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Corrections added after online publication 
January 9, 2019: Due to publishing errors, 
Equation 7 has been corrected to use “Δt” in 
place of “Deltat,” the caption of Figure 1 is 
updated, and the y‐axis to Figure 8 has been 
corrected to “Bias (s)”.

Purpose: Arterial spin labeling (ASL) MRI is a non‐invasive perfusion imaging 
technique that is inherently SNR limited, so scan protocols ideally need to be rigor-
ously optimized to provide the most accurate measurements. A general framework is 
presented for optimizing ASL experiments to achieve optimal accuracy for perfusion 
estimates and, if required, other hemodynamic parameters, within a fixed scan time. 
The effectiveness of this framework is then demonstrated by optimizing the post‐la-
beling delays (PLDs) of a multi‐PLD pseudo‐continuous ASL experiment and vali-
dating the improvement using simulations and in vivo data.
Theory and Methods: A simple framework is proposed based on the use of the 
Cramér‐Rao lower bound to find the protocol design which minimizes the predicted 
parameter estimation errors. Protocols were optimized for cerebral blood flow (CBF) 
accuracy or both CBF and arterial transit time (ATT) accuracy and compared to a 
conventional multi‐PLD protocol, with evenly spaced PLDs, and a single‐PLD pro-
tocol, using simulations and in vivo experiments in healthy volunteers.
Results: Simulations and in vivo data agreed extremely well with the predicted per-
formance of all protocols. For the in vivo experiments, optimizing for just CBF re-
sulted in a 48% and 15% decrease in CBF errors, relative to the reference multi‐PLD 
and single‐PLD protocols, respectively. Optimizing for both CBF and ATT reduced 
CBF errors by 37%, without a reduction in ATT accuracy, relative to the reference 
multi‐PLD protocol.
Conclusion: The presented framework can effectively design ASL experiments to 
minimize measurement errors based on the requirements of the scan.
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1 |  INTRODUCTION

Arterial spin labeling (ASL) is a non‐invasive MRI technique 
that can be used to quantify brain tissue perfusion.1,2 Blood 

water entering the brain is labeled by magnetic inversion and, 
after a post‐labeling delay (PLD), an image is acquired. The 
PLD gives the labeled blood time to travel from the labeling 
region to the tissue bed,3 this time being referred to as the 
arterial transit time (ATT). This labeled image is subtracted 
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from a control image, where the blood is not labeled, result-
ing in an image with the signal intensity proportional to ce-
rebral blood flow (CBF), assuming the complete arrival of 
labeled blood water. A model inversion then allows for CBF 
quantification.

It is common to use a single PLD,4 which allows many 
averages to be acquired within a short scan time, therefore 
increasing SNR. However, if the PLD is shorter than the 
ATT, CBF can be severely underestimated. The use of longer 
PLDs reduces the risk of such errors but this must be bal-
anced against the loss of tracer signal through T1 decay and 
increased noise because of fewer averages being achievable 
within a given scan time.

An alternative method is to use multiple PLDs and to fit a 
kinetic signal model to the resulting dynamic data.5 In this way, 
both CBF and ATT can be estimated, reducing the bias caused 
by unknown ATT and also providing extra, potentially clini-
cally useful, information.6 However, multiple PLDs present a 
more complicated experimental design problem: when should 
the ASL signal be sampled to give the most accurate CBF and 
ATT measurements? This increased complexity, along with a 
more involved analysis process, has restricted the use of multi‐
PLD techniques.4 Studies that do use multiple PLDs often use 
equally spaced PLDs over a range of times reflective of the 
expected ATTs and based on previous experience.7,8

The field of optimal experimental design provides a 
mathematical framework, the Cramér‐Rao lower bound 
(CRLB),9,10 with which to design experiments to minimize 
the variance of estimated parameters. Previous studies, 
which used the CRLB to optimize the inversion time (TI) 
in PASL experiments, have shown promise, but were lim-
ited by: (1) aggregating a series of locally optimal TIs,11,12 
(2) optimizing across both ATT and CBF prior distribu-
tions,12,13 and (3) use of Gaussian prior distributions over 
the parameter values.11-13 Kramme et al.14 also proposed in-
creasing the number of averages at longer PLDs to improve 
CBF accuracy, but this method does not directly consider 
the parameter uncertainty.

In this work, we present a flexible framework for design-
ing ASL protocols by maximizing the accuracy of CBF, or 
both CBF and ATT, estimates. We build on previous stud-
ies11,13 to produce a simplified framework that combines 
the information obtained across all acquisitions, optimizing 
the experiment as a whole, within a predefined scan time. 
Furthermore, we demonstrate that an a priori CBF distribu-
tion is not required. This flexible and simplified optimization 
framework is intended to improve the accessibility and use of 
optimal experimental design for ASL experiments.

We demonstrate the effectiveness of this framework 
by optimizing the PLDs for a multi‐PLD pseudo‐contin-
uous ASL15 (PCASL) experiment, using a 2D multi‐slice 
readout across a uniform ATT distribution appropriate for 
gray matter (GM) in healthy volunteers. We generate 2 

protocols: one which minimizes both CBF and ATT errors, 
and one which minimizes only CBF errors while remaining 
insensitive to ATT variation. We compare these protocols 
against matched scan‐time reference multi‐PLD16 and sin-
gle‐PLD protocols, using Monte Carlo simulations and in 
vivo experiments, and demonstrate that the use of a broad, 
population‐specific, uniform ATT distribution can success-
fully reduce CBF and ATT errors. This study builds on pre-
viously presented work.17

2 |  THEORY

2.1 | Cramér‐Rao lower bound
The Cramér‐Rao lower bound9,10 provides a mathematical 
expression for the lower bound on the variance (uncertainty) 
of parameters estimated from a set of data. More specifically, 
it states that the inverse of the Fisher information matrix 
(FIM) is the lower bound on the covariance matrix for deter-
ministic parameters:

where F−1 is the inverse of the FIM and cov(θ) is the covari-
ance matrix for a vector of model parameters, θ.

For ASL experiments, the Fisher information matrix takes 
the form:

where N is the number of acquisitions, A is the integer num-
ber of averages for each acquisition achievable in a given scan 
time, σ2 is the normally distributed noise variance of the ac-
quired images, ΔM is the ASL difference signal model, t is 
a vector containing the experimental timings, θ is a vector 
of the model parameters to be inferred, ρ are the remaining 
model parameters which are assumed fixed, and �ΔM

�θ
 are the 

sensitivity functions of the signal model. Because it is com-
mon to assume known values for all model parameters except 
CBF and ATT, here we set � = [CBF, ATT] and drop the 
explicit reference to ρ for simplicity.

