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At present, the global COVID-19 epidemic is still in a state of anxiety, and increasing the
cure rate of critically ill patients is an important means to defeat the virus. From an immune
perspective, ARDS driven by an inflammatory storm is still the direct cause of death in
severe COVID-19 patients. Although some experience has been gained in the treatment of
COVID-19, and intensive COVID-19 vaccination has been carried out recently, it is still
effective to save lives to develop more effective programs to alleviate the inflammatory
storm and ARDS in patients with SARS-CoV-2 or emerging variants of SARS-CoV-2. In
reorganizing the ARDS-related inflammatory storm formation program in COVID-19
patients, we highlighted the importance of the vicious circle of inflammatory cytokines
and inflammatory cell death, which is aggravated by blood circulation to formmulti-system
inflammation. Summarizes the interlocking and crisscrossing of inflammatory response
and inflammatory cell death mechanisms including NETs, pyrolysis, apoptosis and
PANoptosis in severe COVID-19. More importantly, in response to the inflammatory
storm formation programwe described, and on the premise of following ethical and clinical
experimental norms, we propose a three-dimensional integrated program for future
research based on boosting antiviral immune response at the initial stage, inhibiting
inflammatory cytokine signaling at the exacerbation stage and inhibiting cell death before
it’s worse to prevent and alleviate ARDS.

Keywords: COVID-19, ARDS, Inflammatory storm program, Inflammatory cytokine, Inflammatory cell death
1 INTRODUCTION

In the past 20 years, various coronaviruses including severe acute respiratory syndrome coronavirus
(SARS-CoV) in 2003 (1), middle east respiratory syndrome coronavirus (MERS-CoV) in 2012 (2)
and SARS-CoV-2 in 2020 (3, 4) have caused many health crises in different countries and regions
around the world. The genome sequence of SARS-CoV-2 has nearly 80% homology with
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https://www.frontiersin.org/articles/10.3389/fimmu.2021.716940/full
https://www.frontiersin.org/articles/10.3389/fimmu.2021.716940/full
https://www.frontiersin.org/articles/10.3389/fimmu.2021.716940/full
https://www.frontiersin.org/articles/10.3389/fimmu.2021.716940/full
https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles
http://creativecommons.org/licenses/by/4.0/
mailto:ustcwhm@ustc.edu.cn
https://doi.org/10.3389/fimmu.2021.716940
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://doi.org/10.3389/fimmu.2021.716940
https://www.frontiersin.org/journals/immunology
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2021.716940&domain=pdf&date_stamp=2021-10-20


Zhou et al. ARDS-Related Inflammatory Storm in COVID-19
SARS-CoV and about 50% with MERS-CoV (5). In the latest and
more extensive screening, samples of pneumonia patients
collected from Sarawak Regional Hospital in Malaysia in the
past few years were found to be canine-derived coronavirus
infections (6) and in Haitian children, pig-derived delta
coronaviruses were also found (7). The global pandemic of
acute infectious pneumonia named “Coronavirus disease 2019
(COVID-19)”caused by SARS-CoV-2, is by far the most
widespread, longest lasting and worst example among them.

From the beginning of 2020 to the present, the COVID-19
epidemic has risen and fallen throughout the world in just over a
year, and the latest round of the epidemic caused by the rapid
and continuous mutation of SARS-CoV-2 has also broken out
(8). Globally, as of 16 September 2021, there have been exceeded
226 million confirmed cases of COVID-19, including >4.65
million deaths, reported to the World Health Organization
(WHO). As a result, the overall prevalence of mortality in
COVID-19 patients was ~2% (4.65/226). Although billions
doses of vaccination that have been completed worldwide have
brought hope to control the epidemic, the speed of vaccination is
still a few days away from the universal immune barrier. The
recent report of the centers for disease control and prevention in
the United States also showed cases of COVID-19 vaccine
breakthrough infections. And recent studies have also shown
that existing vaccines, including mRNA vaccines, adenovirus
vaccines, inactivated vaccines and RBD-subunit vaccines, have
reduced the neutralizing activity against the SARS-CoV-2
mutant strains (9, 10). In addition, we still lack specific anti-
SARS-CoV-2 drugs. Therefore, while developing a broader-
spectrum vaccine and wonder drugs, we should further study
the mechanism of death caused by COVID-19 and develop more
effective treatment options.

