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Researchers recently apply an integrative approach to automate medical image segmentation for benefiting available methods and
eliminating their disadvantages. Intensity inhomogeneity is a challenging and open problem in this area, which has received less
attention by this approach. It has considerable effects on segmentation accuracy. This paper proposes a new kernel-based fuzzy
level set algorithm by an integrative approach to deal with this problem. It can directly evolve from the initial level set obtained by
Gaussian Kernel-Based Fuzzy C-Means (GKFCM). The controlling parameters of level set evolution are also estimated from the
results of GKFCM.Moreover the proposed algorithm is enhanced with locally regularized evolution based on an image model that
describes the composition of real-world images, in which intensity inhomogeneity is assumed as a component of an image. Such
improvements make level set manipulation easier and lead to more robust segmentation in intensity inhomogeneity. The proposed
algorithm has valuable benefits including automation, invariant of intensity inhomogeneity, and high accuracy. Performance
evaluation of the proposed algorithm was carried onmedical images from different modalities.The results confirm its effectiveness
for medical image segmentation.

1. Introduction

There are many structures in medical images: normal and
abnormal structures. Organs, bones, muscles, and fat are
in the normal structures and tumors and fractures are
considered in the abnormal ones. These anatomy structures
are identified by segmentation of medical images.

Image segmentation is a fundamental procedure in med-
ical image analysis to interpret medical images. Learning
how to segment anatomic structures is a significant part of
medical image segmentation (MIS) [1]. TheMIS is not trivial
because of the complexity and variability of the ROI, poor
contrast and complex nature of medical images, dependency
of segmentationmethod on imagingmodality, image features
and dimensions, normal anatomic variation, postsurgical

anatomic variation, vague and incomplete boundaries, arti-
facts, noise, and intensity inhomogeneity [1–3].

In medical imaging applications, to get better segmen-
tation performance, practical algorithms need radiologists
to adjust segmentation parameters. Most computerized sys-
tems work semiautomatically or interactively because of the
complexity of parameter adjustment in the MIS. So, many
works have beenmade tomake the segmentation efficient and
automatic.Machine learning provides effectivemeans for this
purpose.

Some researchers [4–9] apply an integrative approach
by available methods to resolve their drawbacks and enjoy
their benefits along with automation. Figure 1 shows the
framework of their approach in a hybrid intelligent system
for automated image segmentation. It includes two successive
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Figure 1:The coarse-to-fine framework of integrative approach in a
hybrid intelligent system for automated image segmentation.

steps including coarse clustering and fine segmentation. For
example, the authors of this paper applied the kernel-based
fuzzy 𝑐-mean clustering algorithm [10] to overcome the
dependency of initial curve in FTC model [11] in previous
versions of this paper [8, 9]. Some hybrid intelligent systems
have used fuzzy clustering to facilitate level set segmentation
[4–9, 12]. Nevertheless, they fail in the presence of intensity
inhomogeneity which often occurs in medical images.

Intensity inhomogeneity often arises in real images like
medical images caused by spatial variations in illumination,
imperfections of imaging devices, and so forth. Figure 2
illustrates some examples of images with intensity inhomo-
geneity. It complicates image segmentation which is often
regionbased and usually relies on the homogeneity of the
image intensities in the ROI. Figure 3 shows two samples of
this failure. The reason of complexity is the overlaps between
the ranges of the intensities in the regions to be segmented.
This makes it impossible to identify these regions based on
the pixel intensity. Vovk et al. [14] have reviewed themethods
of intensity inhomogeneity correction in MRIs.

Our previousworks [8, 9] have shownpromising result on
several types of images without the intensity inhomogeneity.
It not only relieves manual intervention but also accelerates
level set optimization. In this paper, we propose a new
kernel-based fuzzy level set for automated medical image
segmentation in the presence of intensity inhomogeneity,
which has not been paid attention by our previous work and
the similar ones [4–9]. Although some researchers such as
[15, 16, 18–21] have investigated the segmentation problem
in the images with intensity inhomogeneity recently, none of
them is automatic.

The new algorithm proposed in this paper is significantly
improved in the following aspects. Firstly, the GKFCM
clustering can automatically estimate the parameter based
on the data. Secondly, the controlling parameters of level set
segmentation are now derived from the result of GKFCM
directly. Thirdly, a new strategy, directed by GKFCM, is
proposed to regularize level set evolution, which is different
from other methods [4–9]. Fourthly, the new kernel-based
fuzzy level set shows promising result in the presence of
intensity inhomogeneity while the similarmethods [4–9] fail.
Finally, we also verified the new kernel-based fuzzy level set
on general medical images with different modalities like X-
ray, MRI, and CT.

