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Abstract: This review illustrates how Local Fermi Liquid (LFL) theories describe the strongly
correlated and coherent low-energy dynamics of quantum dot devices. This approach consists in an
effective elastic scattering theory, accounting exactly for strong correlations. Here, we focus on the
mesoscopic capacitor and recent experiments achieving a Coulomb-induced quantum state transfer.
Extending to out-of-equilibrium regimes, aimed at triggered single electron emission, we illustrate
how inelastic effects become crucial, requiring approaches beyond LFLs, shedding new light on past
experimental data by showing clear interaction effects in the dynamics of mesoscopic capacitors.

Keywords: dynamics of strongly correlated quantum systems; quantum transport; mesoscopic physics;
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1. Introduction

The manipulation of local electrostatic potentials and electron Coulomb interactions has been
pivotal to control quantized charges in solid state devices. Coulomb blockade [1–3] has revealed to be
a formidable tool to trapping and manipulating single electrons in localized regions behaving as highly
tunable artificial impurities, so called quantum dots. Beyond a clear practical interest, which make
quantum dots promising candidates to become the building block of a quantum processor [4–6],
hybrid [7] quantum dot systems also became a formidable platform to address the dynamics of
many-body systems in a controlled fashion, and a comprehensive theory, which could establish
the role of Coulomb interactions when these systems are strongly driven out of equilibrium, is still
under construction.

Beyond theoretical interest, this question is important for ongoing experiments with mesoscopic
devices aimed towards the full control of single electrons out of equilibrium. Figure 1 reports some of
these experiments [8–19], in addition to the mesoscopic capacitor [20–26], which will be extensively
discussed in this review. These experiments and significant others [27–33] have a common working
principle: A fast [34] time-dependent voltage drive V(t), applied either on metallic or gating contacts,
triggers emission of well defined electronic excitations. Remarkably, these experiments achieved to
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generate, manipulate, and detect single electrons on top of a complex many-body state such as the
Fermi sea. A comprehensive review of these experiments can be found in Ref. [35].

Figure 1. Some recent experiments achieving real-time control of single electrons. (a) Leviton generation
by a Lorentzian voltage pulse in metallic contacts, generating a noiseless wave-packet carrying
the electron charge e [8–13]. This wave-packet is partitioned on a Quantum Point Contact (QPC),
whose transmission D is controlled by the split-gate voltage VG. (b) Single quantum level electron
turnstile [18,19]. Two superconductors, biased by a voltage VB, are connected by a single-level quantum
dot. Inset—Working principle of the device: A gate voltage controls the orbital energy of the quantum dot,
which is filled by the left superconductor and emptied in the right one. (c) Long-range single-electron
transfer via a radio-frequency pulse between two distant quantum dots QD1 and QD2 [14–17].
The electron “surfs” along the moving potential generated by the radio-frequency source and is
transferred along a one-dimensional channel from QD1 to QD2. (d) The mesoscopic capacitor [20–26],
in which a gate-driven quantum dot emits single electrons through a QPC in a two-dimensional
electron gas. This platform will be extensively discussed in this review.

In this context, interactions are usually considered detrimental, as they are responsible for
inelastic effects leading to diffusion and dephasing [36]. Interaction screening or, alternatively,
the disappearance of such inelastic effects at low driving energies or temperatures [37–42] is thus
crucial to identify single-electron long-lived excitations (quasi-particles) close to the Fermi surface.
The possibility of identifying such excitations, even in the presence of strong Coulomb interactions,
is the core of the Fermi liquid theory of electron gases in solids [43,44], usually identified with the
∝ T2 suppression of resistivities in bulk metals. It is the validity of this theory for conventional metals
that actually underpins the success of Landauer–Büttiker elastic scattering theory [45–47] to describe
coherent transport in mesoscopic devices.

The aim of this review is to show how a similar approach can also be devised to describe transport
in mesoscopic conductors involving the interaction of artificial quantum impurities. In these systems,
electron-electron interactions are only significant in the confined and local quantum dot regions,
and not in the leads for instance, therefore we use the terminology of a Local Fermi Liquid theory (LFL)
in contrast to the conventional Fermi liquid approach for bulk interactions. Originally, the first LFL
approach [48] was introduced to derive the low energy thermodynamic and transport properties of
Kondo local scatterers in materials doped with magnetic impurities [49]. In this review, we will show
how LFLs provide the unifying framework to describe both elastic scattering and strong correlation
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phenomena in the out-of-equilibrium dynamics of mesoscopic devices. This approach makes also clear
how inelastic effects, induced by Coulomb interactions, become visible and unavoidable as soon as
such systems are strongly driven out of equilibrium. We will discuss how extensions of LFLs and
related approaches describe such regimes as well.