The spectrum of COVID-19 presentations ranges from the
asymptomatic infection, to a mild self-limiting influenza-like
illness, to life-threatening multiorgan failure (11–13). Most
COVID-19 patients present mild or moderate symptoms,
about 15% of patients develop severe pneumonia and 5%
progress to critically ill (14–16). So, reducing the incidence of
multiorgan failure is the key to improve the cure rate and reduce
the mortality of COVID-19 (17, 18). A large number of
inflammatory macrophage infiltration and the distribution of
inflammatory cytokines such as interleukin (IL)-1b, IL-6, and IL-
18, were found in the pulmonary pathology of patients with
severe COVID-19 (19–21). The inflammatory storm instigated
by pathogenic T cells and inflammatory monocytes was
considered to be the key to the severity of COVID-19 (22).
These cells release proinflammatory factors represented by
granulocyte-macrophage colony-stimulating factor (GM-CSF)
and IL-6, which recruit more inflammatory cells into the lungs
and other organs to form a “cytokine release syndrome”, and the
further aggravated inflammatory storm will eventually lead to
multiorgan failure and death in patients with severe COVID-19
(22–24). Based on these basic findings, the COVID-19
immunotherapy strategy that targets these inflammatory
cytokines or their receptors to relieve the inflammatory storm
have benefited patients with COVID-19 in the past year.
Frontiers in Immunology | www.frontiersin.org 2
The results of a Chinese study exploring the treatment of
tocilizumab for COVID-19 including 21 patients in the
intensive care unit (ICU) were the first to encourage this
treatment strategy (25). Clinical trials focusing on blocking IL-
6 signaling to treat COVID-19 benefit patients, including IL-6
receptor antagonists [tocilizumab (26, 27) and sarilumab (28)]
and IL-6 inhibitors [siltuximab (29)], and tocilizumab needs to
be combined with standard antiviral care to be highlighted in the
comparison of international multi-center clinical trials (26, 30).
Subsequent clinical trials of monoclonal antibody drugs showed
that treatments targeting the GM-CSF receptor (mavrilimumab)
and the IL-1 receptor (anakinra) were also related to clinical
improvement of patients with severe COVID-19 (31, 32).
Although these monoclonal antibody drugs that target
inflammatory cytokine signals have shown some benefits, they
were limited by many complex factors such as drug targets, the
treatment time, the dosage, and differences in patient immune
responses, and their performance in reducing patient mortality
was unsatisfactory (24, 33, 34).

To further improve the COVID-19 immunotherapy strategy
to better reduce the risk of patient death, it is necessary to re-
analyze the process of COVID-19 inflammatory storm based on
recent research findings. Here, we discuss the progression of
acute respiratory distress syndrome (ARDS), a typical evolution
of severe COVID-19, as a starting point, reorganize the process
of severe inflammatory storms, and try to propose a targeted
graded treatment plan for a future research based on the
combination of antiviral immune response, inflammatory
immune response and inflammatory cell death. Although
targeting each individual aspect of this three-dimensional
program has been shown to be effective, it has to be said that
the overall treatment plan is still an idealized strategy. Therefore,
to test its superiority and earlier application, we call for the three-
dimensional graded treatment plan to be considered for clinical
trials under the premise of ethical requirements.
2 ARDS IS A LIFE-THREATENING
CONDITION OF COVID-19 INDUCED
BY INFLAMMATORY STORM

ARDS is a common cause of respiratory failure in critically ill
patients and is a severe pulmonary condition that leads to
refractory hypoxemia (35, 36). Alveolar surfactant is a foamy
substance that can keep the full expansion of the alveoli, which is
essential for breathing. In ARDS, lung injury causes fluid to leak
into the space between the alveoli and capillaries, and as the
pressure increases, fluid builds up inside the alveoli to
accumulate and degrade surfactants, forming a typical ARDS
characteristic—accumulation of fluid in the lungs, causing the
alveoli to collapse (36). These changes prevent the lungs from
filling properly with air, disrupting the gas exchange in the lungs,
and causing a series of serious cascade reactions that impact the
oxygen supply of tissues and organs. Because of this, ARDS
usually occurs in life-threatening conditions such as severe
October 2021 | Volume 12 | Article 716940
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pneumonia, sepsis and severe trauma. The incidence of ICU
patients worldwide is about 10%, and the mortality rate is as high
as 30-40% (37, 38).

