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Propofol injection combined with bone marrow 
mesenchymal stem cell transplantation better improves 
electrophysiological function in the hindlimb of rats 
with spinal cord injury  than monotherapy
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Introduction
Neurotrophic drugs and rehabilitation therapy are currently 
used to treat spinal cord injury (SCI) in the clinic, to save 
neurons on the verge of necrosis in ischemic penumbra, 
and to promote the recovery of neuronal function (Guan et 
al., 2008; Jiang et al., 2009b; Chen et al., 2013; Xiang et al., 
2013). However, spinal cord neurons do not have the ability 
to self-repair, and cannot reach the desired clinical effect 
(Leman et al., 2000; Jacob et al., 2001; Yeoh et al., 2004; He 
et al., 2005). Under certain conditions, stem cells have the 
ability to self-renew, multi-differentiate and migrate (Hambly 
and Martin, 1998; Chen et al., 2000; Mizuno and Sugimoto, 
2000; Xu et al., 2004). Stem cells are present in bone marrow, 
umbilical cord blood, placenta and peripheral blood, and 
can differentiate, be cultured and be amplified into genetic 
stability in multiple tissues and cells in vitro (Wallerstedt 
et al., 1998; Hsieh et al., 2007; Kahn et al., 2007; Yu et al., 

2011b). Stem cells can be used as ideal donors for neural 
transplantation (Kouchi et al., 1998; Zhao et al., 2003; Yao 
et al., 2007; Wang et al., 2009a). Transplanted bone marrow 
mesenchymal stem cells (BMSCs) can survive in the injured 
spinal cord, produce and release chemokines, secrete a vari-
ety of growth factors, inhibit the expression of inflammatory 
factors, induce microvascular regeneration in the injury 
region, lessen local secondary inflammatory response, differ-
entiate into neurons and glial cells, promote neuronal regen-
eration and reconstruction, and treat SCI (Bolli et al., 2002; 
Weber et al., 2005; Huang et al., 2007; Li et al., 2013). 

Propofol has been shown to play a protective effect on cen-
tral nervous system injury. Moreover, propofol exerts effects 
rapidly, can be cleared rapidly, shows few adverse reactions, 
can reduce the metabolic rate of oxygen, inhibit cell apopto-
sis, and has been extensively used in the clinic (Monti et al., 
2013). BMSCs can repair neurons under certain conditions, 
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but the repair effect of BMSC transplantation alone on ner-
vous system injury is not satisfactory. Possible reasons are as 
follows: secondary injuries after SCI such as hemorrhage and 
ischemia as well as a series of biochemical, cytotoxic sub-
stances, metabolites, and free radicals cause nerve cell reper-
fusion injury, excitotoxicity, necrosis, apoptosis, and inflam-
matory response, which further results in difficult recovery 
from primary nerve damage and continued expansion of 
lesions (Arivazhagan and Ganesan, 2003; Brambilla et al., 
2005; Dosenko et al., 2005). Therefore, we hypothesized that 
the combination of propofol and BMSC transplantation for 
treatment of SCI in rats might obtain better outcomes. This 
study was designed to observe the alterations in hindlimb 
movement and electrophysiological function in rats with SCI 
after propofol injection combined with BMSC transplanta-
tion. 

Materials and Methods
Culture and identification of rat BMSCs
One Wistar rat aged 1 month was obtained from Hebei Ex-
perimental Animal Center in China (production license No. 
SCXK (Ji) 20080004). The protocols were approved by the 
Animal Ethics Committee, Hebei Medical University, Chi-
na. After sacrifice, the rat was immersed in a 75% ethanol 
container for thorough disinfection for approximately 10 
minutes. Bilateral tibia and femur of rats were obtained, and 
bilateral bone ends were removed. 1 mL L-DMEM complete 
medium (Gibco BRL, Gaithersburg, MD, USA) containing 
5% fetal bovine serum (Hyclone, Logan, Utah, USA) was 
used to wash the marrow cavity from one side. Single-cell 
suspensions were made and incubated in 100 mL culture 
flasks. Cells at the concentration of 3 × 104/mL were cultured 
in an incubator of saturated humidity at 37°C and 5% CO2 
for 24 hours. The medium was completely replaced. From 
then on, the medium was replaced once every 3 days. Cells 
were subcultured at 1:2. Cell growth was observed under a 
light microscope (IX71; Olympus, Tokyo, Japan) every day. 
When cells were confluent at above 80%, cells were subcul-
tured at 1:3. After repeated subculture amplification, BMSCs 
were gradually purified. Flow cytometry (BD FACSCalibur; 
Indianapolis, IN, USA) was used to detect surface antigens 
for identifying BMSCs. 