As a paradigmatic example, we will focus on recent experiments showing the electron
transfer with Coulomb interactions [50], (see Figure 2), and, in more detail, on the mesoscopic
capacitor [20–26], (see Figure 6). The mesoscopic capacitor does not support the DC transport, and it
makes possible the direct investigation and control of the coherent dynamics of charge carriers. The LFL
description of such devices entails the seminal results relying on self-consistent elastic scattering
approaches by Büttiker and collaborators [51–56], but it also allows one to describe effects induced
by strong Coulomb correlations, which remain nevertheless elastic and coherent. The intuition
provided by the LFL approach is a powerful lens through which it is possible to explore various
out-of-equilibrium phenomena, which are coherent in nature but are governed by Coulomb interactions.
As an example, we will show how a bold treatment of Coulomb interaction unveils originally
overlooked strong dynamical effects, triggered by interactions, in past experimental measurements
showing fractionalization effects in out-of-equilibrium charge emission from a driven mesoscopic
capacitor [25].

This review is structured as follows. In Section 2, we give a simple example showing how
Coulomb interactions trigger phase-coherent electron state transfer in experiments as those reported
in Ref. [50], Figure 2. Section 3 discusses how the effective LFL approach [57–64] provides the unified
framework describing such coherent phenomena. In Section 4, we consider the study of the low-energy
dynamics of the mesoscopic capacitor, in which the LFL approach has been fruitfully applied [65–69],
showing novel quantum coherent effects. Section 5 extends the LFL approach out of equilibrium and
describes signatures of interactions in measurements of strongly driven mesoscopic capacitors [25].

2. Phase-Coherence in Quantum Devices with Local Interactions

To illustrate the restoration of phase coherence at low temperatures in the presence of interactions,
we consider two counter-propagating edge states entering a metallic quantum dot, or cavity. Such a
system was recently realized as a constitutive element of the Mach–Zender interferometer of Ref. [50],
reported in Figure 2. In that experiment, the observation of fully preserved Mach–Zehnder oscillations,
in a system in which a quantum Hall edge state penetrates a metallic floating island demonstrates an
interaction-induced, restored phase coherence [70,71].

The dominant electron-electron interactions in the cavity have the form of a charging energy [1–3]

Hc = Ec[N −Ng(t)]2 , (1)

in which N is the number of electrons in the island, Cg is the geometric capacitance,
and Ng = CgVg(t)/e is the dimensionless gate voltage, which corresponds to the number of charges
that would set in the cavity if N was a classical, non-quantized, quantity. We also define the charging
energy Ec = e2/2Cg: The energy cost required the addition of one electron in the isolated cavity.
For the present discussion, we neglect the time-dependence of the gate-potential Vg, which will be
reintroduced to describe driven settings. In the linear-dispersion approximation, the right/left-moving
fermions ΨR,L in Figure 2, moving with Fermi velocity vF, are described by the Hamiltonian:

Hkin = vF h̄ ∑
α=R/L

∫ ∞

−∞
dx Ψ†

α(x)(−iα∂x)Ψα(x) , (2)

with the sign α = +/−multiplying the ∂x operator for right- and left-movers respectively. The floating
island occupies the semi-infinite one-dimensional space located at x > 0 with the corresponding charge
N = ∑α

∫ ∞
0 dxΨ†

α(x)Ψα(x). It is important to stress that the model (1)–(2) is general and effective
in describing different quantum dot devices. It was originally suggested by Matveev to describe



Entropy 2020, 22, 847 4 of 52

quantum dots connected to leads through a single conduction channel [72] and it equally describes the
mesoscopic capacitor, see Sections 4 and 5.