The remainder of this paper is organized as follows. The
next section describes the materials and methods. It first
explains the kernel-based fuzzy clustering and then elabo-
rates on level set segmentation in intensity inhomogeneity
condition. It also clarifies the new kernel-based fuzzy level
set algorithm in detail. Section 3 reports our experiments and
Section 4 explains the relevant discussion. Section 5 presents
concluding remarks.

2. Materials and Methods

2.1. Kernel-Based Fuzzy Clustering and Image Segmenta-
tion. The objectives of clustering algorithms overlap image
segmentation problems. So, medical image segmentation
problems directly apply cluster analysis developed inmachine
learning and pattern recognition area such as [23–26].

In fuzzy clustering, the centroid and the scope of each
subclass are estimated adaptively to minimize a predefined
cost function like (1) for Fuzzy 𝐶-Means (FCM). FCM is one
of the most popular algorithms in fuzzy clustering, which
has been widely applied to medical image segmentation
problems. It attempts to minimize the cost function
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ing a new kernel-based metric in the original Euclidean
norm metric of FCM. Zhang et al. [10, 27] proposed and
called it kernel-based fuzzy 𝑐-means (KFCM) with strong
noise robustness for image segmentation. The reason is
that an exponential-type distance is bounded and mono-
tone increasing, based on the concept of machine learn-
ing with a learning capability to improve the performance
of clustering results [28]. The KFCM partitions a dataset
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whereΦ is an implicit nonlinear map and other components
are the same with (1). In feature space, a kernel can be a
function which is called 𝐾, where 𝐾(𝑥, 𝑦) = ⟨Φ(𝑥), Φ(𝑦)⟩

and ⟨⋅⟩ is the inner product. Moreover, by considering the
most popular kernel, that is, Gaussian radial basis function
(GRBF) kernel 𝐾(𝑥, 𝑦) = exp(−‖𝑥 − 𝑦‖
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KFCM should adjust some parameters like 𝜎 as dispersion.
This parameter affects KFCM results. So, Yang and Tsai [28]
proposed Gaussian Kernel-Based Fuzzy 𝐶-Means (GKFCM)
clustering to estimate the parameter𝜎 automatically. GKFCM
can learn the other parameters by a prototype-driven learning
scheme. There is no need to select the parameters in advance
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Figure 2: Some examples of images with intensity inhomogeneity; the columns from left to right: original images, inhomogeneity field, and
corrected image; from top to bottom borrowed from [15–17], respectively.

with prior knowledge. Moreover, it is slightly faster than
KFCM. The advantage of GKFCM is to perform clustering
and to estimate parameter simultaneously. The GKFCM
algorithm is in Algorithm 1.

As this paper proposes a new kernel-based level set
algorithm, the next subsection elaborates on level set segmen-
tation in the presence of intensity inhomogeneity.

2.2. Level Set Segmentation in Intensity Inhomogeneity. Level
set methods apply dynamic variational boundaries for image
segmentation in contrast to the GKFCM clustering using
pixel classification [13]. Level-set-based segmentation meth-
ods provide a natural and flexible way to handle many
radiology images in which objects to be segmented have
irregular shapes and complicated topologies [29, 30].
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(a) (b)

Figure 3: Failure of region-based level set methods for inhomogeneous images: the columns (a) original images and (b) segmentation results
by blue contour [22].

Level-set-based segmentationmethods are generally clas-
sified into two classes: edge based and region based. Region
based methods [31, 32] perform better than those based on
the edge because they are less susceptible to noise and carry
out more precisely in the weak edges of objects. They try to
identify each ROI using a certain region descriptor such as
intensity mean or a Gaussian distribution to move the active
contour.

Intensity inhomogeneity affects efficiency of region-
based level set segmentation methods. Moreover, defining a
region descriptor for inhomogeneous images is very difficult.
Li et al. [34] have proposed the local binary fitting (LBF)
model to embed local image information to investigate
intensity inhomogeneity in the segmentation. The basic idea
is to reduce a kernel function to the LBF energy functional.
In recent version of LBF model, they [35] proposed the level
set evolutionwith bias field estimation (LSEBFE)model.They
considered the model of images from the physics of imaging

in a variety of modalities as 𝐼 = 𝑏𝐽 + 𝑛, where 𝐽 is the true
image, 𝑏 is the component that accounts for the intensity
inhomogeneity (or bias field), and 𝑛 is additive noise. Then
in view of the image model,

𝐼 (𝑥) = 𝑏 (𝑦) 𝑐
𝑖
+ 𝑛 (𝑥) 𝑖 = 1, 2, (4)

where 𝑛(𝑥) is additive zero-mean Gaussian noise and 𝑐
𝑖
is

a constant value to approximate the intensities inside and
outside the curve 𝐶.