Note that we have assumed identical noise variance across 
acquisitions, unlike Xie et al,11 where the authors found an 
empirical noise model across acquisitions. This simplifica-
tion means that the noise variance is inversely proportional 
to the number of averages for the assumed case of normally 
distributed noise. An optimal protocol can then be generated 
within a fixed scan time by calculating the number of aver-
ages possible for a given design within this time. A known 
value for the noise variance is not required for optimization 
because it is only a scaling factor, however, knowledge of this 
value will generate CRLB variances in physiological units. 
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This also means that the optimization will be equally valid 
for all voxels in images with spatially varying SNR, such as 
when a head array coil is used for signal detection.

2.2 | Optimization criteria
The most widely used optimality criterion is the determinant 
of the covariance matrix. Because the determinant of a matrix 
is equal to the product of its eigenvalues, it is proportional 
to the volume of the confidence ellipsoid of the estimated 
parameters. By minimizing the determinant, we minimize the 
volume of this confidence ellipsoid. We can define this D‐op-
timality criterion as:

because 1∕det (A)=det (B) when A=B
−1.

The second optimality criterion explored in this study is 
the minimization of only the CBF variance, because CBF 
is often the main parameter of interest, with ATT being a 
confounding parameter. Conceptually, this objective function 
aims to minimize CBF variance, including minimization of 
the impact of ATT on CBF measurements. This criterion, re-
ferred to as L‐optimality, is given by:

where W is a symmetric positive semi‐definite matrix and 
has the same dimensions as F.18 In this case, W11 is the only 
non‐zero element, to select only the CBF variance.

2.3 | (P)CASL signal model
In this study, we use the general kinetic model5 for (P)CASL:

where1∕T �
1
=1∕T1t + f∕λ, ΔM is the ASL signal difference 

between label and control images, t is the time from the start 
of labeling (s), M0B is the equilibrium magnetization of blood, 
f  is the CBF (s−1), λ is the equilibrium brain–blood water 
partition coefficient (mL g−1), α is the labeling efficiency, Δt 
is the arterial transit time (s), τ is the labeling duration (s), 
and T1b and T1t are the longitudinal relaxation time constants 
for arterial blood and tissue (s), respectively. Note that any 
appropriate analytical signal model may be used instead.

2.4 | Sensitivity functions
To simplify the CBF sensitivity function, we assume that 
the apparent tissue relaxation time, T ′

1
, is fixed with respect 

to f  (fixed outflow), as proposed by Xie et al.11 Using this 
assumption, with outflow at 50 ml/100g/min, leads to a 
maximum error of ~1.78% in the simplified CBF sensitivity 
function, when the true value of f  is in the range 0 – 100 
ml/100g/min. The sensitivity functions are then:

Shown in Figure 1, they demonstrate that the model is most 
sensitive to CBF when the signal is maximized (t=τ+Δt) 
and most sensitive to ATT during inflow (Δt< t<τ+Δt).

The complete CBF sensitivity function, where T ′
1
 is de-

pendent on f , is given in Supporting Information Text S1. 
The equivalent sensitivity functions for PASL may be found 
in Xie et al.11

2.5 | Priors
The sensitivity functions depend on the parameters being 
estimated: CBF and ATT. A protocol that minimizes the 
CRLB at single set CBF and ATT values (locally optimal), 
will be a poor choice at values far from these.18,19 A priori 
information of the likely range of parameter values is there-
fore required to minimize the estimator variance over them.

We use the method proposed by Gilmour et al.,18 referred 
to as average or pseudo‐Bayesian optimal design. Here, the 
optimality criterion, ϕ (t;�), is averaged across a prior proba-
bility distribution, p (�), and minimized. Therefore, the opti-
mization problem is:

This integral is difficult to evaluate analytically, so we ap-
proximate it with a number of equally spaced samples from 
the prior distribution:

(3)
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t
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where �l is a sample of parameters from the prior distribution, 
and r is the number of samples.

In previous work, both CBF and ATT prior probability 
distributions were used.11-13 However, using Equations 6 
and 7, we note that ϕL−optimal does not depend on CBF, and 
ϕD−optimal simply scales with CBF, therefore, the optimal pro-
tocol generated using each optimality criterion will be iden-
tical for any value of CBF (see Supporting Information Text 
S2 and Supporting Information Figure S1). Therefore, the op-
timal design will only depend on the ATT distribution, which 
greatly reduces the required prior knowledge and the number 
of calculations involved in the optimization, because a point 
prior may be used for CBF.

3 |  METHODS

All optimizations, simulations and analysis were performed 
using MATLAB (The MathWorks, Natick, MA).

3.1 | PLD optimization
The optimization theory introduced above is general and can 
be used to optimize any type of ASL experiment for parame-
ter inference. Here, we describe the specific methods that we 
employed for optimizing a 2D‐EPI multi‐slice, multi‐PLD, 
fixed label duration PCASL experiment, to find the optimal 
set of PLDs for CBF and ATT estimation.

Two protocols, referred to as CBF‐ATTopt and CBFopt, 
were generated using the optimality criteria in Equations 
3 and 4 (D‐optimal and L‐optimal), respectively. The op-
timization algorithm developed for this study uses an iter-
ative exchange method similar to Xie et al.11 and aims to 
find the optimal set of PLDs that minimizes Equation 9. The 
pseudocode outline is shown in Figure 2. It takes as inputs 
the number of PLDs, ATT prior probability distribution, 
available scan duration, number of slices, slice duration, and 
the remaining constants in Equations 6 and 7. The PLDs 
were initialized to be equally distributed in the interval 
0.25≤PLD≤1.5 s. The algorithm loops through the PLDs, 
selecting the optimal PLD at each step from a list of possible 
values. The PLD list for ti (the ith PLD) was restricted to the 
interval 0.2s≤ ti−1 ≤ ti ≤ ti+1 ≤3 s, using 25‐ms increments. 
This reduces the size of the search without restricting the al-
gorithm from finding the approximate optimal solution. The 
minimum PLD of 0.2 s was to provide enough time for the 
BGS inversion pulses used in vivo. The longest PLD chosen 
by the algorithm during testing was always at most equal to 

the longest ATT in the ATT prior probability distribution. 
The PLD upper bound of 3 s will, therefore, not restrict the 
choice of PLDs in this study (see below), but will reduce the 
PLD search space.