PKH-26-labeled BMSCs 
In the dark, 5 μL PKH-26 solution (Sigma, St. Louis, MO, 
USA) diluted by L-DMEM containing 5% fetal bovine 
serum was placed in a 1.5 mL Eppendorf tube. 1 mL of 
L-DMEM containing 5% fetal bovine serum was also added. 
After mixing, PKH-26 marking fluid was obtained. After 
removal of the medium, adherent BMSCs at 80% confluence 
were collected and washed three times with PBS. BMSCs 
were incubated with the above marking fluid at 40 μL/cm2 
in an incubator at 5% CO2, saturated humidity and 37°C 
for 20 minutes. After removal of the marking fluid, 5 mL of 
37°C L-DMEM containing 5% fetal bovine serum was added 
for 10 minutes of incubation. After removal of the above 
medium, BMSCs were washed three times with L-DMEM 

containing 5% fetal bovine serum. The effects of labeling 
with PKH-26 and the morphology of labeled BMSCs were 
observed under a fluorescence microscope (IX71; Olympus). 

establishment of rat models of SCI 
A total of 80 clean adult healthy female Wistar rats aged 4 
weeks and weighing 200–250 g were obtained from Hebei 
Experimental Animal Center in China (production license 
No. SCXK (Ji) 20080004). After raising in the laboratory 
for 2 weeks, the rats were intraperitoneally anesthetized 
with 350 mg/kg 10% chloral hydrate, and then fixed on the 
experimental platform in a prone position. After the lower 
back was shaved, a median incision was made on the rat 
back taking the T8–9 spinous process as a center to fully ex-
pose the T7–10 spinous process and lamina. The T8–9 spinous 
process and part of the lamina were removed. The complete 
dura mater was exposed and considered as the injury re-
gion. In accordance with the modified Allen’s method (Jing 
et al., 2014; Liu et al., 2014), 10 g weight freely fell from a 
height of 2.5 cm and impacted the dura and spinal cord of 
the rats. Rat tail swing and spasm, and paralysis of the lower 
limbs, indicated successful model establishment. The wound 
was washed with hydrogen peroxide. The incision on the 
back was sutured layer by layer. After modeling, urine was 
squeezed twice or three times every day until the micturition 
reflex was restored in rats. 

Combination of propofol injection and BMSC 
transplantation 
Rat models were randomly divided into model, BMSC, 
propofol and combination groups. Each group contained 20 
rats. At 6 hours after model establishment, rats in the model 
group were injected with 1 mL L-DMEM containing 5% fe-
tal bovine serum via tail vein. Rats in the BMSC group were 
injected with 1 mL BMSC (3 × 106 cells) suspension via tail 
vein. Rats in the propofol group were injected with propofol 
(2 mL/kg per hour; Approval No. GYZZ H19990282; China 
Xi’an Libang Pharmaceutical Co., Ltd., Xi’an, Shaanxi Prov-
ince, China) using a tail vein catheter pump for 4 hours. Rats 
in the combination group were injected with 1 mL BMSCs 
(3 × 106 cells) suspension via tail vein and propofol injection 
(2 mL/kg per hour) using the tail vein catheter pump for 4 
hours. 

evaluation of hindlimb motor function 
Motor function was assessed before model establishment at 
1 and 3 days, and 1, 2, 3 and 4 weeks after model establish-
ment. Assessment items included modified inclined plate 
test, Tarlov score and Basso Beattie Bresnahan (BBB) score. 

Modified inclined plate test: Rats were placed on a smooth 
wood plate. The body axis was parallel to the vertical axis 
of the plate. The plate angle increased by 5° every trial. The 
maximum angle that rat could stay for 5 seconds was con-
sidered as its function value (Zi et al., 2006). 

Tarlov score: grade 0, no activity, cannot load; grade 1, 
activity, cannot load; grade 2, active or powerful activities, 
cannot load; grade 3, hindlimb can support body weight, 
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can walk 1 to 2 steps; grade 4, can walk, only mild disorders; 
grade 5, normal walking (Zhang et al., 2008). 