By casting the segmentation problem into a higher
dimensional space, the motion of the hypersurface 𝜑(𝑡, 𝑥, 𝑦)

under the control of a speed function 𝐹 will cause the
initial boundary 𝜑

0
(𝑥, 𝑦) to move continuously till evolution.

Evolving of the hypersurface can be stopped at the object
boundary using image information such as edges and grey
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value [29]. In practice, numerical level set equation deter-
mines the evolution of 𝜑(𝑡, 𝑥, 𝑦):
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where |∇𝜑| denotes the normal direction, 𝜑
0
is the initial

contour, 𝐶 is a customable constant, and 𝐹 represents the
comprehensive forces, including the internal force (from the
interface geometry such as mean curvature, contour length,
and area) and external force (from image gradient and/or
artificial momentums) [36]. So, the speed function 𝐹 is
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(𝜑) . (7)

The constants 𝜇, 𝜆, and ] control the individual contribu-
tions of these terms. The energy termL(𝜑) is the smoothing
term. It forces 𝜑 to be smooth within each of the separated
regions. It is also the length of zero level curve of 𝜑 defined
by L(𝜑) = ∫ |∇𝐻(𝜑)|𝑑𝑥, where 𝐻(𝜑) is Heaviside function
𝐻(𝜑) = 1/2[1 + 2/𝜋 arctan(𝜑/𝜀)]. The energy termR
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introduced to a distance regularization term by Li and others
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𝑠; that is, 𝑠 = 1 is a minimum point of 𝑝. To stop level set
evolution near the optimal solution, that is, ROI boundary
in image segmentation, a penalty momentum of 𝜑 deviating
from the signed distance function regularizes the advancing
force 𝐹. By substituting (4) in the data term of the LBFmodel
[34], the data term E(𝜑) is as follows which forces 𝜑 to be
close to the image 𝐼:
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where ∗ is the convolution operation, 𝐻(𝜑) is Heaviside
function, and𝐾

𝜎
is a Gaussian kernel with standard deviation

𝜎 defined before. The bias field (or shading image) which is
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Figure 4: The framework of proposed approach.

the component that accounts for the intensity inhomogeneity
can be computed by
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It should be noted that 𝑐
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of variation [38]. For binary segmentation, the following
equation [34] computes the data term E(𝜑):
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where ∗ is the convolution operation and 1
𝐾
is the function

1
𝐾
(𝑥) = ∫𝐾(𝑦−𝑥)𝑑𝑦. It equals constant 1 everywhere except

near the boundary of the image domain.

2.3. A New Kernel-Based Fuzzy Level Set Algorithm. Level
set methods and kernel-based FCM algorithms are general-
purpose computational models. By constraining them to the
MIS as well as integrating, we can enjoy the specific circum-
stances for better performance and resolve their drawbacks.
To be specific, kernel-based FCM algorithms are not accurate
enough for the MIS [10] and level set methods are not
automatic.

To address these problems, this paper proposes a new
kernel-based fuzzy level set algorithm based on a coarse-to-
fine framework (Figure 1). It applies the power of curve evolu-
tion by level set to increase the efficiency of segmentation by
GKFCM clustering (Algorithm 1). It also takes the advantage
of suitable parameter selecting using GKFCM clustering to
automate segmentation of medical images. It starts with
a GKFCM clustering, whose results are applied to initiate
level set segmentation, estimate controlling parameters, and
regularize level set evolution in intensity inhomogeneity.
The GKFCM clustering, with the ability of selecting suitable
parameters by a prototype-driven learning, can achieve good
segmentation results and the best score of accuracy on
medical images.

Figure 4 shows the framework of proposed approach.
Comparing Figures 1 and 4 shows that the proposed method
applies GKFCM clustering [28] for coarse clustering and
then evolves it by LSEBFE model based on an image model
[35] that describes the composition of real-world images, in
which intensity inhomogeneity is assumed as a component
of an image. Algorithm 2 summarizes algorithm of proposed
method.

