA were set
to 0.5, 0.8, and 0.01, respectively; the threshold value, inertia weight, and two acceleration
factors for BPSO were set to 0.5, 0.9, 2, and 2, respectively; the number of ants, initial
pheromone amount per path, amount of pheromone per update, and evaporation rate for
ACO were set to 10, 1, 0.1, and 0.95, respectively; and BAROQUE used the predefined
default parameters. For one experiment, each of the datasets was split into 90% training
data and 10% test data randomly, and based on them each of the schemes ran iteratively
until convergence. This process was repeated four times and the averaged accuracy is
listed as the results in Table 5.

From Table 5 we can see that, each of the four schemes can achieve an acceptable
accuracy for activity recognition. Among them, BAROQUE is a competitive algorithm
and usually outperforms the other feature selection algorithms for the datasets used in
the experiments under most circumstances. It is worth noting that the datasets with all
features do not always achieve the best performance, although they usually perform much
better than the subsets by most of the feature selection algorithms. During the experimental
process we also find that, given enough training time and number of iterations, all the
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feature selection schemes have a certain probability to obtain a much better accuracy, and
even achieve the optimal solution.

4.6. Comparison with Other HAR Solutions

Based on wearable sensor data from a smartphone or/and a smartwatch, some re-
searchers have proposed many solutions for human activity recognition tasks. Some of
them tested their methods using the above benchmark dataset. These methods adopted
different feature selection algorithms and achieved a good recognition accuracy by different
classification algorithms, respectively. Here, we conduct an analysis on the performance of
such methods as well as our BAROQUE.

Based on the raw data in the UCI-HAR dataset, there are four previous related studies
as follows. Here, we compare these four studies with the proposed BAROQUE in terms of
classification accuracy, and the results are shown in Table 6.

Table 6. Classification accuracies of different HAR solutions using the UCI-HAR dataset.

BAROQUE SMC-SVM MC-SVM Convnet CAT

walking 98.84% 98.99% 99% 98.99% 89.24%
walking downstairs 98.34% 98.33% 98% 100% 100%

walking upstairs 99.37% 97.24% 96% 100% 94.52%
standing 95.98% 97.18% 97% 93.23% 99.19%

sitting 97.94% 97.76% 88% 88.80% 99.08%
laying 100% 99.26% 100% 87.71% 99.12%

Average 98.41% 98.13% 96% 94.79% 96.86%

Anguita et al. [63] first processed the raw data and then trained a classification model
using multiclass SVM (MC-SVM). A total of 561 basic features, like frequency skewness,
angle between vectors, energy of different frequency bands were extracted from the raw
sensor signals in UCI-HAR, and then the feature set was split arbitrarily into a training
subset (70%) and test subset (30%). On basis of this, the model was evaluated using
a one-vs.-all multiclass SVM with a Gaussian kernel, and a 96% classification accuracy
was claimed.

Ronao et al. [23] designed a convolution neural network (Convnet) and trained it on
the UCI-HAR dataset for HAR tasks. The neural network made up of four alternating
convolutional layers and max pooling layers is capable of extracting basic features in the
lower layers and complex features in the higher layers from the raw inertial sensor data.
During the training process, the settings for number of layers, number of feature maps,
filter sizes, and pooling sizes, were obtained in a greedy search way. The best outcome
obtained by them was around 95.75%, which proved Convnet is a good model for activity
recognition although considerable resource consumption is needed for training.

Myo et al. [68] presented a new feature selection method, named the cyclic attribution
technique (CAT), to assist in recognizing human activities based on group theory and
fundamental properties of the cyclic group with a binary operation involving some special
properties. An artificial neural network with two hidden layers using a feed-forward
propagation algorithm was adopted as the classifier, and it was trained on the UCI-HAR
dataset with 70% for training and 30% for testing. This method was claimed to obtain
the most important features by removing 498 features from 561 and get a better accuracy
of 96.7%.

Ahmed et al. [69] presented a hybrid feature selection method including a filter and
wrapper method. They first extracted and selected desired features using a sequential
floating forward search, and then fed them to a multi-class support vector machine (SMC-
SVM) with non-linear kernel tricks. The model was validated using the UCI-HAR dataset,
which produced a result of 98.13%.

In a similar fashion, the proposed hybrid feature selection scheme, BAROQUE with
the designed neural network as the classifier, was implemented and ran on the 561 features
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in the UCI-HAR dataset with a training–test ratio of 7:3. After the model was trained,
we obtained the prediction accuracy on the test data. It showed that the proposed model
achieved a 98.41% accuracy, which is better than the others.

5. Conclusions

This study presented a hybrid feature selection scheme, BAROQUE, by integrating
a bee swarm optimization metaheuristic with a multi-agent deep Q-network, which im-
proved the performance and efficiency for human activity recognition based on wearable
sensors. Before recognizing human activities, the conventional practice is to extract as
many features as possible in advance. However, not every feature contributes to activity
recognition equally; rather, too many irrelevant features would degrade the performance
and efficiency of the classifier. Thus, BAROQUE has been proposed to play an important
role in selecting the relevant features by using a hybrid BSO with a multi-agent deep neural
network to search through the feature space in its subset generation step. The experimental
results showed that for the benchmark datasets, the selected feature subset obtained by
reducing the redundant features could achieve better classification accuracy than other
randomly selected feature subsets. Comparison between BAROQUE, BSO, DQN, and
QBSO-FS showed that BAROQUE integrated the advantages of both BSO and DQN, and
achieved the best performance among these four schemes. In terms of execution time, the
experimental results showed that BAROQUE achieved a better classification accuracy using
less time and maintained steady growth over the learning time. Finally, the comparison
of the results of BAROQUE with those of previous related feature selection algorithms
showed that our scheme obtained relatively satisfactory results, and the proposed human
activity recognition model outperformed other state-of-the-art HAR models. In the future,
we will test BAROQUE on some datasets from more challenging, realistic application
scenarios and improve it accordingly.
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