An ATT range of 0.5≤ATT≤1.8 s was assumed for GM in 
healthy volunteers.4,20 A uniform prior probability distribution 
for this range was used to ensure equal weighting of all ATTs. 
To avoid edge effects, the ATT distribution was extended on 
either side by 0.3 s with linearly decreasing probability. The 
CBF point prior was set to 50 mL/100 g/min. The readout du-
ration was assumed to be 1.275 s to give realistic scan times. 
The total allowable scan time was set to 5 min. Variable TR 

Ψ̃ (t)=
1

r

r
∑

l=1

ϕ
(

t;�=�l

)

p
(

�=�l

)

≃Ψ(t;�),

F I G U R E  2  Pseudocode outlining the PLD optimization 
algorithm used in this study. The optimal number of PLDs, N, can be 
found by running this algorithm for a range of N and finding the design 
which minimizes Equation 9

(9)

FIGURE 1  Example of normalized sensitivity functions for CBF 
(blue) and ATT (red). Parameters used: labeling duration = 1.4 s; CBF = 50 
mL/100 g/min; ATT = 0.5 s; T1b = 1.65 s; T1t = 1.445 s; λ = 0.9
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was assumed such that a short PLD is acquired with a corre-
spondingly short TR to minimize dead time in the sequence.21 
The number of averages in Equation 2 was calculated as: 
A=floor ((scantime) ∕ (labelduration+PLD+readoutduration)),  
where the floor function rounds down to the nearest integer. 
The noise variance used in the optimization and subsequent 
simulations was derived from preliminary in vivo data. All 
other model parameters are given in Table 1.

For this proof of principle study, the protocols were op-
timized so that the mean of Equation 9 across 5 slices was 

minimized. The number of slices was kept small to minimize 
the range of PLDs and BGS across slices. For a given slice, 
if all effective PLDs exceed the ATT then the FIM becomes 
severely ill‐conditioned because of a lack of ATT information. 
This is an inherent problem for CASL methods because the 
inflow of signal is more difficult to sample than for PASL. 
To avoid ill‐conditioned matrices, the ATT probability dis-
tribution was truncated for each slice based on the shortest 
attainable PLD. The sum in Equation 9 was then additionally 
weighted by the number of contributing slices. Analytical in-
version of the FIM was performed to improve algorithm speed.

The optimized protocols were compared against a previ-
ously used evenly distributed multi‐PLD protocol16 (referred 
to as the reference multi‐PLD protocol) and a single‐PLD 
protocol using the recommended 1.8 s PLD.4 All protocols 
used a 1.4 s labeling duration to match the reference multi‐
PLD protocol. The timings for these protocols are given in 
Tables 1 and 2. CRLB values were generated for each proto-
col across the ATT range. For the single‐PLD protocol, the 
CRLBs were estimated using RMSE=

√

variance2+bias2, 
where the bias is the systematic error caused by the assumed 
ATT (see below).

3.2 | Simulation experiments
To validate the theoretical effects of the optimization, Monte 
Carlo simulations were performed for each ASL protocol. 
Two thousand sets of data were generated for each ATT 
value in the range 0.5≤ATT≤1.8 s, at 0.01 s intervals, 
using Equation 5 with the parameters in Table 1, for 5 slices. 
Gaussian white noise was added to label and control data be-
fore pairwise subtraction.

CBF and ATT were estimated from the data using 
Equation 5 and MATLAB’s non‐linear least squares (NLLS) 
function, “fmincon.” Fitting was initialized using a coarse 
grid search and bounded by 0≤CBF≤200 mL/100 g/min 
and 0≤ATT ≤2.5 s. For the single‐PLD protocol, CBF was 
estimated by assuming ATT=1.25 s and fitting for CBF, be-
cause this resulted in the smallest theoretical error and uses 
the same assumptions as the multi‐PLD data. The RMSEs 
of the estimates, relative to the true values, were calculated 

T A B L E  1  Parameters used for optimizations, simulations, and in 
vivo experiments

Parameter Value

General

Label duration (τ) 1.4 s

T1 of blood (T1b) 1.65 s34

T1 of tissue (T1t) 1.445 s35

Labeling efficiency (α) 0.8515

Brain–blood water partition coefficient (λ) 0.9 mL/g36

Slice duration 53.125 ms

Slices (N) 5

Optimization

Fixed CBF in apparent T1 (T1ʹ) 50 mL/100 g/min

Readout duration 1.275 s

In vivo experiments

RF labeling pulse duration 600 µs (Gaussian)

RF labeling pulse separation 1 ms

RF labeling flip angle 20°

Mean labeling gradient 0.8 mT/m

Gradient during labeling pulses 6 mT/m

Nominal voxel size 3.4 × 3.4 × 5 mm

Matrix size 64 × 64

Partial Fourier factor 6/8

TE 21 ms

VENC 4 cm/s4

Abbreviations: CBF, cerebral blood flow; RF, radio‐frequency; TE, echo time; 
VENC, velocity encoding cutoff.

T A B L E  2  Protocol timings

Protocol Post‐labeling delays (s) PLDs (N) Averages (N)

Single‐PLD 1.8 1 33

Reference multi‐PLD 0.25, 0.5, 0.75, 1, 1.25, 1.5 6 7

CBF‐ATTopt 0.2, 0.2, 0.225, 0.3, 0.375, 0.45, 0.5, 0.55, 0.6, 0.6, 0.625, 0.625, 0.65, 0.65, 0.675, 
0.675, 0.7, 0.7, 0.7, 0.7, 1.25, 1.275, 1.3, 1.35, 1.375, 1.4, 1.425, 1.425, 1.475, 
1.5, 1.675, 1.75, 1.8, 1.825, 1.85, 1.875, 1.9, 1.925, 1.95, 1.975

40 1

CBFopt 0.2, 0.7, 0.825, 1, 1.125, 1.25, 1.325, 1.4, 1.475, 1.55, 1.625, 1.675, 1.7, 1.725, 
1.75, 1.775, 1.8, 1.825, 1.85, 1.85, 1.875, 1.875, 1.9, 1.925, 1.925, 1.95, 1.975, 
1.975, 2, 2.025, 2.025, 2.05, 2.075, 2.075

34 1
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for comparison. The RMSE represents a measure of accuracy 
and is a combination of both systematic bias and variance 
because of noise.