The new kernel-based fuzzy level set algorithm auto-
mates curve initialization and parameter configuration of the
level set segmentation using a Gaussian kernel-based fuzzy
clustering. It employs a GKFCM clustering to determine
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Algorithm 1: The algorithm of GKFCM clustering.

the approximate contours of interest in a medical image.
Benefitting from the flexible initialization as in (6), the
enhanced level set function can accommodate GKFCM
results directly for evolution. So, a defuzzification process
is performed to convert the fuzzy partition matrix (i.e.,
𝑈 𝑀𝐹) to a crisp partition after converging the GKFCM
algorithm.Themaximummembership procedure is themost
important method to defuzzify the partition matrix 𝑈 𝑀𝐹.
This procedure assigns the pixel 𝑖 to the class 𝐶 with the
highest membership by
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The proposed method applies (12) to convert the fuzzy
image by the GKFCM algorithm to the crisp segmented
image. It then initiates the level set as

𝜑
0
(𝑥, 𝑦) = −𝑐

0
× 𝐴
𝑘
+ (1 − 𝐴

𝑘
) × 𝑐
0
, (13)

where 𝐴
𝑘
is a binary image obtained based on 𝑖 = {𝑘 |

𝑘 = 1, 2, . . . , 𝑐} whose pixel’s value is 1 if its classification
is 𝑘 and 0 otherwise, and 𝑐

0
is a constant value equal to 4

in this paper. Equations (6) and (13) are the same meaning.
In the experiments, we found that replacing sigma by 𝜎

2

=

∑
𝑛

𝑗=1
‖𝑥
𝑗
− 𝑥‖
2

/𝑛 with the following formula leads to better
result:

𝜎
2

=

(max
𝑖=1⋅⋅⋅𝑛

𝑥
𝑖
−min

𝑖=1⋅⋅⋅𝑛
𝑥
𝑖
)
2

𝑛

.
(14)

As most of the literatures note, the methods for the
MIS are not general-purpose and should be configured

individually. One reason is to adjust controlling parame-
ters associated with level set methods appropriately, which
varies from case to case. Li et al. [13] have listed the
parameters which control level set segmentation. The new
kernel-based fuzzy level set algorithm adjusts some of them
based on the input image automatically. It can estimate
some parameters like 𝜎 (by (14)) based on the input image
and learn others by the prototype-driven learning scheme.
Thus, it does not need to adjust all parameters in [13].
To be specific, the GKFCM clustering is robust to outliers
with good parameter learning schemes. It can perform
clustering and give a parameter selection simultaneously
despite other clustering methods. Such methods adopt a
trial-and-error technique for selecting a suitable parameter.
Some researchers [13, 39–41] show some general rules for
configuration of these parameters to get an optimal level set
segmentation. Although it is desirable to determine these
controlling parameters adaptively for the specific medical
image by these useful general guidelines, they are not enough
to determine the ideal configuration for a specific medical
image [13].

The LSEBFE model [35] is not sensitive to the choice of
the parameters. Nevertheless, the initial level set function
𝜑
0
by GKFCM clustering helps to initialize these controlling

parameters and provides stable and fast evolution. On the
other hand, as the zero level set from GKFCM clustering is
near to the genuine boundaries, some pieces of information
are adjustable like the approximate length and area of ROI.
They aid to estimate some of the controlling parameters
adaptively. If the ratio of area with respect to length is high,
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Phase 1: Initializing Segmentation by the GKFCM clustering
(I) Parameters initialization: data set𝑋 = {𝑥

1
, 𝑥
2
, . . . , 𝑥

𝑛
}; cluster number 𝑐( 2 ≤ 𝑐 ≤ 𝑛); 𝜀 > 0; 𝑚 = 2;

(II) Let 𝑠 = 1 and estimate 𝜎2 by 𝜎
2

= ∑
𝑛

𝑗=1

󵄩
󵄩
󵄩
󵄩
󵄩
𝑥
𝑗
− 𝑥

󵄩
󵄩
󵄩
󵄩
󵄩

2

/𝑛 where 𝑥 = ∑
𝑛

𝑗=1
𝑥
𝑗
/𝑛

(III) Compute 𝜂(𝑠)
𝑖

using

𝜂
𝑖
=

min
𝑖
󸀠
̸= 𝑖
(1 − 𝐾(𝑎

𝑖
󸀠 , 𝑎
𝑖
))

max
𝑘
(1 − 𝐾 (𝑎

𝑘
, 𝑥))