Figure 2. Left—Mach–Zehnder interferometer with a floating metallic island (colored in yellow) [50].
The green lines denote chiral quantum Hall edge states, which can enter the floating island passing
through a gate-tunable QPC (in blue). An additional QPC separates the floating island from
an additional reservoir on its right. Center—The floating island is described by two infinite
counter-propagating edges, exchanging electrons coherently thanks to the charging energy Ec of
the island (red arrow). Right—Mach–Zehnder visibility of the device as a function of magnetic field B.
Oscillation of this quantity as function of B signals quantum coherent interference between two paths
encircling an Aharonov–Bohm flux. In the situation sketched in box A, the first QPC is closed and
the interferometer is disconnected from the island and visibility oscillations are observed, as expected
(red line). Remarkably, the oscillations persist (black line) in the situation sketched in box B, where the
leftmost QPC is open and one edge channel enters the floating island. The visibility oscillations are
only suppressed in the situation sketched in box C, where the rightmost QPC is also open and the
island is connected to a further reservoir (blue line).

The model (1)–(2) characterizes an open-dot limit in the sense that it does not contain an
explicit backscattering term coupling the L and R channels. It can be solved exactly by relying
on the bosonization formalism [73–76], which, in this specific case, maps interacting fermions onto
non-interacting bosons [72,77,78]. Using this mapping, one can show that the charging energy Ec

perfectly converts, far from the contact, right-movers into left-movers. This fact is made apparent by
the “reflection” Green function GLR [77]:

GLR =
〈
TτΨ†

L(x, τ)ΨR(x′, 0)
〉
' e−i2πNg

T/2vF

sin
[

πT
h̄

(
τ + i(x + x′)− i πh̄

EceC

)] , (3)

which we consider at finite temperature T. In Equation (3), Tτ is the usual time-ordering operator
defined as Tτ A(τ)B(τ′) = θ(τ− τ′)A(τ)B(τ′)± θ(τ′− τ)B(τ′)A(τ), in which the sign +/− is chosen
depending on the bosonic/fermionic statistics of the operators A and B [79] and θ(τ) is the Heaviside
step function. As first noted by Aleiner and Glazman [77], the form of GLR at large (imaginary) time τ

corresponds to the elastic reflection of the electrons incident on the dot, with a well-defined scattering
phase πNg. The correlation function (3) would be identical if the interacting dot was replaced with a
non-interacting wire of length vFπh̄/Ecγ (with ln γ = C ' 0.5772 being Euler’s constant), imprinting
a phase πNg when electrons are back-reflected at the end of the wire [80].

The physical picture behind Equation (3) is that an electron entering and thereby charging the
island violates energy conservation at low temperature and must escape on a time scale h̄/Ec fixed by
the uncertainty principle. The release of this incoming electron can happen either elastically, in which
case the electron keeps its energy, or inelastically via the excitation of electron-hole pairs. As we discuss
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in Section 3.1, inelastic processes are suppressed by the phase space factor (ε/Ec)2, ε being the energy
of the incoming electron, and they die out at low energy or large distance (time), reestablishing purely
elastic scattering despite a nominally strong interaction.

Equation (3) is thus a remarkable example of how interactions trigger coherent effects in
mesoscopic devices. It has been derived here for an open dot, a specific limit in which the charge
quantization of the island is fully suppressed. However, the restoration of phase coherence at low
energy is more general and applies for an arbitrary lead-island transmission, in particular in the
tunneling limit where the charge states of the quantum dot are well quantized [1–3]. This quantization
is known to induce Coulomb blockade in the conductance of the device, see Figure 3. Nevertheless,
a Coulomb blockaded dot acts at low energy as an elastic scatterer imprinting a phase δ [81,82] related
to its average occupation 〈N〉 via the Friedel sum rule, see Section 3.2. For weak transmissions, 〈N〉
strongly deviates from the classical value Ng. These features constitute the main characteristics of the
local Fermi liquid picture detailed in the forthcoming sections.

Figure 3. Coulomb blockade and emergent LFL behavior. When the typical energy of the system
(temperature, bias-voltage, . . . ) is smaller than the charging energy Ec, charge quantization Q = e 〈N〉 in
the dot suppresses the conductance G of the system. Degeneracy between different charge occupations
lead to conductance peaks, which become larger the stronger the tunnel exchange of electrons with the
leads. Conductance peaks and charge quantization disappear in the open-dot limit. For any tunneling
strength, the dot behaves as an elastic scatterer described by the LFL theory (8), with potential scattering
of strength W, inducing a phase-shift δW on lead electrons set by the dot occupation 〈N〉.