3.3 | In vivo experiments
In vivo data was acquired for each ASL protocol to confirm 
that the theoretical benefits of the optimization were real-
ized in practice. Seven healthy volunteers (3 female, 23–27 
years old) were scanned under a technical development 
protocol, agreed with local ethics and institutional commit-
tees. All in vivo data was acquired on a 3T Prisma system 
(Siemens Healthcare, Erlangen, Germany) with a 32‐channel 
head coil. Additional scans performed were: a 3D multi‐slab 
time‐of‐flight angiography sequence, for placement of the 
PCASL‐labeling plane; a T1‐weighted structural image, for 
registration and tissue segmentation; and a B0 field map, for 
distortion correction of the ASL data.

For the PCASL data, imaging parameters were: single‐shot 
EPI readout; 5 transverse slices positioned to bisect the thal-
amus; nominal resolution = 3.4 × 3.4 × 5 mm3; matrix size 
= 64 × 64; bandwidth = 2004 Hz/pixel; TE = 21 ms; partial 
Fourier factor = 6/8, and fat saturation. The labeling plane 
was placed in a transverse orientation at the middle of the V3 
section of the vertebral arteries, where the vertebral and in-
ternal carotid arteries are approximately parallel to each other 
and perpendicular to the transverse plane. PCASL labeling 
was achieved with: 600 µs duration Gaussian RF pulses, 1 ms 
spacing, 20° flip angle, and 1.4 s labeling duration. To reduce 
the impact of macrovascular signal, flow signal crushing was 
applied in the inferior–superior direction with a velocity en-
coding cutoff of 4 cm/s.4 BGS was achieved with a WET 
pre‐saturation module22 and 2 optimally timed global hyper-
bolic secant inversion pulses applied after PCASL labeling, 
as in previous studies.16,23 Further ASL scan parameters are 
given in Table 1.

A fully relaxed M0 image was acquired with identical 
acquisition parameters to the PCASL data but without BGS 
and PCASL labeling. This was used as the reference volume 
for motion correction of the PCASL data and for voxel‐wise 
calibration.

To mitigate effects caused by changing physiology during 
the scan session, the PLDs from each of the ASL protocols 
were interleaved and distributed throughout the session. We 
noticed that large variations in the BGS effectiveness, such 
as when a short PLD followed a long PLD or vice versa, 
caused the online EPI B0 drift correction to create artificial 
sub‐voxel movements in the phase‐encode direction. To min-
imize this effect, the PLDs were not randomly ordered but 
were distributed across the scan session with the PLD du-
ration gradually increasing and decreasing in 4 cycles. This 
resulted in a well‐distributed coverage across the total ASL 
scan duration for each protocol but also maintained gradual 

variations in the PLDs and resulting BGS performance there-
fore minimizing erroneous shifting in the image. Four extra 
PLDs were also acquired to ensure a maximum spacing of 
75 ms across the acquired PLD range (see Table 2). This was 
used for the ground truth data (described below) to ensure a 
high temporal sampling of the data without any significant 
gaps.

3.4 | Post‐processing
GM masks were generated from the T1 structural image using 
FSL’s FAST24 tool. The ASL images were motion corrected 
using FSL’s FLIRT25 with 3 degrees of freedom. Distortion 
correction was performed using the B0 field map and FSL’s 
FUGUE tool. Further registrations were performed to trans-
form the GM mask into the ASL native space, thresholding 
it at 50%. Before voxelwise calibration, the M0 image was 
smoothed with a Gaussian kernel (σ=2.5 mm), as recom-
mended in the recent consensus paper.4

The kinetic model was fit to the in vivo data exactly as 
described for the simulated data above. To evaluate the error 
associated with the CBF and ATT estimates from each pro-
tocol, ground truth estimates were generated by combining 
and fitting all un‐averaged ASL data across all the proto-
cols, so as to equally weight the data from each protocol. 
The CBF and ATT errors from each protocol were then cal-
culated relative to these ground truth estimates. To ensure 
only well‐fit ground truth GM estimates were used in further 
analysis, the following restrictions were imposed. The CRLB 
(Equations 1 and 2) was calculated voxel‐wise and used as 
an approximation of the ground truth CBF and ATT vari-
ance (uncertainty). The noise was estimated by the summed 
squared residuals of each fit, normalized by the statistical 
degrees of freedom.26 Voxels were excluded if the estimated 
ground truth CBF and ATT SD were >5 mL/100 g/min and 
0.1 s, respectively. The analysis was further restricted to vox-
els with ground truth ATT estimates in the range of interest, 
0.5≤ATT≤1.8 s. The RMSE of the estimates from each 
protocol, relative to the ground truth values, were calculated 
for comparison. A 2‐tailed non‐parametric test (Wilcoxon 
signed rank test) was used to test for significant differences 
across subjects (P < 0.05).

4 |  RESULTS

4.1 | PLD optimization
The PLDs for each protocol are given in Table 2 and shown 
in Figure 3. Both optimized schemes have very distinct sam-
pling patterns with a high number of PLDs with few repeats. 
The CBF‐ATTopt protocol has 2 main groups: a group of 
short PLDs, sampling signal inflow, and a group of longer 
PLDs, sampling the signal peak and decay for most of the 
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ATT distribution. The CBFopt protocol covers a similar range 
of PLDs, but has very few short PLDs and increased density 
of longer PLDs, leading to more sampling of the signal curve 
after complete bolus arrival.

The theoretical CBF and ATT errors (CRLBs) are also 
shown in Figure 3 and demonstrate the predicted improvement 
in accuracy of the optimized protocols across the ATT prior 
range. Both optimized protocols have less variable CRLB 
profiles than the reference multi‐PLD protocol, whereas the 
CBFopt protocol demonstrates the lowest average CBF error. 
The increase in the ATT CRLB of the CBFopt protocol is not 
reflected in its CBF errors because of its designed insensitiv-
ity to ATT accuracy. The single‐PLD protocol achieves its 

minimal error at ATT =1.25 s but is less accurate than the 
CBFopt protocol.