(IV) Compute 𝜇(𝑠) with 𝑎
(𝑠−1) and 𝜂

(𝑠)

𝑖
by

𝜇
𝑖𝑗
=

((1 − 𝐾 (𝑥
𝑗
, 𝑎
𝑖
)) + 𝜂

𝑖
(1 − 𝐾 (𝑥

𝑗
, 𝑎
𝑖
)))

−1/(𝑚−1)

∑
𝑐

𝑘=1
((1 − 𝐾 (𝑥

𝑗
, 𝑎
𝑖
)) + 𝜂

𝑖
(1 − 𝐾 (𝑥

𝑗
, 𝑎
𝑖
)))

−1/(𝑚−1)

𝑖 = 1, . . . , 𝑐; 𝑗 = 1, . . . , 𝑛; 𝐾 (𝑥, 𝑦) = exp(−󵄩󵄩󵄩
󵄩
𝑥 − 𝑦

󵄩
󵄩
󵄩
󵄩

2

/𝜎
2

)

(V) Update 𝑎(𝑠) with 𝑎
(𝑠−1), 𝜇(𝑠) and 𝜂

(𝑠)

𝑖
using

𝑎
𝑖
=

∑
𝑛

𝑗=1
𝜇
𝑚

𝑖𝑗
(𝐾 (𝑥

𝑗
, 𝑎
𝑖
) 𝑥
𝑗
+ 𝜂
𝑖
𝐾(𝑥
𝑗
, 𝑎
𝑖
) 𝑥
𝑗
)

∑
𝑛

𝑗=1
𝜇
𝑚

𝑖𝑗
𝐾(𝑥
𝑗
, 𝑎
𝑖
) + 𝜂
𝑖
𝐾(𝑥
𝑗
, 𝑎
𝑖
)

, 𝑖 = 1, . . . , 𝑐

(VI) If 󵄩󵄩󵄩󵄩
󵄩
𝑎
(𝑠)

− 𝑎
(𝑠−1)

󵄩
󵄩
󵄩
󵄩
󵄩
< 𝜀 STOP and OUTPUT

(VII) Extract ROI’s fuzzy membership matrix, that is, U MF.
Phase 2: Localizing the initial level set through defuzzification process
(I) Convert the fuzzy partition matrix U MF to a crisp partition by assigning the pixel 𝑖 to the class 𝐶 with the highest
membership 𝐶

𝑖
= {arg

𝑘
(max (𝑈 𝑀𝐹

𝑘𝑖
)) | 𝑘 = 1, 2, . . . , 𝑐}.

(II) Select the best matching 𝐶
𝑘
of the ROI.

(III) Compute: 𝜑0 (𝑥, 𝑦) = −𝑐
0
× 𝐶
𝑘
+ (1 − 𝐶

𝑘
) × 𝑐
0
; (𝑐
0
= 4)

Phase 3: Curve evolution using LSE BFE segmentation
(I) Set value: 𝑘 = 1,𝜏 = 100, 𝜇 = 0.2/𝜏, 𝜆 = 1/𝜏 and ] = 1.
(II) Update 𝑐

1
and 𝑐
2
by (∗is the convolution operation):

𝑐
1
(𝑥) =

∫(𝑏 ∗ 𝐾
𝜎
(𝑥)) [𝐻 (𝜑(𝑦)) ⋅ 𝐼 (𝑥)] 𝑑𝑦

∫(𝑏
2
∗ 𝐾
𝜎
(𝑥))𝐻 (𝜑(𝑦)) 𝑑𝑦

, 𝑐
2
(𝑥) =

∫(𝑏 ∗ 𝐾
𝜎
(𝑥)) {[1 − 𝐻 (𝜑 (𝑦))] ⋅ 𝐼(𝑥)} 𝑑𝑦

∫(𝑏
2
∗ 𝐾
𝜎
(𝑥)) [1 − 𝐻 (𝜑 (𝑦))] 𝑑𝑦

(III) Update level set function by (11) and

𝜑
𝑘+1

(𝑥, 𝑦) = 𝜑
𝑘

(𝑥, 𝑦) + 𝜏 [𝜆(𝛿 (𝜑) ⋅ div(
∇𝜑

󵄨
󵄨
󵄨
󵄨
∇𝜑

󵄨
󵄨
󵄨
󵄨

)) + 𝜇(Δ𝜑 − div(
∇𝜑

󵄨
󵄨
󵄨
󵄨
∇𝜑

󵄨
󵄨
󵄨
󵄨

)) + ] (𝛿 (𝜑) ⋅ (𝑒
1
(𝑥) − 𝑒

2
(𝑥)))]