3. What Are Local Fermi Liquids and Why Are They Important to Understand
Quantum-Dot Devices?

In this Section, we introduce the local Fermi liquid theory and discuss its application to quantum
transport devices. The general system considered in this paper is a central interacting region, such as a
quantum dot, connected to leads described as non-interacting electronic reservoirs. The Hamiltonian
takes the general form:

H = Hres +Hres−dot +Hdot +Hc . (4)

The first term describes the lead reservoir, which could be either a normal metal [14], a chiral edge
state in the quantum Hall regime [22,29], or a superconductor [18]. In the case of a normal metal, it is
given by:

Hres = ∑
k

εkc†
k ck , (5)

in which ck annihilates a fermion in the eigenstate state k of energy εk in the reservoir. For instance,
in Figure 2, the reservoir modes correspond to the x < 0 components of the operators ΨR/L. The field
Ψres(x) = θ(−x)ΨR(x) + θ(x)ΨL(−x), with θ(x) the Heaviside step function, unfolds the chiral field
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onto the interval x ∈ [−∞, ∞] and its Fourier transform ck =
∫ ∞
−∞ dxe−ikxΨres(x) recovers Equation (5)

from Equation (2), with εk = h̄vFk.
The single particle physics of the quantum dot is described instead by:

Hdot = ∑
l
(εd + ε l)nl (6)

in which nl = d†
l dl counts the occupation of the orbital level l and dl annihilates fermions in that state.

The spectrum can be either discrete for a finite size quantum dot or dense for a metallic dot as in
the case of Figure 2. We also introduced the orbital energy εd as a reference. Hres−dot describes the
exchange of electrons between dot and reservoir. It has generally the form of a tunneling Hamiltonian:

Hres−dot = t ∑
k,l

[
c†

k dl + d†
l ck

]
, (7)

in which we neglect, for simplicity, any k dependence of the tunneling amplitude t. The charging
energyHc is given in Equation (1) with the dot occupation operator N = ∑l nl .

Without any approximation, deriving the out-of-equilibrium dynamics of interacting models such
as Equation (4) is a formidable task. The presence of local interactions leads to inelastic scattering
events, creating particle-hole pairs when electron scatter on the dot (see Figure 4). From a technical
point of view, such processes are difficult to handle and, even if these difficulties are overcome, one has
to identify the dominant physical mechanisms governing the charge dynamics. In our discussion,
interactions are usually controlled by the charging energy Ec, which cannot be treated perturbatively
in Coulomb blockade regimes. The possibility to rely on Wick’s theorem [83], when performing
perturbative calculations in the exchange term Hres−dot, is also denied. Thus, one has to look for a
more efficient theoretical approach.

Figure 4. Difference between elastic (left) and inelastic (right) events for electrons scattering on a
quantum dot. In the elastic case, electrons do not change energy ε. The wave function is preserved and
the only residual effect of scattering is a phase-shift δε. In the inelastic case, many-body interactions
trigger the creation of particle-hole pairs. Outgoing electrons are then emitted in a state

∣∣Φ′ε′
〉

of energy
ε′ different from the initial ε and phase coherence is gradually lost.

3.1. The Local Fermi Liquid

The local Fermi liquid approach is justified by the physical picture already presented in Section 2,
namely that an incoming reservoir electron with an energy much smaller than the charging energy
of the quantum dot is effectively scattered in a purely elastic way [77]. At temperatures well below
the charging energy Ec, energy conservation prevents any permanent change in the charge of the
quantum dot and each electron entering the dot must be compensated by an electron leaving it within
the (short) time h̄/Ec fixed by the uncertainty principle. The electron escape can occur via elastic or
inelastic processes, sketched in Figure 4, depending on whether the electron energy is preserved or not.
Inelastic processes cause decoherence and call for a many-body approach to be properly evaluated.
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At low energy ε of the incoming electron, the inelastic processes are typically suppressed by the
ratio (ε/EFL)

2 [43,44]. EFL is a Fermi liquid energy scale, typically of the order of the charging energy
Ec. Nevertheless, in the presence of spin-fluctuations, the emergence of strong Kondo correlations,
to be discussed in Section 3.3.2, can sensibly reduce EFL down to the Kondo energy scale TK,
(see Equation (26)). Therefore, in the ε→ 0 limit, inelastic processes are ignored and the scattering is
purely elastic. It is described within a single-particle formalism where the scattering by the quantum
dot imprints a phase shift δW to the outgoing electronic wave functions. This phase shift alone
incorporates all interaction and correlation effects.