BBB score: 22 grades in total; grade 0, hindlimb paralysis; 
grade 21, normal function. Main outcome measures includ-
ed the number of joint activities, range of motion, loading 
degree, coordination of forelimb and hindlimb, activities of 
forepaws, hind paws and tail (Ding et al., 2011). 

Pathological observation 
At 4 weeks after model establishment, five rats were obtained 
from each group, and anesthetized with 10% chloral hydrate 
(350 mg/kg). The chest was opened to completely expose the 
heart. The right auricle was incised and washed with physio-
logical saline through ascending aortic cannulation, followed 
by fixation with 4% paraformaldehyde. Approximately 1 cm 
of complete spinal cord was obtained from the lesion site, 
dehydrated through a graded alcohol series, and longitudi-
nally sectioned into 20 μm-thick frozen slices. These slices 
were stained with hematoxylin for 5 minutes, washed with 
running water, treated with ethanol hydrochloride for 10 

seconds, washed with running water for 10 minutes, stained 
with eosin for 7 minutes, washed with running water, dehy-
drated through a graded alcohol series, permeabilized with 
xylene, mounted with neutral resin, and observed with a mi-
croscope. An additional spinal cord sample at the injury re-
gion was sliced into frozen sections. Ten fields of each frozen 
section were observed directly under the fluorescence micro-
scope at 200× magnification. The number of PKH-26-pos-
itive cells was calculated in each field, and the average was 
obtained. 

Detection of somatosensory evoked potential and motor 
evoked potential 
At 4 weeks after model establishment, six rats were obtained 
from each group. In accordance with a previous method 
(Yeoh et al., 2004), KEYPOINT 4 evoked potential instru-
ment (Beijing Weidi Kangtai Medical Instrument Co., Ltd., 
Beijing, China) was applied to determine the somatosensory 
and motor evoked potentials in the hindlimbs. The rat was 
intraperitoneally anesthetized with 10% chloral hydrate, and 

Table 1 effects of propofol injection combined with BMSC transplantation on motor function of hindlimb of rats with spinal cord injury 

Group Before injury

 After injury 

1 day     3 days 1 week 2 weeks 3 weeks 4 weeks

BBB score
Model 21.00±0.00 0.00±0.00 1.23±0.05 2.45±0.67 8.41±1.52* 11.12±1.30* 13.79±0.68*

BMSC 21.00±0.00 0.00±0.00 2.42±0.06 3.91±1.02* 10.31±1.46* 12.70±1.42* 15.14±0.17*

Propofol 21.00±0.00 0.00±0.00 2.44±0.05 3.94±1.05* 10.27±1.10* 12.10±1.42* 15.24±0.12

Combination 21.00±0.00 0.00±0.00 3.43±0.06 6.12±1.00**#† 12.31±1.18**#† 14.76±1.33**#† 17.57±0.23**#†

Inclined plate test
Model 42.51±1.63 15.84±1.53 16.51±1.22 21.84±2.15 23.12±2.00 26.19±2.14 28.21±1.36

BMSC 42.52±1.72 16.77±2.21 18.89±1.24* 24.61±2.14* 30.31±2.24 34.55±2.03* 38.72±2.10*

Propofol 42.51±2.13 16.79±1.46 18.79±1.32* 24.71±1.52* 30.29±2.13* 34.27±2.36* 38.32±2.30*

Combination 42.51±2.24 18.48±1.36 21.61±2.13**#† 25.45±2.24*#† 33.52±2.41**#† 38.49±2.49**#† 41.50±2.30**#†

Modified Tarlov score
Model 5.00 ±0.00 0.00±0.00 0.40± 0.12 0.81±0.14* 1.64±0.29 2.46±0.17 2.65±0.34*

BMSC 5.00 ±0.00 0.00±0.00 0.71± 0.17 1.60±0.18 2.80± 0.31* 3.62±0.23* 3.91±0.34

Propofol 5.00 ±0.00 0.00±0.00 0.72± 0.18 1.61±0.19 2.82± 0.47* 3.62±0.18* 3.89±0.22*

Combination 5.00 ±0.00 0.00 ±0.00 0.83 ±0.14 1.83±0.17 3.04±0.42**#† 3.46±0.24** 4.16±0.23**#†

Data are expressed as the mean ± SD, with eight rats in each group. Intergroup comparison was done using one-way analysis of variance and the 
least significant difference. *P < 0.05, **P < 0.01, vs. model group; #P < 0.05, vs. BMSC group; †P < 0.05, vs. propofol group. BMSC: Bone marrow 
mesenchymal stem cell; BBB: Basso Beattie Bresnahan. 