(IV) Update the bias field by

𝑏(𝑥) =

(𝐼 (𝑥) ⋅ {𝑐
1
⋅ 𝐻 (𝜑 (𝑥)) + 𝑐

2
⋅ [1 − 𝐻 (𝜑(𝑥))]}) ∗ 𝐾

𝜎

((𝑐
1

2

⋅ 𝐻 (𝜑 (𝑥)) + 𝑐
2

2
⋅ [1 − 𝐻 (𝜑(𝑥))]) ∗ 𝐾

𝜎

where𝐻(𝜑
0
) = {

1, 𝜑
0
≥ 0

0, otherwise
is Heaviside function.

(V) If 󵄩󵄩󵄩󵄩
󵄩
𝜑
𝑘+1

− 𝜑
𝑘
󵄩
󵄩
󵄩
󵄩
󵄩
< 𝜀 then STOP and OUTPUT Else 𝑘 = 𝑘 + 1 and return to step II in this phase.

Algorithm 2: The algorithm of proposed method.

the evolution of level set will be fast. The reason is low
topological complexity of the ROI in this case [13]. So,

𝜏 =

area (𝜑
0
)

length (𝜑
0
)

, (15)

where length(𝜑
0
) = ∫
𝐼

𝛿(𝜑
0
)𝑑𝑥𝑑𝑦, area(𝜑

0
) = ∫
𝐼

𝐻(𝜑
0
)𝑑𝑥𝑑𝑦,

and 𝐻(𝜑
0
) = {
1, 𝜑

0
≥0

0, otherwise . The equation 𝜇 = 0.2/𝜏 assigns the
time step 𝜇 inspired of the thumb rules in [13, 39–41] (i.e., 𝜇×

𝜏 < 0.25) for stable evolution. There is no need to adjust a
large 𝜆 to control topological changes because the zero level
set by GKFCM is near to the genuine boundaries. So, we can
consider 𝜆 = 1/𝜏.

Li et al. [13] proposed the new formula for ] based on the
zero level set obtained SFCM to pull or push the dynamic
interface adaptively toward the ROI. It has several practical
benefits such as deriving from the coarse clustering SFCM
directly, automatic stabilization, and the flexible selection
of iteration of evolution avoiding insufficient or excessive

segmentation. All mentioned benefits in [13] can be achieved
in this paper implicitly due to the localization property of
the Gaussian kernel function used in (13). To be specific,
the contribution of the intensity 𝐼(𝑦) to the fitting energy
decreases and approaches to zero as the point 𝑦 goes away
from the center point 𝑥. So, the energy is dominated by the
intensities 𝐼(𝑦) of the points𝑦 in a neighborhood of 𝑥. The
Gaussian kernel decreases drastically to zero as 𝑦 goes away
from 𝑥. In this sense, we consider that the fitting energy
is localized around the point 𝑥 [34]. Roughly speaking,
the contour evolves in the narrow band of initial level set
obtained by the GKFCM clustering. So, this paper considers
] = 1 and no need to be based on the initial level set by the
GKFCM clustering in this paper.

3. Results

The experiments and performance evaluation were per-
formed on medical images including a CT image of the
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 5: Level set segmentation of the CT vessel by various initializations: (a), (c), and (e) are manual initialization; (b), (d), (f), and (h)
are final segmentation after 300, 163, 172, and 40 iterations, respectively, with 𝜆 = 0.003, 𝜇 = 1, and ] = 1; and (g) is initialization by the
GKFCM.

blood vessels [34], nucleus fluorescencemicrograph [42],MR
image of brain [43], MR image of breast, and CT image of
heart [35]. The GKFCM clustering and the proposed kernel-
based fuzzy level set method were implemented with Matlab
R2008a (MathWorks, Natick, MA, USA) in aWindows Vista
system Home Premium, Service Pack 2. All the experiments
were run on a VAIO Precision 340 computer with Intel Core
2 Duo CPU P8400 at 2.26GHz and 2GB RAM.

3.1. Usefulness of GKFCM for Curve Initialization. The first
experiment assesses the GKFCM for level set initialization.
It adopted the level set evolution with bias field estimation
as [35] for the curve optimization, where the initialization
was by three kinds of manual demarcation and GKFCM
clustering. Figure 5 represents the performance comparison
on the CT image of blood vessel. Although the accuracy of
the LSEBFE model is not dependent on the initial level set
and it can attract the dynamic curve to ROI boundaries, the
iteration of evolution is reduced because GKFCM clustering
gives a curve near to the genuine boundaries (Figure 5(g)).