4.2 | In vivo data selection
Before presenting the MC simulation and in vivo results to-
gether, we briefly describe the results of the in vivo data se-
lection. Across the 7 subjects, the GM masks contained 19,732 
voxels in total. Of these, 31.6% were excluded because they did 
not meet one or more of the restrictions imposed on the ground 
truth data: 26.3% did not meet the uncertainty restrictions and a 
further 5.3% were not in the specified ATT range. A histogram 
of the ATTs for the well‐fit ground truth voxels is shown in 

F I G U R E  3  The PLDs (A–D) and the predicted CBF and ATT errors (Cramér‐Rao lower bound [CRLB] SD) (E and F) for each of the 
protocols. The reference single‐PLD protocol (A) has a fixed PLD at 1.8 s, the reference multi‐PLD protocol (B) uses evenly distributed PLDs 
between 0.25–1.5 s, whereas the optimized protocols, CBF‐ATTopt (C) and CBFopt (D), have more targeted PLDs. Repeated PLDs are not shown, 
but are listed in full in Table 2. The CRLB SDs for CBF and ATT demonstrate the impact that the choice of PLDs have on inference accuracy
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Figure 4, demonstrating that the majority of well‐fit voxels were 
within the targeted ATT range (94.7%). ATTs outside the range 
0.5≤ATT≤1.8 s were not used in further analysis.

4.3 | Protocol comparison
Representative CBF and ATT maps for 1 subject are shown 
in Figure 5. There is a reasonable qualitative agreement be-
tween the CBF maps. However, the reference multi‐PLD 
protocol map exhibits noticeably more noise. Good agree-
ment between the ATT maps for ground truth, reference 

multi‐PLD, and CBF‐ATTopt protocols can be seen, whereas 
the CBFopt ATT map is clearly less accurate.

Figure 6 shows the RMSE in CBF and ATT estimation for 
each protocol from the MC simulations and the in vivo data 
across the ATT range. For the in vivo data, all 7 subjects’ data 
were combined using a sliding window to aid interpretability. 
There is a strong correspondence between the MC simulations 
and in vivo data, which both agree extremely well with the 
trends seen in the predicted errors (Figure 3), demonstrating the 
expected improvement in CBF and ATT estimation with the op-
timized protocols. As expected, the CBFopt protocol resulted in 
high CBF accuracy while having less accurate ATT estimates.

The average in vivo RMSEs across subjects are shown in 
Figure 7. The CBF RMSEs were (mean ± SD mL/100 g/min): 
4.11 ± 0.25 (CBFopt), 4.83 ± 0.57 (single‐PLD), 4.97 ± 0.78 
(CBF‐ATTopt), and 7.88 ± 1.97 (reference multi‐PLD). Note 
that both optimal protocols had significantly reduced CBF er-
rors compared to the reference multi‐PLD protocol, whereas 
CBFopt also had significantly reduced CBF errors compared 
to the single‐PLD protocol. The CBFopt ATT RMSE (0.31 
± 0.05 s) was significantly higher than the reference multi‐
PLD (0.13 ± 0.02 s) and CBF‐ATTopt (0.13 ± 0.02 s) ATT 
RMSE. These results are very consistent across subjects, as 
shown in Supporting Information Figure S2, demonstrating 
their robustness.

The RMSE is a useful metric for comparison because 
it combines both the bias and variance in the estimates. 
However, we can also separately examine these measures. 
This breakdown is shown for the in vivo data in Figure 8. For 
the CBF estimates, the CBFopt protocol had a significantly 
smaller bias and SD than both the reference single‐PLD and 
multi‐PLD protocols, while the CBF‐ATTopt protocol had a 

F I G U R E  4  Histogram of the ground truth ATT estimates that 
had an estimated CBF and ATT maximum likelihood distribution SD 
<5 mL/100 g/min and 0.1 s, respectively. The range of ATTs included 
in further analysis are shown by vertical dashed lines

F I G U R E  5  Representative CBF (top) and ATT (bottom) maps for the ground truth estimates and the 4 tested protocols. The maps show an 
axial slice from a single subject. Note there is no ATT map for the single‐PLD protocol
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significantly lower SD than the reference multi‐PLD protocol 
but not the single‐PLD protocol. For the ATT estimates, there 
were no significant differences in the biases (although a trend 
of underestimation can be seen for CBFopt) whereas CBFopt 
had significantly higher SD than the reference multi‐PLD and 
CBF‐ATTopt protocols.

5 |  DISCUSSION

In this work, we have presented a general framework for op-
timizing ASL experiments. This framework can be used with 
any labeling scheme, for which there is an analytical model, 
and any readout. We demonstrated the practical benefits of 
using this framework in the specific case of fixed label du-
ration, multi‐PLD PCASL experiments with a 5‐slice EPI 
readout. We designed 2 protocols that either aimed to im-
prove both CBF and ATT accuracy or just CBF accuracy. 
These protocols were shown to achieve their respective aims 
using Monte Carlo simulations and in vivo experiments, in-
cluding strong agreement with the predicted performance. 

The CBF optimized protocol resulted in a 48% reduction of 
in vivo CBF errors relative to the reference multi‐PLD pro-
tocol, while optimizing for both CBF and ATT resulted in a 
37% reduction of in vivo CBF errors, without a loss in ATT 
accuracy. We have also shown that a well‐optimized multi‐
PLD protocol can produce more accurate CBF estimates 
(15% reduction in error) than a single‐PLD protocol in the 
same scan time, as well as providing potentially physiologi-
cally useful ATT maps.6

5.1 | Optimization
Simplifications that we have made to the FIM (see Theory 
and Supporting Information Text S2) show that a CBF dis-
tribution is not required for optimization because the optimal 
protocol is insensitive to the value chosen. These simplifica-
tions improve usability compared to previous PASL work,11-

13 because only an ATT prior probability distribution needs 
to be defined, and they also greatly speed up the optimiza-
tion because of the reduced dimensionality of the prob- 
lem. Furthermore, by including the number of averages in 

F I G U R E  6  CBF (top) and ATT (bottom) RMSEs for the Monte Carlo simulations (A and C) and in vivo experiments (B and D). The in vivo 
data are the combined data across all 7 subjects, which has been smoothed using a sliding window mean (window width = 100 ms; increment = 10 
ms)



   | 2483WOODS et al.

Equation 2, the scan time can also be pre‐specified, meaning 
that strict clinical scan times can be adhered to and the opti-
mal protocol for the time available may be found.