The simplest model entailing these features is a free Fermi gas in which a delta barrier located
at x = 0 (the entrance of the dot) scatters elastically quasi-particles. In the language of second
quantization, the delta barrier is described by the electron operator Ψ†

res(x = 0)Ψres(x = 0), and its
strength W has to depend on the parameters of the parent model (such as the orbital energy εd,
the charging energy Ec, etc.). Switching to momentum space, such model is a free Fermi gas with a
potential scattering term:

HLFL = ∑
kσ

εkc†
kσckσ + W(εd, Ec, . . .) ∑

kk′σ
c†

kσck′σ +O
(

ε

EFL

)2
(8)

where the scattering potential leads, as shown in Appendix A, to the quasi-particle phase shift:

δW = − arctan (πν0W) , (9)

in which ν0 is the density of states of the lead electrons at the Fermi energy, see also Equation (A21)
in Appendix A for its rigorous definition. In this Local Fermi Liquid Hamiltonian, σ labels either a
spin polarization or a channel. The number of channels in the lead can be controlled by the opening
of a quantum point contact [84]. The potential strength W can be cumbersome to compute, but it is
nevertheless related to the occupancy of the quantum dot via the Friedel sum rule, as explained in
Section 3.2.

The simplicity of the local Fermi liquid Hamiltonian (8) makes it powerful to evaluate low energy
properties. Being non-interacting, it also includes the restoration of phase coherence in the scattering
of electrons seen in Section 2. An important assumption that we made is that the system exhibits a
Fermi liquid ground state, or Fermi liquid fixed point in the language of the renormalization group.
Non-Fermi liquid fixed points exist and cannot be described by such Hamiltonian [85], but they are
generally fine-tuned and unstable with respect to perturbations. Furthermore, Equation (8) is not
applicable to genuine out-of-equilibrium regimes, when the perturbations are too strong or vary too
fast with respect to the Fermi liquid energy scale EFL (typically of the order of the charging energy Ec).

3.2. The Role of the Friedel Sum Rule in Local Fermi Liquid Theories

In the process of electron backscattering by the quantum dot, or by the interacting central region,
the phase shift relates the incoming and outgoing electronic wavefunctions ΨL(0−) = e2iδε ΨR(0−),
see Appendix A for an explicit illustration on the resonant level non-interacting model. The Friedel
sum rule [86] establishes the relation between the average charge occupation of the dot 〈N〉 and this
phase-shift δ. Its form in the case of M conducting channels reads:

〈N〉 = 1
π

M

∑
σ=1

δσ . (10)

The Friedel sum rule has been proven rigorously for interacting models [87,88]. It is valid as long
the ground state has a Fermi liquid character. Physically, it can be understood in the following way:
The derivative of the phase shift δε with respect to energy defines (up to h̄) the Wigner-Smith scattering
time [89], see Equation (A38), that is the time delay experienced by a scattered electron. In the presence
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of a continuous flow of electrons, a time delay implies that some fraction of the electronic charge has
been (pumped) deposited in the quantum dot [51,90]. Therefore the phase shift amounts to a left-over
charge and it does not matter that electrons are interacting on the quantum dot as long as they are not
in the leads, which is the essence of the local Fermi liquid approach.

The Friedel sum rule (10) combined with Equation (9) relates the dot occupancy to the potential
scattering strength. For the single-channel case (M = 1), one finds:

〈N〉 = − 1
π

arctan (πν0W) . (11)

This is an important result because the dot occupation 〈N〉 is a thermodynamic quantity, which can
be also accessed in interacting models, allowing us to address quantitatively the close-to-equilibrium
dynamics of driven settings, as we will discuss in Section 4.5.

We emphasize that the local Fermi liquid approach of Equation (8) can be extended to
perturbatively include inelastic scattering and higher-order energy corrections and relate these terms
to thermodynamic observables. This program has been realized in detail for the Anderson and Kondo
models [57–64,91].