Figure 6 illustrates result of the LSEBFE model on the
nucleus fluorescence micrograph. In this case, segmentation
is difficult due to theweak and irregular boundaries and inho-
mogeneous foreground and background. Ideal initializing is
challenging again. Figure 6 proves that a GKFCM clustering
has the best performance for level set initialization.

3.2. New Kernel-Based Fuzzy Level Set for Intensity Inhomo-
geneity. The second experiment evaluates the new kernel-
based fuzzy level set in inhomogeneous medical images.

Figure 7 illustrates the success of new method in various
modalities of medical imaging including MR images of the
brain and breast (first and last rows, resp.), CT images of
blood vessels and heart (second and third rows, resp.). It
implicitly shows that the contour of GKFCM is near to ROI
but not optimal contour of ROI.

The third experiment deals with performance evaluation
and method comparison. It consists of two parts. First,
the proposed method is compared with similar approaches
[8, 13]. Figure 8 shows the results visually. Table 1 presents
the results quantitatively in terms of accuracy and speed,
respectively.

The authors [8] recently proposed a hybrid method that
initialized curve by kernel-based FCM [10] and evolved it by
fast two cycle model [11]. It is referred to KFCM FTC in this
paper. B. N. Li et al. [13] have integrated spatial fuzzy 𝑐-means
[44] with local binary fitting level set evolution [34]. It is
abbreviated to SFCM LBF henceforth. Table 1 demonstrates
that the proposed method is closer than similar approaches
but it consumes more computational complexity than others.

In the second part, we used the Creaseg platform [45] and
compared the segmentation result of several famous region-
based level set methods [11, 31, 33] for curve evolution after
initializing level set by the GKFCM clustering.

Figure 9 and Table 2 reveal this comparison qualita-
tively and quantitatively. Figure 9 illustrates the success
of new kernel-based fuzzy level set segmentation among
the famous level-set-based algorithms. In this figure, there
are the original image, initialization by GKFCM, final
segmentation by CV model (GKFCM CV) [31], localizing
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(a) (b)

(c) (d)

(e) (f)

Figure 6: Level set segmentation of the nucleus fluorescence micrograph. (a), (c): manual initialization; (b), (d): final segmentation after 126
and 200 iterations, respectively, with 𝜆 = 0.003, 𝜇 = 1, and ] = 1; (e): initialization by the GKFCM; and (f): final segmentation after 70
iterations.
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(a) (b) (c) (d) (e)

Figure 7: Segmentation results of various medical images by proposed method. The columns: (a) original image, (b) initial segmentation by
GKFCM, (c) segmentation result, (d) bias field and (e) bias corrected image.

region-based active contours (GKFCM Lankton) [33], FTC
model (GKFCM FTC) [11], and proposed method, from left
to right, respectively. Table 2 deals with this comparison in
terms of speed and accuracy, respectively. Table 2 shows that
the proposed method is closer than other region-based level
set algorithms by spending more time (similar to part 1 of
third experiment).

Dice criteria [46] calculated the similarity between the
result of the algorithms and the references to get accuracy in
this paper. It is popular in the segmentation problems:

Dice =

2 (𝐴 ∩ 𝐵)

𝐴 + 𝐵

, (16)

where 𝐴 and 𝐵 are the reference mask region and the result
mask region of an algorithm.

4. Discussion

The proposed method is not trivial and time consuming in
medical images with somewhat clear boundaries, as seen
in Figure 8, for the vessel image because it can control the
motion of the level set contours in images with intensity
inhomogeneity. Figures 8 and 9 illustrate this assertion by

promising results of proposed method while the similar
approaches failed. Table 1 also proved this success quan-
titatively. Moreover, the new kernel-based fuzzy level set
algorithm is able to find out the controlling parameters from
the GKFCM clustering automatically.

In summary, our proposed kernel-based fuzzy level set
algorithm allows flexible initialization for the MIS. One
initializing paradigm was evaluated and compared in this
paper in Figures 5 and 6. Manual demarcation is convenient
for level set initialization and most level set systems in the
literature adopt this form of initialization [45]. However,
the boundaries between physiological tissues are weak and
indistinct in medical images. So, manual initialization is not
a reliable choice for an optimal level set segmentation with
regards to image inhomogeneity and boundary leakage as
shown in Figures 5 and 6.