Viral infections, especially coronavirus and avian influenza virus
(H5N1), cause pneumonia to be one of the main factors leading to
ARDS (39). In the coronavirus epidemic caused by the SARS-CoV
for thefirst time in2003, reports showed that the incidenceofARDS
was about 25% (40). ARDS had also occurred in some severe cases
and animal models with MERS infection (41). A study from the
early days of the COVID-19 epidemic showed that nearly 40% of
severe and critical hospitalized patients developedARDS, andmore
than half of those diagnosed died from the disease (42). So, ARDS is
closely related to death caused by coronavirus infection. In those
patients with ARDS who recovered, although the lung function
gradually improved within a year or so, it was difficult to recover as
before, lung volume was below normal, and scarring was present
(14, 42).

In patients with symptomatic coronavirus infection, pulmonary
inflammationwasactivated, andpneumoniadevelops intoARDSas
the inflammation worsens (22, 40–42). More and more evidences
suggest that the occurrence ofARDS seems to be less directly due to
the infected virus itself and more related to excessive rather than
effective inflammation in the body (15, 43, 44). This excessive
inflammation is usually manifested as the continuous release of
inflammatory factors, which is aggravated by blood circulation to
formmulti-system inflammation, which is called cytokine storm or
inflammatory storm (22–24, 45).
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3 INFLAMMATORY STORM PROGRAM
THAT TRIGGERS ARDS IN COVID-19

Similar to the common influenza virus, the SARS-CoV-2 enters
the respiratory tract of most people, it will also activate the
antiviral immune response that causes inflammation, leading to
mild symptoms such as sore throat, cough, fever. In some cases,
the virus is difficult to control and escapes into the alveoli to
stimulate excessive release of inflammatory factors, triggering an
inflammatory storm and developing ARDS (Figure 1).

3.1 Initiation: SARS-CoV-2 Invades the
Type II Alveolar Epithelial Cell
Respiratory droplets are the main carrier of the SARS-CoV-2,
and its journey begins in the nose, mouth and eyes, and travels
down the alveoli in the lungs (46, 47). SARS-CoV-2 is an
enveloped, positive-sense single-stranded RNA virus, which
belongs to Betacoronavirus genus and is highly pathogenic (48,
49). SARS-CoV-2 encodes four structural proteins, among which
the nucleocapsid (N) protein combines with RNA to form a
helical capsid, spike (S), envelope (E), and membrane (M)
constitute the viral membrane proteins, of which spike
mediates virus entry into host cells (49–51). In the study of
SARS-CoV, it has been confirmed that the main receptor of S
protein is angiotensin-converting enzyme 2 (ACE2) expressed in
type II alveolar epithelial cells (52). The S protein coding gene of
SARS-CoV-2 is highly variable with SARS-CoV, and the
FIGURE 1 | The malignant cycle of inflammatory factors and inflammatory cell death exacerbates the inflammatory storm to trigger ARDS and multiorgan failure in
severe COVID-19.
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nucleotide homology is less than 75% (5, 51). The S protein is
trimeric-like clover-shaped, with three S1 heads and one trimeric
S2 stem, and the receptor-binding domain (RBD) is located at
the tip of each S1 head (49, 52, 53). After the RBD in the S
protein mediates direct contact with ACE2 on the target cell
surface, the transmembrane serine protease (TMPRSS2) cleaves
the C-terminal peptide of ACE2 to enhance the virus invasion
driven by the S protein (54). In addition, recent studies have
shown that the CD147 molecule that can be expressed on most
leukocytes, platelets and endothelial cells is also the host receptor
for the RBD in S protein of SARS-CoV-2, participating in the
interaction between the virus and the target cell and helping the
virus invade (55). When the virus successfully infects a type II
alveolar epithelial cell, it will inject its own RNA into the cell and
achieve a large amount of replication, releasing more virus to
infect other target cells nearby.