Equation 9, as used in the algorithm outlined in  
Figure 2, combines the CRLB information across the ATT 
distribution before finding the optimal timing for each PLD. 
This approach results in PLD timings that maximize the mean 
information obtained across the entire ATT prior probability 
distribution. This is a distinct advantage over previous work 
where the PASL inversion times (TIs) were chosen based on a 
histogram of locally optimal TIs for individual ATT and CBF 
parameter pairs drawn from the priors, which was divided 
between a fixed number of TIs.11,12 Further PASL work used 
an average approach, using an adaptive quadrature technique 
to reduce the number of samples required from the ATT and 
CBF priors therefore improving the speed of optimization.13 
However, after removing the need for a CBF prior distribu-
tion, the number of calculations required is drastically re-
duced, limiting the benefit of using such a technique. The 
direct sampling method we have used is also more easily im-
plemented, assisting the adoption of CRLB optimization for 
ASL studies.

We have proposed the use of a uniform ATT prior proba-
bility distribution, rather than a normal distribution.11-13 ATT 
has been shown to be regionally dependent,27 therefore even 
if a pre‐defined normal distribution does exactly match the 
distribution of ATTs found in a given subject, the brain re-
gions corresponding to the edges of the distribution will be 
less accurately estimated than regions corresponding to the 
center of the distribution. This may be desirable if certain 
brain regions are of more interest to the experimenter, but 
we have opted to equally weight the entire brain in this study. 
However, the general framework described here would allow 
any shape or range of ATT distribution to be used.

The ATT range used in this work was appropriate for 
healthy volunteers.4,20 This is the main a priori knowledge 
necessary for optimization using this method but may not 
always be known. When scanning specific patient groups 
where the typical ATT range is known, this should be used 
to inform the ATT prior probability distribution. However, 
when no specific a priori information is available, a conser-
vative large range of ATTs could be used.

We found the algorithm to be reasonably insensitive to 
initialization, with PLDs in the final protocol only varying 
by 1 or 2 increments of 25 ms if different initial conditions 
are chosen. This suggests that solutions close to the global 
minimum were achieved. It should be noted that care must be 
taken to initialize the PLDs to cover most of the ATT range. If 
not, the PLDs may fail to update because of all possible PLD 
choices being dominated by ill‐conditioned FIMs within the 
ATT distribution.

5.2 | Optimal protocols
The optimized multi‐PLD protocols found in this work dif-
fer greatly from commonly used evenly spaced multi‐PLD 
protocols. The designs reflect the underlying information 
content, demonstrated by the sensitivity functions (Figure 1). 
For a single ATT value, the CBF‐ATTopt PLDs were found at 
PLD= [ATT,ATT+τ], as found by Xie et al.11 However, the 
CBF‐ATTopt protocol did not simply reflect this relationship 
and the shape of the ATT prior. Instead, a starkly different 
pattern is clearly seen in Figure 3, which is a result of the op-
timization accounting for the combined information obtained 
across all PLDs simultaneously, rather than considering the 
local optimization of each PLD.

We also introduced the CBFopt protocol, which minimizes 
the CBF variance, while being insensitive to ATT variation. 
Xie et al.11 also used a CBF‐specific optimization, but did not 
include the ATT sensitivity function in the FIM. If the ATT 
sensitivity function is not included in the FIM, it is implicitly 
assumed that the ATT is known, which results in much larger 
errors (see Supporting Information Figure S3).

An alternative optimality criterion not investigated 
in this work is the non‐zero weighted trace of the CRLB 

F I G U R E  7  In vivo CBF (A) and ATT (B) RMSEs across 
subjects. The height of each bar graph is the mean RMSE across 
subjects, while the error bar shows the SD across subjects. The errors 
were checked for significant differences using a non‐parametric 
paired test (Wilcoxon signed rank test), P < 0.05. All differences are 
significant, except between the single‐PLD and CBF‐ATTopt CBF 
errors and reference multi‐PLD and CBF‐ATTopt ATT errors
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matrix in Equation 4. This could be used to choose any 
trade‐off between CBF and ATT accuracy, resulting in a 
much more flexible tool for optimizing ASL experiments. 
However, the relative weightings for the desired trade‐
off would need to be empirically deduced; a potentially 
burdensome process. Furthermore, other model parame-
ters, such as tissue T1, could be included in the FIM with 
the aim of minimizing sensitivity to them, similar to the 
CBFopt approach to ATT.

For both protocols, the optimal number of PLDs were 
found to be large because a large number of PLDs provides 
the most flexibility for minimizing the predicted variance. 
This may seem counterintuitive, because each data point is 
relatively noisy. However, the information across PLDs is 
combined during fitting, giving similar results to averaging, 
but with greater information content. For ease of implemen-
tation, the proposed framework can be restricted to choose a 
smaller number of PLDs with more than 1 average at each. 
For example, restricting the number of CBF‐ATTopt PLDs to 
10 or fewer resulted in a 10 PLD protocol which only in-
creased the predicted mean CBF and ATT errors by ~0.5% 
and ~1%, respectively (see Supporting Information Figure 
S4). This relatively small increase suggests that a smaller 
number of PLDs can still be used effectively.

In this study, the PCASL labeling duration was fixed at 
that used in the reference protocol16 for simplicity. However, 
using this framework, a single label duration for the whole 
experiment or different values for each individual PLD could 
be optimized, yielding greater flexibility in the design and 
potentially leading to further reductions in CBF and ATT 
estimation errors. Such extensions to this approach will be 
explored in future work. Furthermore, the sub‐boli timings in 
time‐encoded PCASL,28 a method that efficiently produces 
multi‐delay ASL data, could be optimized, potentially yield-
ing greater improvements in estimation accuracy. We are 
currently investigating the potential of these more advanced 
techniques.

5.3 | Simulation and in vivo experiments
Figures 3 and 6 demonstrate the excellent agreement be-
tween the theoretical, simulated, and in vivo CBF and ATT 
errors, validating the optimization framework outlined here. 
However, there was a poorer agreement between the simu-
lation and in vivo CBF results at ATTs <0.8 s, where the 
CBF errors for all protocols were higher than expected, with 
the single‐PLD protocol being most affected. This could be 
because of the reduced data available at these ATT values, 

F I G U R E  8  In vivo CBF (top) and ATT (bottom) bias (A and C) and precision (B and D) across subjects. The height of each bar graph is the 
mean across subjects, whereas the error bar shows the SD across subjects. An asterisk (*) signifies significant differences using a non‐parametric 
paired test (Wilcoxon signed rank test), P < 0.05
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making the results more susceptible to noisy estimates, or 
the presence of residual macrovascular signal causing CBF 
overestimates in the ground truth data. Another noticeable 
difference was the increase in the simulation ATT RMSE at 
short transit times, compared to the CRLBs. This is because 
of poor ATT estimation in the top few slices that was not 
possible to resolve because of the longer effective PLDs at 
these slices.