The GKFCM clustering can adaptively get the approx-
imate boundaries of potential components of ROI. It is
also concerned with the intensity information. Thus, it is
suitable to initiate level set evolution for the MIS. Level set
evolution is subject to various forces from the active curve
(the internal terms) and the image under investigation (the
external terms). It is difficult to coordinate these forces for
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(a) (b) (c) (d) (e)

(f)

Figure 8: Comparison of proposed method with similar approaches [8, 13], the columns: (a) original image, (b) Ground truth in white,
(c)–(f) colored segmentation result of KFCM FTC [8], SFCM LBF [13] and proposed method respectively.
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(a) (b) (c) (d) (e) (f)

Figure 9: Level set segmentation of variant medical images (a) origional image, (b) initialization by GKFCM, (c) the result of CV model
[31], (d) the result of localizing region-based active contours model [33], (e) the result of FTC model [11], (f) final segmentation of proposed
method.

Table 1: Comparison of proposed method with similar approaches KFCM FTC [8] and SFCM LBF [13] in terms of accuracy based on Dice
coefficient and CPU time in second.

Methods
Images

Accuracy % (Dice coefficient) CPU time (second)
Brain Vessel Heart Breast Brain Vessel Heart Breast

SFCM LBF 65 75 67 82 9.2 6.55 18.94 33.93
KFCM FTC 80 84 90 68 8.7 7.36 14.48 16.27
Proposed method 96 91 98 84 14.3 12.56 26.51 34.19

optimal image segmentation. Figure 9 shows that, despite
good initialization, the inappropriate curve evolution may
lead to an inferior segmentation.

The new kernel-based fuzzy level set algorithm is advan-
tageous because the implicit interface stabilizes once it
approaches the genuine boundaries. It is also based on an
image model which is the composition of real-world images
with intensity inhomogeneity as a component of an image.
Besides, it is possible to estimate the nearly optimal control-
ling parameters from the results of the GKFCM clustering
automatically. All of them facilitate the level set segmentation
in practice. The kernel-based fuzzy level set method in this
paper is derived from [35] where the level set evolution is
subject to the intensity inhomogeneity.

It is proper to refer the work in this paper to those
incorporating prior knowledge into deformable models [47].

It is not an easy task to obtain reliable prior knowledge and
models in medical image analysis. The GKFCM clustering is
able to obtain the potential components of ROI adaptively
with the ability of parameter estimation simultaneously. It
therefore serves as an effective source of prior knowledge for
level set segmentation.

5. Conclusions

The aim of this paper is to propose a new kernel-based
fuzzy level set algorithm for automatic segmentation of
medical images with intensity inhomogeneity. It employs
Gaussian kernel-based fuzzy clustering as the initial level
set function. It can approximate the boundaries of ROI
with parameter estimation simultaneously well. So, level
set evolution will start from a region close to the genuine
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Table 2: Comparison of proposed method with the famous level-set-based algorithms in terms of accuracy based on Dice coefficient and
CPU time in second.

Methods
Images

Accuracy % (Dice coefficient) CPU time (second)
Brain Vessel Heart Breast Brain Vessel Heart Breast

GKFCM CV 65 85 88 64 9.6 10.49 19.42 17.36
GKFCM Lankton 48 79 67 53 10.9 13.93 20.57 16.99
GKFCM FTC 80 84 90 68 8.7 7.36 14.48 16.27
Proposed method 96 91 98 84 14.3 12.56 26.51 34.19

boundaries. It also considers an image model that describes
the composition of real-world images, in which intensity
inhomogeneity is assumed as a component of an image.
Furthermore, the new algorithm estimates the controlling
parameters for curve evolution from initial level set by the
GKFCM clustering automatically. This has reduced manual
intervention and accelerates the curve evolution. The level
set evolution stabilizes automatically once it approaches the
genuine boundaries. All these improvements lead to a robust
algorithm for automated medical image segmentation in
the presence of intensity inhomogeneity. It also has several
practical benefits such as deriving from the coarse clustering
GKFCM directly, automatic stabilization, and the flexible
selection of iteration of evolution avoiding insufficient or
excessive segmentation. Simulation results confirm the effec-
tiveness of proposed method for segmentation of variant
medical imageswith intensity inhomogeneity andprove these
advantages by comparing new method with several famous
region-based level set segmentation methods and similar
approaches.

In future research, it is interesting to incorporate simul-
taneously both the local spatial and the local gray level
relationship in a fuzzy way for coarse clustering phase.
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