Due to the need to defend against pathogenic microorganisms
brought in by breathing air, the liquid layer on the alveolar surface
resides with immune cells, especially macrophages with phagocytic
function, which account for more than 95% and are called alveolar
macrophages (56). SARS-CoV-2 may directly infect these myeloid
cells by binding to the C-type lectin receptor on the surface of cells
via the glycosylation sites in the non-RBD region of the S protein,
and this recognition mode did not induce the antiviral immune
response of interferon, but instead led to the release of a large
number of inflammatory factors (57). Macrophages can be
polarized into pro-inflammatory M1 macrophages or M2
macrophages that inhibit inflammation, depending on the
stimulus conditions they receive. Under physiological conditions,
alveolar macrophages exhibit an anti-inflammatoryM2 phenotype
(56, 58). Recent studies have shown that the endosomal vesicles of
M2 type macrophages are slightly alkaline, which can inhibit the
separation of SARS-CoV-2 nucleic acid from viral particle
components and help lysosomes to degrade the virus (59). This
may be one of the reasons why most infected people have mild
symptoms and can effectively control the virus in the early stage. In
some severe cases, the out-of-control virus induces alveolar cells to
release cytokines and higher proportions of M1 macrophages and
neutrophils in the bronchoalveolar lavage fluid (60), intended to
activate a stronger antiviral immune response, but it also produces a
strong inflammatory response and alveolar injury (Figure 1, left).
M1 type macrophages are softer and have better phagocytic effects,
but the endosomal vesicles of M1 macrophages is acidic, which
helps the SARS-CoV-2 nucleic acid to be separated from the viral
particle components, thereby helping the virus amplification (20,
59). In addition, it also increases the risk of the virus spreading from
M1 macrophages into the blood throughout the body.

3.2 Exacerbation: Inflammatory Storm
Spreads Through Blood Vessels
The increased inflammation in COVID-19 patients leads to a
further increase in body temperature and inflammation-related
clinical indicators, such as C-reactive protein, serum ferritin, and
IL-6 (13, 16). As inflammation and viruses spread to the blood, T
cells are rapidly activated, and over-activated T cells develop into
pathogenic T cells, producing factors such as GM-CSF and IL-6
Frontiers in Immunology | www.frontiersin.org 4
(22). GM-CSF further activates CD14+CD16+ inflammatory
monocytes to produce a larger amount of IL-6 and other
inflammatory factors (e.g., IL-1b, IL-8, IL-18, and TNF-a),
thereby forming an inflammatory storm, leading to severe
immune damage in the lungs and other organs (15, 22, 23). Most
patients with severe COVID-19 are diagnosed with lymphopenia
based onblood routine reports, especiallyT cells (13, 16).This is not
only related to apoptosis or death caused by syncytia after excessive
activation of T cells (61), but may also be related to inflammatory
infiltration of lungs and other organs. In the histopathological
examination of the lungs, heart, intestines, etc. of critically ill
patients, significant inflammatory cell infiltration was observed,
including inflammatory macrophages, neutrophils, and
pathological T cells (19, 20, 62).

Contrary to lymphopenia, the increase of neutrophils in the
capillaries or inflammatory tissues of infected patients is also a
sign of the severity of COVID-19 (13, 14), and most
inflammatory factors can promote the activation of neutrophils
(63). Activated neutrophils release cytokines and chemokines,
and the networked DNA-protein complex structure forms
neutrophil extracellular traps (NETs) to trap and kill
pathogenic microorganisms (63, 64). During the formation of
NETs, a variety of intracellular damage-associated molecular
patterns (DAMPs) are released, activating pattern recognition
receptors, causing the surrounding immune or non-immune
cells to produce excessive pro-inflammatory cytokines and
chemokines; and those released together include histone, DNA,
myeloperoxidase (MPO), neutrophil elastase, cathepsin and
proteinase-3 and other granular proteins, which cause
increasing tissue necrosis (64). In severe COVID-19 patients,
NETs-related signaling pathways in lung tissue are up-regulated,
and the level of MPO-DNA complex in plasma is higher,
suggesting lung tissue damage and platelet-triggered NETs
formation is related (65, 66). Activated neutrophils can also
activate complement by releasing NETs to cause endothelial
damage and necrotizing inflammation, and further promote
venous thrombosis (64). In addition, NETs can activate
platelets through extracellular DNA and provide a scaffold for
the combination of red blood cells and activated platelets,
thereby promoting a wider connective network and amplifying
the formation of immune thrombi (65, 67). Indeed, a recent
study showed that SARS-CoV-2 can also directly infect vascular
endothelial cells with the accumulation of inflammatory
monocytes (e.g., neutrophils) in multiple organs of patients
with severe COVID-19, such as lungs, heart, kidney, small
intestine and liver (68). Patients with severe COVID-19 also
have clinical symptoms of disseminated intravascular
coagulation with elevated serum D-dimer and prolonged
prothrombin times (14, 16, 69). Together, it is reasonable to
believe that the direct attack of the virus and the infiltration
of inflammatory immune cells caused by the infiltration of
vascular endothelial cells will loosen the tight junctions
of vascular endothelial cells, thereby promoting the spread of
vascular leakage and inflammatory storms to multiple organs
throughout the body through the circulatory system, and further
aggravating lung damage (Figure 1, middle).
October 2021 | Volume 12 | Article 716940
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3.3 Worsening: Inflammatory Cell Death
Exacerbates Multi-System Inflammation
Although cell death (e.g., pyroptosis, apoptosis, and necroptosis)
is an important mechanism for controlling pathogenic microbial
infections, inflammatory cell death also leads to the release of
inflammatory factors and cell contents, including alarmins and
DAMPs, which causes severe inflammatory responses (64, 70).