The CRLB is based on maximum‐likelihood estimation, 
as is NLLS fitting. However, the data is not restricted to being 
fit with a NLLS method, though we chose it here for con-
sistency. Supporting Information Figure S5 demonstrates the 
differences between fitting the in vivo data with the NLLS 
approach and a variational Bayesian approach, as imple-
mented in the BASIL toolbox in FSL,29 which is commonly 
applied to in vivo data. The general trends of the protocols 
are very similar for both fitting methods, and therefore this 
choice does not influence the conclusions of this article.

Although the majority of well‐fit voxels in the healthy 
volunteers were within the ATT range optimized for, 4.8% 
had ATTs above 1.8 s. If the optimization ATT range was 
extended, the number of well‐fit voxels with longer ATTs 
would probably increase. For this reason, future work in 
healthy volunteers should consider using a wider ATT prior.

To demonstrate the robustness of the results to the ground 
truth data exclusion criteria, we re‐analyzed all of the GM 
data without the restrictions on fitting accuracy or ATTs 
placed on the ground truth data (see Supporting Information 
Figure S6). The trends and relative performance seen in 
Figures 6 and 7 are largely unchanged, although with larger 
RMSE for all protocols.

The in vivo CBF and ATT estimates were compared with 
ground truth estimates, derived from the same, but combined, 
data from the individual protocols. This has the potential to 
benefit the accuracy of some protocols over others if the es-
timates are biased in some way. However, when we simu-
lated this analysis process, the relative performance of each 
protocol was largely unaffected. Specifically, using estimated 
ground truth values lead to a relatively even decrease in the 
CBF and ATT RMSE across all of the protocols: 0.49 ± 0.08 
mL/100 g/min and 0.011 ± 0.004 s, respectively.

Magnitude data has a Rician noise distribution, though 
we assumed Gaussian distributed noise in our simulations 
and data fitting. It has been shown, however, that when the 
SNR of data is >3, a Gaussian distribution is a good ap-
proximation of the true Rician distribution.30 To test if this 
condition was met with the in vivo ASL data used in this 
study, we calculated the temporal SNR (tSNR) of the ref-
erence multi‐PLD and single‐PLD control GM magnitude 
data using the formula: tSNR = S/σ, where S and σ are the 
mean and SD of the signal over the repeats for each PLD. 
Only 5.4% of the GM voxels had a tSNR <3 with the me-
dian tSNR being 31.4. However, if extremely efficient BGS 

was used or complex subtraction performed before magni-
tude reconstruction of the perfusion weighted data, then a 
Gaussian distribution would no longer be an appropriate 
approximation.

In the optimization and fitting, we assumed an identical 
noise magnitude across PLDs. However, the BGS strategy 
we used in this work resulted in variable static tissue sig-
nal suppression and therefore variable noise levels across 
the PLDs (see Supporting Information Figure S7). Using 
the measured noise amplitude across PLDs in MC simu-
lations resulted in minor differences to the CBF and ATT 
errors across the different protocols, but the broad trends 
were unchanged (see Supporting Information Text S3 and 
Supporting Information Figure S8). The variable noise 
could be incorporated into the optimization, but it is highly 
specific to the sequence used. Its effect on the estimates 
could also be reduced by weighting the data appropriately 
during fitting.29 Alternatively, a more flexible BGS scheme 
that allows interleaving of the inversion pulses with label-
ling, such as that used by Dai et al.,8 would result in more 
comparable BGS across PLDs, better meeting our assump-
tion of equal noise at all PLDs. A more even level of BGS 
across PLDs will also further reduce the small image shift 
artefacts we noticed when the BGS varied.

For this proof‐of‐concept study, we used a multi‐slice 2D 
readout with a small number of slices to minimize the vari-
ation in timings and BGS. However, the use of a 3D readout 
would ensure identical BGS and PLDs across all slices, lead-
ing to a simpler optimization problem and improved static 
tissue attenuation across the imaged volume. This would en-
able the full benefits of this optimization framework to be 
realized for whole brain perfusion measurements. Although 
we only validated this framework in a limited cross‐section 
of the brain, we expect this method to benefit perfusion mea-
surements across the whole brain because the range of ATTs 
in our data (Figure 4) are comparable to previously reported 
ranges across the whole brain,8,20,31 and inferior–superior 
ATT variations have previously been shown to be compara-
ble to within‐slice variations.23

Because of the increasing use of 3D readouts with ASL,4 
we have included 3D (or single‐slice) specific CBF‐ATTopt 
and CBFopt PLD timings for completeness. These were gen-
erated for 2 ATT ranges: a standard ATT range of 0.5 ≤ ATT 
≤ 2 s and a prolonged ATT range of 1 ≤ ATT ≤ 3 s, which 
were compared to an evenly distributed protocol in each 
case. The timings can be found in Supporting Information 
Table S1 and described in Supporting Information Text S4. 
In each case, the number of PLDs has been constrained to 
≤10 to facilitate acquisition segmentation, necessary to 
reduce blurring or distortions. The PLD timings and MC 
simulation RMSEs are shown in Supporting Information 
Figure S9. For both ATT ranges, the optimized protocols 
reduced the average errors across the ATT distributions 
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relative to the evenly distributed protocol. However, for late 
ATTs in the prolonged ATT range, the CBF and ATT errors 
were large for all protocols, demonstrating the difficulty in 
estimating CBF in the presence of delayed ATT and short 
scan durations. Future work will explore improved methods 
for CBF and ATT estimation in delayed ATT cases, includ-
ing optimizing the label durations and the use of time‐en-
coded ASL. An alternative method that holds promise for 
CBF estimation in the presence of delayed ATT is velocity‐
selective ASL,32 which effectively eliminates the ATT and 
so experiences minimal tracer T1 decay compared to whole 
brain PCASL.

We have focused on optimizing protocols for GM in this 
study. However, the framework could also be applied to mea-
suring white matter (WM) perfusion, which typically has 
longer ATTs, shorter T1 and lower CBF than GM, making 
it a much more challenging application, increasing the im-
portance of appropriately optimizing protocols. This interest-
ing application will be investigated in future work. The low 
SNR of WM could also be aided by moving to higher field 
strengths than 3T because of longer T1 relaxation times.33

It should be noted that the reference multi‐PLD proto-
col was originally intended for a 24‐slice, whole brain scan, 
meaning that the average effective PLDs across the brain are 
on the order of 0.5 s longer than those given in Table 2. This 
would likely result in more accurate CBF estimates at longer 
ATTs in higher slices than is presented here.