3.3. Derivation of the LFL Theory in the Coulomb Blockade and Anderson Model

We show now how the effective theory (8) can be explicitly derived from realistic models
describing Coulomb blockaded quantum dot devices [66]. We focus on the Coulomb Blockade Model
(CBM) [2,3]:

HCBM = ∑
k

εkc†
k ck + t ∑

k,l

[
c†

k dl + d†
l ck

]
+ ∑

l
(εd + ε l)d†

l dl + Ec

(
N −Ng

)2
(12)

and the Anderson Impurity Model (AIM), which, in its standard form, reads [92,93]:

HAIM = ∑
k,σ

εk,σc†
k,σck,σ + t ∑

k,σ

[
c†

k,σdσ + d†
σck,σ

]
+ εd ∑

σ

d†
σdσ + Un↑n↓ . (13)

Adding −eVgN + EcN 2
g to the AIM and for U = Ec, the charging energy (1) becomes apparent in

Equation (13), as in Equations (4)–(12). The CBM coincides with the Hamiltonian (4) and describes the
mesoscopic capacitor in the Quantum Hall regime: A reservoir of spinless fermions ck of momentum k
is tunnel coupled to an island with discrete spectrum ε l . The AIM includes the spin degree of freedom
and considers a single interacting level in the quantum dot. This model encompasses Kondo correlated
regimes [49,94] and describes well the experiments [95,96].

To derive the LFL Hamiltonian (8), we rely on the Schrieffer–Wolff (SW) transformation [44,97],
first devised to map the AIM [94] onto the Coqblin–Schrieffer model [98], and that we extend here
to the CBM. Far from the charge degeneracy points, in the t � Ec limit, the ground-state charge
configuration n = 〈N〉 is fixed by the gate potential Vg and fluctuations to n ± 1 require energies
of order Ec. For temperatures much lower than Ec, the charge degree of freedom of the quantum
dot is frozen, acting but virtually on the low energy behavior of the system. The SW transformation
is a controlled procedure to diagonalize perturbatively in t the Hamiltonian. The Hamiltonian is
separated in two parts H = H0 +Hres−dot, in which H0 is diagonal in the charge sectors labeled by
the eigenvalues n of the dot occupation N, which are mixed by the tunneling HamiltonianHres−dot,
involving the tunneling amplitude t. The perturbative diagonalization consists of finding the Hermitian
operator S (of order t) generating the unitary U = eiS rotating the Hamiltonian in the diagonal form
H′ = U†HU. To leading order in S we find:

H′ = H0 +Hres−dot + i [S,H0] + O
(

t2
)

. (14)
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This Hamiltonian is block diagonal if the condition:

iHres−dot = [S,H0] (15)

is fulfilled and Equation (14) becomes:

H′ = H0 +
i
2
[S,Hres−dot] , (16)

which is then projected on separated charge sectors.

3.3.1. Coulomb Blockade Model

To derive the effective low-energy form of the CBM model, it is useful, following Grabert [99,100],
to decouple the charge occupancy of the dot from the fermionic degree of freedom of the electrons.
This is achieved by adding the operator n̂ = ∑n |n〉〈n|, measuring to the dot occupation number.
The fermionic operators dl in Equation (12) are replaced by new operators describing a non-interacting
electron gas in the dot. The Hamiltonian (12) acquires then the form:

HCBM = ∑
k

εkc†
k ck + t ∑

n,k,l

[
d†

l ck |n + 1〉 〈n|+ h.c.
]
+ ∑

l
ε ld†

l dl + εdn̂ + Ec

(
n̂−Ng

)2
. (17)

The operator S = s + s† fulfilling the condition (15) reads:

s =it ∑
k,l,n

sklnc†
k dl |n− 1〉 〈n| , skln =

1
ε l − εk + Ec(2n− 1) + εd

. (18)

This operator, when inserted into Equation (16), also generates higher order couplings between sectors
of charge n and n± 2, which we neglect in the present discussion. The Hamiltonian becomes then block
diagonal in the sectors given by different values of n. For (Ng − εdCg/e) ∈ [−1/2, 1/2], the lowest
energy sector corresponds to n = 0 and the effective Hamiltonian readsH′CBM = H0 +HB, with:

HB =
t2

2 ∑
kk′ ll′

(
skl0d†

l′ck′c
†
k dl − skl1c†

k dld†
l′ck′ + h.c.

)
. (19)

This interaction can be simplified by a mean-field treatment:

d†
l ckc†

k′dl′ =
〈

d†
l dl′
〉

ckc†
k′ +

〈
ckc†

k′

〉
d†

l dl′ = δll′θ(−ε l)ckc†
k′ + δkk′θ(εk)d†

l dl′ , (20)

allowing to carry out part of the sums in Equation (19). Notice that the orbital energy εd does not
appear in Equation (20) as it is now only associated to the charge degree of freedom n, while the Fermi
gases corresponding to ck and dl have the same Fermi energy EF = 0. One thus finds the effective low
energy model, which, to leading order, reads [66]:

H′CBM = H0 +
g
ν0

ln
(

Ec − εd
Ec + εd

)[
∑
ll′

d†
l dl′ −∑

kk′
c†

k ck′

]
(21)

in which we have introduced the dimensionless conductance g = (ν0t)2, corresponding to the
conductance of the Quantum Point Contact (QPC) connecting dot and lead in units of e2/h.
This Hamiltonian describes two decoupled Fermi gases, but affected by potential scattering with
opposite amplitudes. Equation (21) coincides with the LFL Hamiltonian (8) for the lead electrons.
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The phase-shift δW (9) allows for the calculation of the charge occupation of the dot to leading order by
applying the Friedel sum rule (10):

〈N〉 = δW
π

= g ln
(

Ec − εd
Ec + εd

)
. (22)

This result reproduces the direct calculation of the dot occupation [99–101], showing the validity of
the LFL model (8), with Friedel sum rule for the CBM. The extension to M channels is obtained by
replacing g→ M(ν0t)2 in Equation (22). The extended proof to next-to-leading order in g is given in
Ref. [66].

3.3.2. Anderson Impurity Model

Considering the internal spin degree of freedom in the AIM (13), it does not fundamentally affect
the effective LFL behavior. Nevertheless, in the case where a single electron is trapped in the quantum
dot (−U � εd � 0), the derivation of Equation (8) is more involved, and sketched in Figure 5. The SW
transformation maps the AIM onto a Kondo Hamiltonian including a potential scattering term [94]:

H′AM = H0 + JS · s + W ∑
kk′σ

c†
kσck′σ . (23)

The spin of the electron in the quantum dot S is coupled anti-ferromagnetically to the local spin of the
lead electrons s = ∑kk′ττ′ c†

kτ
σττ′

2 ck′τ′ , with σττ′ the vector composed of the Pauli matrices, and

J =
2Γ

πν0

(
1

εd + U
− 1

εd

)
, W = − Γ

2πν0

(
1

εd + U
+

1
εd

)
, (24)

in which we introduced the hybridization energy Γ = πν0t2, corresponding to the width acquired
by the orbital level when coupled to the lead and which depends on the density of states of the
lead electrons at the Fermi energy ν0, see also Equation (A21) in Appendix A for its rigorous
definition. Neglecting for the moment the Kondo anti-ferromagnetic coupling controlled by J, the LFL
Hamiltonian (8) is directly recovered. Nevertheless, the potential scattering term is absent (W = 0) at
the particle-hole symmetric point εd = −U/2. At this point, the charge on the dot is fixed to one by
symmetry, and the absence of potential scattering allows to derive various rigorous results, for instance
concerning the ground state properties relying on Bethe ansatz [102,103]. It is a well-established fact
that the system described by Equation (23) behaves as a LFL at low energies [48,104,105] and that the
Friedel sum rule applies [87]. As a consequence, the Kondo coupling is responsible for the phase-shift
of the low energy quasi-particles. Particle-hole symmetry, spin degeneracy, and Friedel sum rule fix
the Kondo phase-shift to δK = π/2. The Friedel sum rule states that:

〈N〉 = 2
δK

π
, (25)

〈N〉 = 1 because of particle-hole symmetry and the factor 2 signals spin degeneracy, fixing δK = π/2.
The detailed description of the Kondo effect is far beyond the scope of this review and we direct the
interested reader to Ref. [49] for a comprehensive review and to Refs. [106–111] for the description of
the low energy fixed point relying on boundary conformal field theory. For the scopes of this review it
is enough to mention that below the Kondo temperature: [102,103,112,113]

TK =
e

1
4 γ

2π

√
2UΓ

π
e

πεd(εd+U)
2UΓ , (26)

the spin-exchange coupling J in Equation (23) flows to infinity in the renormalization group sense.
The relevance of this interaction brings the itinerant electrons to screen the local spin-degree of freedom



Entropy 2020, 22, 847 11 of 52

of the quantum dot and phase-shifts the resulting quasi-particles by δK, see Figure 5. The phase-shift
π/2 acquires thus a simple interpretation in one dimension [44,106]: Writing ΨR = e2iδΨL for a given
spin channel at the impurity site, δ = δK = π/2 leads to ΨR + ΨL = 0. The fact that the wave-function
is zero at the impurity site, corresponds to the situation in which an electron screens the impurity
spin, leading to Pauli blockade (due to Pauli principle), thus preventing other electrons with the
same spin to access the impurity site. This dynamical screening of the impurity spin forms the so
called “Kondo cloud” [114–117], see Figure 5. It is responsible for increasing the local density of
states and leads to the Abrikosov–Suhl resonance [118], which causes the increase, below TK, of the
dot conductance in Coulomb blockaded regimes [93,119,120]. Remarkably, the Kondo phase-shift
δK = π/2 and the Kondo screening cloud have been also directly observed in two recent distinct
experiments [121,122]. In Section 4.7, we illustrate how such phenomena also affect the dynamical
properties of the mesoscopic capacitor in a non-trivial way.