Pyroptosis is a form of inflammatory cell death that is
mediated by the caspases-inflammasome or -gasdermin
cascade, which manifests as the continuous expansion of cells
until the cell membrane ruptures, resulting in the release of cell
contents and activating a strong inflammatory response (71).
Pyrolysis is also the main mechanism for the release of non-
signal peptide inflammatory factors, such as the release of IL-1b
or IL-18 depends on the caspase-1-dependent gasdermin D
cascade (72). In the lung pathology and peripheral blood from
patients with severe COVID-19, it was also observed that the
pyrolysis of macrophages led to the release of the IL-1b and IL-18
by NLRP3 inflammasome activation and cleavage of caspase-1
(20, 73, 74).

Apoptosis was originally thought to be a non-inflammatory
form of cell death, which breaks down cells through membrane
vesicles to avoid direct release of cell contents. However, more
and more recent evidence shows that due to the crosstalk
between the caspase family of apoptotic proteins and the
gasdermin family of lysing cell executors, apoptosis is not
always inflammatory silent (75–77). For example, in the
caspase cascade that drives the onset of apoptosis, caspase 3
can cleave gasdermin E and caspase 8 can cleave gasdermin D to
lyse cells under special conditions (75, 77), such as the ORF3a
protein stimulation of SARS-CoV-2 (78). SARS-CoV-2 can also
induce airway epithelial cells to show apoptosis and cytopathic
characteristics (79).

Compared with the release of NETs by neutrophils, more
DAMPs are released due to the inflammatory death of cells
induced by thrombus and tissue damage (80). High levels of
endogenous DAMP molecule S100A8/A9, HMGB1 and lactate
dehydrogenase can be detected in the serum of severe COVID-19
patients (81, 82). The latest reports show that patients with severe
COVID-19 produce a large number of autoantibodies against
autoantigens including intracellular molecules, which indirectly
supports the theory that inflammatory cell death promotes the
formation of a hyperinflammatory state (83).

In a study on the effects of inflammatory factors released by
COVID-19 on cell death, it was confirmed that tumor necrosis
factor a (TNF-a) and interferon g (IFN-g), two inflammatory
factors that were significantly elevated at the end of the
inflammatory response, can induce PANoptosis, a regulated
and extensive inflammatory cell death mode, and provide a
molecular scaffold for the interaction and activation of
mechanisms necessary for pyrolysis, apoptosis and necrosis
(76, 84). Together, although more research is needed to fully
clarify the inflammatory cell death pathway in the process of
SARS-CoV-2 infection and the functional consequences of these
processes, more and more evidence is pointing towards this. Due
to the spread of the blood circulatory system, a large number of
Frontiers in Immunology | www.frontiersin.org 5
inflammatory factors, DAMPs and alarmins produced by
inflammatory cell death completely amplify the inflammatory
storm from the lungs into the multi-system of body, which not
only makes the lungs worse, but also induces multiple organ
failure and causes death that is difficult to save (Figure 1, right).
4 PROPOSING THE TARGETED AND
GRADED COVID-19 TREATMENT
SCHEDULE FOR A FUTURE RESEARCH