6 |  CONCLUSIONS

In conclusion, we have developed a general framework for 
optimizing ASL experiments and validated this approach in 
the specific case of multi‐PLD PCASL, showing significant 
improvements over reference single‐PLD and multi‐PLD 
protocols. The clinical use of this framework will lie in the 
development and testing of standardized, patient population‐
specific protocols.
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SUPPORTING INFORMATION

Additional supporting information may be found online in 
the Supporting Information section at the end of the article.

FIGURE S1 The effect of true CBF on estimation errors in 
CBF (top) and ATT (bottom). Both the predicted Cramér‐
Rao lower bound (A and C) and RMSEs for Monte Carlo 
simulations (B and D) are shown. These results demonstrate 
that the CBF estimation errors do not vary greatly with CBF, 
whereas the ATT errors are inversely proportional to CBF. 
The reference multi‐PLD protocol for 1 slice was used for 
this demonstration
FIGURE S2 In vivo CBF (A) and ATT (B) RMSEs for each 
of the 7 subjects. The trends are extremely similar across the 
subjects, demonstrating the robustness of the optimization
FIGURE S3 The PLDs (A and B) and the predicted CBF 
and ATT errors (Cramér‐Rao lower bound [CRLB] SD) 
(C and D) for CBFopt with and without the ATT sensitivity 
function in the FIM. We assumed a 0.5‐s readout duration 
for a 3D acquisition, 28 PLDs, and an ATT range of 0.5–2 s 
(similar to Supporting Information Text S4). Repeated PLDs 
are not shown. CBF and ATT CRLBs at ATTs shorter than 
0.75 s are extremely large for the protocol without the ATT 
sensitivity function included and are out of view for clarity. 
The differences in the chosen PLDs and the resulting CRLBs 
demonstrate the importance of including the ATT sensitivity 
function in the FIM. If the ATT sensitivity function is not in-
cluded in the FIM, then it is implicitly assumed that the ATT 
is known, which can result in large errors
FIGURE S4 The PLDs (A and B) and the predicted CBF and 
ATT errors (Cramér‐Rao lower bound [CRLB] SD) (C and 
D) for the CBF‐ATTopt protocol with 10 or 40 PLDs. The 10 
PLD protocol uses 4 averages of the 10 PLDs, whereas the 
40 PLD protocol only has 1 average for each PLD. Using 10 
PLDs rather than 40 PLDs only resulted in a ~0.5% and ~1% 
increase in the CBF and ATT CRLBs, respectively
FIGURE S5 In vivo RMSEs of CBF (top) and ATT (bottom) 
for data fitted with the NLLS method, as in Figure 6 (A and 
C), and with BASIL29 (B and D), a variational Bayesian al-
gorithm. The fitting priors used for the BASIL fitting were 
(mean ± SD): 0 ± 106 mL/100 g/min and 1.25 ± 1 s, for 
CBF and ATT, respectively. Similarly to the NLLS data, 
only BASIL fitted data that had CBF and ATT posterior 
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distribution SD <5 mL/100 g/min and 0.1 s, respectively, 
were included in the graph. BASIL reduced CBF errors, par-
ticularly in regions with very large errors in the NLLS fit-
ting. Mean ATT errors were also reduced, but were larger at 
short ATTs. This suggests that BASIL produces better CBF 
estimates from noisy data than a naive NLLS algorithm, but 
there remain significant benefits from appropriately optimiz-
ing the PLDs in both cases
FIGURE S6 In vivo RMSEs of CBF (left column) and ATT 
(right column) estimates for all GM data for the 7 subjects with 
no other data exclusion criteria imposed. The top row (A and 
B) shows the RMSE trends across ATTs, whereas the bottom 
row (C and D) shows the mean and SD of the RMSEs across 
subjects. The general trends remain unchanged, compared to 
Figures 6 and 7. As expected, there is a general increase in 
RMSEs compared to Figures 6 and 7 because of the removal 
of the ground truth data exclusion criteria. Graphs (A) and (B) 
agree well with Figure 6 in the ATT prior range of 0.5 ≤ ATT 
≤ 1.8. The trends in (C) and (D) also agree well with Figure 
7, although the CBFopt and single‐PLD CBF RMSEs are no 
longer significantly different. This is to be expected because 
there is greater noise in the ground truth estimates and data 
from outside the optimized range has been included
FIGURE S7 Boxplots of the tSNR, signal, and noise of the 
GM voxels from the control ASL data of the reference multi‐
PLD and single‐PLD data for all 7 subjects. The median tSNR 
has been fit using an exponential decay model, whereas the tis-
sue signal (normalized by M0B) was simulated using a series of 
saturation and inversion recovery models. The noise can then 
be modeled as the simulated signal divided by the fitted tSNR
FIGURE S8 The effect on CBF (A and B) and ATT (C and 
D) RMSEs when using uniform (A and C) or variable (B and 

D) noise across PLDs. Details of the simulations are given in 
Supporting Information Text S3. The broad trends are consis-
tent. However, all protocols except the reference multi‐PLD 
protocol have reduced CBF errors at late ATTs and the ATT 
errors for all protocols increased across the entire ATT range. 
The single‐PLD, CBF‐ATTopt, and CBFopt CBF estimates 
benefit from having many PLDs at times of reduced noise 
with the variable noise model
FIGURE S9 The PLDs (A and D) and the MC simulation 
RMSEs (B, C, E, and F) for Even, CBF‐ATTopt, and CBFopt 
protocols over a standard healthy range of ATTs (0.5 ≤ 
ATT ≤ 2 s) and a prolonged ATT range (1 ≤ ATT ≤ 3). The 
timings shown are for a 3D acquisition. Repeated PLDs are 
not shown, but are listed in full in Supporting Information 
Table S1
TABLE S1 Optimal PLDs for 3D acquisitions
TEXT S1 Complete CBF sensitivity function
TEXT S2 Optimal design independence to CBF
TEXT S3 Variable noise Monte Carlo experiments
TEXT S4 PLD optimization for 3D acquisitions
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APPENDIX 
The fitted data and analysis code that underpin the data and figures in this 
work can be accessed via the Zenodo repository (https://doi.org/10.5281/
zenodo.1291502).
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