Table 2 effects of propofol injection combined with BMSC transplantation on somatosensory evoked potential and motor evoked potential in 
hindlimb of rats with spinal cord injury

Group

Somatosensory evoked potential Motor evoked potential

Latency (ms) Amplitude (μV) Latency (ms) Amplitude (mV) 

Model 35.652±1.014 1.315±0.122 15.932±0.360 1.582±0.142

BMSC 26.753±1.001* 1.724±0.116* 12.152±0.142* 2.351±0.146*

Propofol 26.746±1.012* 1.722±0.102* 12.148±0.167* 2.340±0.218*

Combination 15.014±0.752**#† 2.011±0.134**#† 7.951±0.185**#† 4.161±0.202**#†

Data are expressed as the mean ± SD, with eight rats in each group. Intergroup comparison was done using one-way analysis of variance and the 
least significant difference. *P < 0.05, **P < 0.01, vs. model group; #P < 0.05, vs. BMSC group; †P < 0.05, vs. propofol group. BMSC: Bone marrow 
mesenchymal stem cell.
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placed on the horizontal plane. The hindlimb was connected 
to the stimulating electrode. The recording electrode was 
placed under the scalp at the intersection of the healing line 
of the coronal and sagittal suture (i.e., the cortical sensory 
area of the hindlimb). The reference electrode was placed at 
0.5 cm posterior to the recording electrode. Direct-current 
square wave electrical pulse stimulation was given at a cur-
rent intensity of 5–15 mA, wave width of 0.2 ms, frequency 
of 3 Hz and superposition times of 50–60 times. Slight 
twitch of the hindlimb was appropriate. Changes in the la-
tency and amplitude of the somatosensory evoked potential 
were recorded. Detection of motor evoked potential: after 
anesthesia, the acicular stimulating electrode was placed be-
low the scalp 2 mm anterior to the coronal suture and 2 mm 
lateral to the sagittal suture (i.e., motor cortex) at a stimulus 
intensity of 40 mA, wave width of 0.1 ms, frequency of 1 Hz, 
superposition of 300–500 times, scanning speed of 5 ms/D 
and sensitivity of 5 μV/D. Changes in the latency and am-
plitude of the motion evoked potential were observed and 
recorded.

Horseradish peroxidase (HRP) retrograde nerve tracing
At 4 weeks after model establishment, four rats were ran-
domly obtained from each group. After anesthesia, the spinal 
cord was exposed. The needle was inserted at 1 mm left and 
right of the median vein of the T12 spinal cord on the dorsal 
side at a depth of 1.5 mm. 50% horseradish peroxidase 1 
μL (Santa Cruz Biotechnology, Santa Cruz, CA, USA) was 
injected at 0.1 μL/10 minutes. The needle was maintained 
in place for 15 minutes. After being raised for 3 days, the 
rats were anesthetized with chloral hydrate. The heart was 
perfused with 4% paraformaldehyde. Rat T3–11 spinal cord 
was immersed in 30% sucrose solution at 4°C for 20 hours, 
and sliced into 5 μm-thick frozen sections. These sections 
were treated with 3,3′-diaminobenzidine. The number of 
HRP-positive nerve fiber bundles on the cross-section of 
the spinal cord was quantified using a light microscope 
(Olympus).  

Statistical analysis 
Data are expressed as the mean ± SD, and analyzed using 
SPSS 17.0 software (SPSS, Chicago, IL, USA). Intergroup 
comparison was done using one-way analysis of variance 
and the least significant difference test. A value of P < 0.05 
was considered statistically significant. 

Results
Morphology and identification results of BMSCs
Five days after culture, the numbers of BMSCs and colonies 
had apparently increased. BMSC proliferation at passages 
1, 2 and 3 was active. After subculturing, most cells were 
adherent and monostratal, mostly fusiform, large polygonal 
or triangular. BMSC morphology gradually became similar, 
mainly fusiform. BMSCs had strong refraction, with the 
presence of two or more processes, nucleus and nucleolus 
(Figure 1). Flow cytometry results revealed that BMSCs were 
positive for CD29, CD105, CD44, CD166, and negative for 

CD34, CD86 and CD80. The homogenicity of BMSCs was 
good, and the purity of BMSCs was above 95%. 