4.1 Current Progress in
COVID-19 Treatment
COVID-19 is a new infectious disease caused by the spread of
SARS-CoV-2 mediated through respiratory particles, with
complex clinical manifestations, ranging from no symptoms to
critical illness associated with respiratory failure, septic shock,
and multiorgan failure (14, 85). In the face of an increasing
number of severe cases caused by the global spread of SARS-
CoV-2, there is an urgent need for experimental therapies and
drug repurposing to alleviate the COVID-19. Since the COVID-
19 pandemic, global research institutes and hospitals have
carried out intensive research work and clinical trials, and
developed new treatment methods and multiple vaccines
targeting SARS-CoV-2 at an unprecedented speed, making the
management of COVID-19 significant progress. Therefore, in
addition to symptomatic treatment, there are currently some
treatments of proven benefit in antiviral and anti-inflammatory
aspects, which are recommended for use under the emergency
use authorization (EUA) or further evaluated in licensed clinical
trials (86–88).

4.1.1 Small-Molecule Antiviral Agents
Antiviral medications are regarded as the essential requirement to
control the outbreak of COVID-19, just like oseltamivir plays an
important role infighting the influenzavirus (89).Multiple antiviral
agents with anti-SARS-CoV-2 activity identified by in vitro
screening during the early onset of the pandemic, including
remdesivir, hydroxychloroquine and lopinavir/ritonavir, but
subsequent randomized controlled clinical trials have shown little
or no benefit (90–92). Ivermectin, as a cheap drug approved for
antiparasitic use, has recently been reported to have a strong ability
to inhibit SARS-CoV-2 replication in vitro (93), but unfortunately,
the published clinical trial results do not support the conclusion of
in vitro testing (94). In the latest living guideline of COVID-19
treatments by WHO issued on July 6, 2021, it is clearly
recommended to against remdesivir for hospitalized patients with
COVID-19 and against hydroxychloroquine, lopinavir/ritonavir or
ivermectin for patients with COVID-19 of any severity (88).

4.1.2 Anti-SARS-CoV-2 Neutralizing
Antibody Cocktails
Compared with the above-mentioned dilemma of small-
molecule antiviral agents, the anti-SARS-CoV-2 neutralizing
antibody cocktails have appeared promising in current clinical
trials. Neutralizing antibodies, as an important antiviral weapon
October 2021 | Volume 12 | Article 716940
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produced by the immune system, remain in the plasma of
individuals recovering from the viral infection. As a traditional
antiviral immunotherapy, convalescent plasma therapy was
evaluated by clinical trials in China during the early onset of
the pandemic (95), and subsequently authorized to be used for
critically ill patients with COVID-19 under EUA in the United
States (96, 97). This is only a stopgap measure due to the
uncertain effects of the other composition from the plasma on
therapeutic efficacy and safety. At present, the neutralizing
antibody targeting SARS-CoV-2 obtained through recombinant
expression technology has entered the stage of clinical trials.
REGN-COV2, consisting of two monoclonal antibodies
casirivimab and imdevimab, a neutralizing antibody cocktail
drug to target the SARS-CoV-2 RBD domain, has been proven
to reduce the viral load in the body compared with placebo (98),
and it can effectively reduce hospitalization or mortality when
administered to non-hospitalized patients with COVID-19 based
on public clinical trial data (99). Bamlanivimab/Etesevimab,
consisting of a cocktail of neutralizing antibodies targeting
Skipe protein of the SARS-CoV-2, also benefits non-hospital
patients in clinical trials, reducing hospitalization and mortality
(100). Based on these clinical trials, REGN-COV2 and
Bamlanivimab/Etesevimab have been licensed to treat non-
hospitalized patients with COVID-19 under the EUA in the
United States, but as the SARS-CoV-2 variants continue to
update, their effectiveness needs further evaluation.

4.1.3 Type I Interferon
Interferon is a cytokine with antiviral and immunomodulatory
activities produced by host cells when a virus infects the body,
and is seen as the body’s first line of antiviral defence (101).
Population studies have found that the COVID-19 severity is
related to patients carrying autosomal genetic locus mutations
associated with type I IFN genes (102) or the presence of
neutralizing autoantibodies against type I IFN in patients
(103). Moreover, the lack of type I IFN in the blood may be a
potential predictor of the COVID-19 severity (104). These
studies have highlighted the important role of type I IFN in
the control of SARS-CoV-2 infection, so it is speculated that at
least in the early stages of SARS-CoV-2 infection, the use of type
I IFN may have therapeutic benefits for some patients. Some
preliminary clinical trial data show that compared with the
placebo group, inhaled interferon-a or interferon-b can
achieve greater clinical improvement, reduce hospital stay and
increase the chance of recovery (105, 106).

4.1.4 Antagonists of Inflammatory Factors
Contrary to the low antiviral immune response caused by the lack
of type I interferon, the excessive immune response triggers a
surge of inflammatory cytokines and the formation of an
inflammatory storm that leads to a sudden turn of the disease.
IL-1b is the pro-inflammatory cytokine produced by immune cells
after recognizing viruses to activate inflammasomes, and it is also
increased in COVID-19 patients (20). Anakinra, as an IL-1
receptor antagonist, is a drug approved for the treatment of
rheumatoid arthritis and has the potential to reduce the need for
Frontiers in Immunology | www.frontiersin.org 6
invasive mechanical ventilation and mortality in severe COVID-
19 patients based on a small case-control study (31). Pathological
T cells that produce GM-CSF have been identified in COVID-19
patients (22), and the monoclonal antibody mavrilimumab that
blocks the GM-CSF receptor has also shown promising prospects
in preliminary clinical trials (32). But overall, the clinical research
data targeting the early pro-inflammatory factor IL-1b or GM-CSF
is still insufficient, and the efficacy of alleviating the inflammatory
storm of COVID-19 still needs further confirmation.

In contrast, IL-6, as the core pro-inflammatory cytokine, has
received extensive attention in the research on the inflammatory
storm of COVID-19 (22, 33, 45). Three IL-6 signaling antagonists
are used to try to alleviate the inflammatory storm of COVID-19,
including the monoclonal antibody (Tocilizumab, Sarilumab) that
blocks IL-6 receptors authorized for various rheumatological
conditions and the monoclonal antibody (Siltuximab) that
targets IL-6 authorized for Castleman’s syndrome. Tocilizumab’s
confidence in alleviating the inflammatory storm of COVID-19
first began with the preliminary results of an clinical trial of
Tocilizumab combined with conventional antiviral drugs in 21
patients with severe COVID-19 (25). Subsequently, the results of a
large international multi-center randomized controlled trial
(EMPACTA, NCT04372186) showed that for hospitalized
patients with COVID-19 who were not mechanically ventilated,
adding tocilizumab on the basis of standard care can reduce the
risk of mechanical ventilation or death in patients (26). The results
of another large randomized controlled trial (REMAP-CAP,
NCT02735707) are consistent, and it also showed that treatment
with tocilizumab or sarilumab to critically ill COVID-19 patients
in the ICU can improve the outcomes including survival (107).
Antagonists of IL-6 receptors (Tocilizumab, Sarilumab) have been
authorized by the governments of China, the United Kingdom,
and the United States to treat COVID-19 patients under EUA. In
the latest living guideline of COVID-19 treatments issued by the
WHO, tocilizumab or sarilumab is strongly recommended for use
in severe and critical COVID-19 (88).
4.2 “Combined Boxing” Is Worthy
of Consideration in Future
COVID-19 Treatment
As mentioned above, we have accumulated some experience in
the therapeuqcs of COVID-19, but there are still hundreds of
thousands of new confirmed cases of COVID-19 and nearly
10,000 deaths every day in the world according to the data
released by WHO. Stress from the frequent occurrence of SARS-
CoV-2 variants is a well-known cause, and on the other hand, we
also need to face up to the fact that we still haven’t found specific
antiviral medicines, especially for SARS-CoV-2 variants
including the highly contagious delta variant (B.1.617.2) (108)
and the highly pathogenic lambda variant (C.37) (109).