Combination of propofol injection and BMSC 
transplantation improved hindlimb motor function in rats 
with SCI 
The scores of the modified inclined plate test, the Tarlov 
scores and the BBB scores were similar in each group before 
model establishment (P > 0.05). At 2–4 weeks after SCI, 
compared with the model group, the BBB, modified inclined 
plate test and Tarlov scores were significantly higher in the 
BMSC, propofol and combination groups (P < 0.05 or P < 
0.01). Moreover, the above scores were higher in the combi-
nation group than in the BMSC and propofol groups (P < 
0.05; Table 1). 

Combination of propofol injection and BMSC 
transplantation improved spinal cord morphology and 
promoted BMSC survival in rats with SCI 
Hematoxylin-eosin staining results demonstrated that by 4 
weeks after model establishment, the spinal cord broke, the 
scar connected, and an apparent cavity formed in the model 
group. The cavity nearly disappeared in the lesion site in the 
combination group. The cavities in the propofol and BMSC 
groups were bigger than those in the combination group, but 
smaller than those in the model group (Figure 2). 

Under the fluorescence microscope, PKH-26-positive cells 
were scattered in the BMSC and combination groups. The 
number of PKH-26-positive cells was significantly greater in 
the combination group than in the BMSC group (P < 0.01; 
Figure 3). 

Combination of propofol injection and BMSC
transplantation improved somatosensory and motor 
evoked potentials in the hindlimb of rats with SCI 
The somatosensory and motor evoked potentials in the 
hindlimb completely disappeared in each group after SCI. 
At 4 weeks, the somatosensory and motor evoked poten-
tials were slightly restored in the model group. Compared 
with the model group, the latency of the somatosensory and 
motor evoked potentials in the hindlimb was shorter and 
their amplitude was larger in the BMSC, propofol and com-
bination groups (P < 0.05 or P < 0.01). Compared with the 
BMSC and propofol groups, the latency of the somatosenso-
ry and motor evoked potentials in the lower extremity was 
shorter and their amplitude was larger in the combination 
group (P < 0.05; Table 2). 

Combination of propofol injection and BMSC 
transplantation increased the number of nerve fibers in 
the injured spinal cord of rats 
A few HRP-positive nerve fibers were observed in segments 
above T8 in the model group at 4 weeks after injury. The 
number of HRP-positive nerve fibers was greater in the 
BMSC and propofol groups than in the model group (P < 
0.05). The number of HRP-positive nerve fibers was greater 
in the combination group than in the model, BMSC and 
propofol groups (P < 0.01; Figure 4). 
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Figure 2 effects of propofol injection combined with BMSC transplantation on morphology of the spinal cord of rats at 4 weeks after injury
(hematoxylin-eosin staining, × 40). 
(A) Noticeable cavity in the rat spinal cord in the model group; (B–D) cavity became small in the propofol group (B), BMSC group (C) and com-
bination group (D). The therapeutic effects were best in the combination group. Arrows show cavity. BMSC: Bone marrow mesenchymal stem cell. 

Figure 3 effects of propofol injection combined with BMSC transplantation on BMSC survival in the spinal cord of rats at 4 weeks after injury. 
(A–D) Survival of transplanted BMSCs in the spinal cord (fluorescence microscope, × 200). PKH-26-positive cells were not detected in the rat 
spinal cord in the model group (A) and propofol group (B). (C) PKH-26-positive cells were visible in the BMSC group. (D) PKH-26-positive cells 
were numerous in the combination group. PKH-26-labeled cells present red. (E) Number of transplanted BMSCs in the spinal cord of rats with 
spinal cord injury. Data are expressed as the mean ± SD, with eight rats in each group. Intergroup comparison was done using one-way analysis of 
variance and the least significant difference test. **P < 0.01, vs. model group; ##P < 0.01, vs. BMSC group; ††P < 0.01, vs. propofol group. BMSC: 
Bone marrow mesenchymal stem cell.