From mild pneumonia symptoms to ARDS, to multiple organ
failure, it is still the main cause of death in severe COVID-19
patients (14, 23, 45, 87). Reorganizing the process of inflammatory
storms is not only important for understanding the progress of the
disease, but also helps us to form a more complete treatment plan.
Aiming at the mechanism that drives patients to progress from
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pneumonia to ARDS andmultiple organ failure, the inflammatory
storm that is gradually aggravated, we propose a new three-
dimensional integrated treatment strategy for future research
under ethical precursors: 1. Initiation phase: Block SARS-CoV-2
from entering cells and boost anti-viral immune response; 2.
Exacerbation stage: Early and sufficient monoclonal drugs
targeting inflammatory cytokines; 3. Before it’s worse: A three-
dimensional unity based on anti-virus, anti-inflammatory, and
anti-cell death (Figure 2). The drafting of this strategy is inspired
by the results of published clinical trials. The single neutralizing
antibody of anti-SARS-CoV-2 is not ideal (110), and the
combination as a cocktail is recommended for mild patients with
COVID-19 that plays a good role in blocking the infection of host
cells in the early stage of viral infection (100). Tocilizumab, which is
strongly recommendedby theWHO,also requiresa combinationof
antiviral agents because tocilizumab alone cannot bemore effective
than the placebo group (COVACTA, NCT04320615) (30), and
adding tocilizumab on the basis of standard care benefit severe and
critically ill patients with COVID-19 (25, 26, 107). This three-
dimensional integrated treatment strategy not only highlights the
combination of different drugs such as antiviral and anti-
inflammatory, but also highlights the need for targeted addition
of drugs at different stages of COVID-19, and calls for adding drugs
to alleviate cell death before COVID-19 becomes life-threatening.
At present,most of the screening inhibitors of targeted cell death are
still in the cutting-edge basic research. At present, most inhibitors
that target cell death is still in the cutting-edge basic research.
Disulfiram, as a drug that has been approved for the treatment of
alcohol addiction, has recently been reported to target gasderminD
to prevent it from making holes in the cell membrane, which can
effectively alleviate the death of a mouse model of sepsis (111).
Given thatCOVID-19canproduce an inflammatory syndrome that
Frontiers in Immunology | www.frontiersin.org 7
is similar to sepsis, whether disulfiram can be used to treat severe
COVID-19 patients should be considered, and it can inhibit the
Lpro protease of SARS-CoV-2P, which has the potential to inhibit
virus replication (112). In addition, the combined treatment of
neutralizing antibodies against TNF-a and IFN-g in mice infected
with SARS-CoV-2 can alleviate PANoptosis and protect mice from
death (84). Although the existing evidence only comes frommouse
models, anti-cell death is a potentially promising therapeutic idea in
life-threatening infectious diseases caused by inflammatory storms
including COVID-19.

The three-dimensional integrated treatment strategy
including anti-viral, anti-inflammatory and anti-cell death is an
ideal combination of saving the lives of COVID-19 patients, and
its effectiveness needs to be repeatedly tested under the
precursors of ethical and clinical research guidelines. Clinically,
the definition of mild, severe and critical COVID-19 mainly
refers to the imaging characteristics of pneumonia and blood
oxygen related indexes, such as blood oxygen saturation and
arterial oxygen partial pressure (13, 14). However, the clinical
manifestations of the patient are delayed relative to the body
damage. The blood biochemical test report of the patient showed
a significant decrease in lymphocyte count, a significant increase
in inflammation indicators (IL-6, C-reactive protein, ferritin,
etc.) and an increase in blood coagulation function indicators
(D-dimer, procalcitonin, thrombin time, etc.), which are
potential early warning indicators for severe and critically ill
patients with COVID-19 (14, 87). In addition, attempts to
propose faster and more accurate COVID-19 prediction
models from the aspects of clinical symptoms (113),
transcriptome (114), serum protein (115), and metabolome
(116) based on artificial intelligence algorithms have also been
established, but they still need to be further confirmed in the
FIGURE 2 | The three-dimensional integrated solution based on anti-viral, anti-inflammatory and anti-cell death slows down the ARDS clock of severe COVID-19.
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future. And the limitations of these parameters and data models
that are indicative of the progression of COVID-19 may also be
discovered in the future exploration of the three-dimensional
schedule, so that they can be further improved in a targeted
manner, so as to indicate the medication window more timely
and accurately.
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