Figure 1 Morphology of cultured rat BMSCs (× 200). 
(A) Primary cultured BMSCs show swirling arrangement; (B) third 
passage BMSCs are fusiform. BMSCs: Bone marrow mesenchymal 
stem cells. 
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Figure 4 effects of propofol injection combined with BMSC 
transplantation on the number of nerve fibers in the spinal cord of 
rats at 4 weeks after injury. 
(A–D) Morphology of nerve fibers in the injured nerve fibers (light 
microscope, × 200). A few HRP-positive nerve fibers were visible in the 
rat spinal cord. Abundant HRP-positive nerve fibers were observed in 
the rat spinal cord in the propofol group (B) and BMSC group (C). The 
number of HRP-positive nerve fibers was highest in the combination 
group (D). HRP-labeled nerve fibers present brown. (E) Number of 
nerve fibers in the injured spinal cord of rats. Data are expressed as the 
mean ± SD, with eight rats in each group. Intergroup comparison was 
done using one-way analysis of variance and the least significant differ-
ence test. *P < 0.05, **P < 0.01, vs. model group; ##P < 0.01, vs. BMSC 
group; ††P < 0.01, vs. propofol group. BMSC: Bone marrow mesenchy-
mal stem cell; HRP: horseradish peroxidase.

Discussion
BMSCs are characterized by an abundant source, conve-
nient collection and autotransplantation, and provide a new 
therapeutic tool for nervous system injury (Adembri et al., 
2006; Iijima et al., 2006; Yu et al., 2011a; Zhang et al., 2013). 
BMSCs in the injured spinal cord can differentiate into neu-
rons and glial cells, and possibly form synaptic connections 
to nervous processes at both ends of the injury region (Su-
fianova et al., 2002; Kitz et al., 2006; Choi et al., 2007; Jiang 
et al., 2009a). Cell transplantation is an effective method to 
repair the injured spinal cord (Feng et al., 2013; Gao et al., 
2013; Liu et al., 2013). BMSCs can divide and proliferate in 
the transplanted region, and differentiate into correspond-
ing cells under local microenvironment so as to replace 
injured cells (Sayin et al., 2002; Gaweł et al., 2004; Shen et 
al., 2009). Many scholars believe that BMSCs should be first 
cultured in vitro and differentiated into neural precursor 
cells, whose transplantation in the injury region contrib-
utes to cell survival and forming cells with corresponding 
functions (Miyanji et al., 2007; Jing et al., 2008; Zhang et al., 
2010). The repair effect of neural stem cell transplantation 
alone on the injured spinal cord is not satisfactory, but it 
can be combined with drugs and biological engineering ma-
terials for comprehensive treatment (Kumagai et al., 2006; 
Wang et al., 2009b; Li et al., 2010). 

The early application of propofol could reduce serum 
S100β protein content, total calcium content, and water con-
tent in the injured spinal cord (Wang et al., 2009a; Morizane 
et al., 2012), suppress free radical generation, prevent free 
radical chain reactions, resist oxidation activity, and inhibit 
lipid peroxidation. Therefore, propofol can diminish the met-
abolic rate of oxygen, mediate specific cellular pathways, and 

thus show neuroprotective effects (Feng et al., 2005). Propofol 
has been shown to decrease nitric oxide synthase activity and 
ET-1 synthesis, to regulate vasomotor function, and to im-
prove blood flow in ischemic tissue. Endothelin existing in the 
vascular endothelial cells is the strongest vasoconstrictor. SCI 
completely destroys vascular endothelial cells, and endothelin 
increases in the injury region (Chen and Wang, 2004; Wang et 
al., 2006). Propofol acts on vasodilation, causes hypotension, 
reduces hemoperfusion in local tissue, and further aggravates 
ischemic injury. Propofol administration, ischemic postcon-
ditioning in early reperfusion and early restoration of blood 
supply in the injured spinal cord play a great protective effect 
on spinal cord ischemia/reperfusion injury. 

Results from the present study demonstrated that the 
numbers of PKH-26-positive cells and HRP-positive nerve 
fibers apparently increased, the latencies of somatosensory 
evoked potentials and motor evoked potentials obviously 
shortened, amplitudes increased, and motor function in 
the lower extremities improved significantly after BMSC 
transplantation and/or propofol injection in rats with 
SCI. Moreover, the numbers of PKH-26-positive cells and 
HRP-positive nerve fibers, somatosensory evoked potentials 
and motor evoked potentials, and motor function in the 
hindlimbs were better in the combination group than in the 
BMSC group and propofol group. The above data indicate 
that the combination of propofol injection and BMSC trans-
plantation for treating SCI in rats could effectively promote 
the regeneration of synapses and improve motor function 
and electrophysiological function in the hindlimb. 
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