Figure 5. Modification of the physical scenario of Figure 3 in the presence of spin-exchange interactions
between the dot and lead electrons in the Anderson Impurity Model (AIM). Spin-exchange interactions
trigger the formation of the Kondo singlet below the Kondo temperature TK, which is responsible
for an additional elastic δK = π/2 phase-shift of lead electrons in the effective Local Fermi Liquid
(LFL) theory.

It remains to establish the combined role of spin-exchange and potential scattering on the
low-energy quasi-particles. Remarkably, the phase-shift δW , caused by potential scattering, is additive
to δK [123–125]:

δ = δK + δW , (27)

and can thus be calculated independently. The validity of the above expression is demonstrated by
comparison with the exact Bethe ansatz solution of the AIM [102,103]. Inserting the expression (9) for
the phase-shift caused by the potential scattering in the Friedel sum rule one finds:

〈N〉 = 2
π
[δK − arctan(πν0W)] = 1 +

Γ
π

(
1

εd + U
+

1
εd

)
. (28)

This expression is consistent with the condition 〈N〉 = 1, imposed by particle-hole symmetry, but also
with the static charge susceptibility χc, which was derived with the Bethe ansatz [126]:

χc = −
∂ 〈N〉
∂εd

∣∣∣∣
εd=−U

2

=
8Γ

πU2

(
1 +

12Γ
πU

+ . . .
)

. (29)

The extension of this proof to next-to-leading order in t, is given in Refs. [66,68] and it shows how
LFL approaches are effective in providing analytic predictions out of particle-hole symmetry as well,
extending Bethe ansatz results.
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This discussion concludes our demonstration of the persistence of elastic and coherent effects
triggered by interactions at equilibrium. Local Fermi liquids provide a general framework to describe
interacting and non-interacting systems at low energy, within an effective elastic scattering theory.
Nevertheless, it is important to stress that LFL theories can fail in specific cases, such as overscreened
Kondo impurities [127,128], and that their validity is limited to close-to-equilibrium/low-energy
limits. It is thus expected that interactions become crucial as soon as such systems are driven out of
equilibrium. We will illustrate now how the LFL theory allows to describe exotic, but still coherent in
nature, dynamical effects in a paradigmatic setup such as the mesoscopic capacitor.

4. The Mesoscopic Capacitor

The mesoscopic capacitor in Figure 6 plays a central role in the quest to achieve full control
of scalable coherent quantum systems [4,129,130]. A mesoscopic capacitor is an electron cavity
coupled to a lead via a QPC and capacitively coupled to a metallic gate [51–53]. The interest in this
device stems from the absence of DC transport, making possible the investigation and control of
the coherent dynamics of single electrons. The first experimental realization of this system was a
two-dimensional cavity in the quantum Hall regime [20,21], exchanging electrons with the edge of a
bulk two-dimensional electron gas (2DEG). Operated out of equilibrium and in the weak tunneling
limit, this system allows the triggered emission of single electrons [22–24], and paved the way to
the realization of single-electron quantum optics experiments [131–134], as well as probing electron
fractionalization [25,135], accounted by the scattering of charge density waves (plasmons) in the
conductor [136–143], and their relaxation [26]. On-demand single-electron sources were also recently
realized with real-time switching of tunnel-barriers [27–32], electron sound-wave surfing [14,16,144],
generation of levitons [8–11,13], and superconducting turnstiles [18,19]. We direct again the interested
reader to Ref. [35] for a comprehensive review of these experiments.

The key question concerning the dynamics of a mesoscopic capacitor is which electronic state,
carrying a current I , is emitted from the cavity following a change in the gate voltage Vg. The linear
response is characterized by the admittance A(ω),

I(ω) = A(ω)Vg(ω) +O(V2
g ) . (30)

In their seminal work, Büttiker and coworkers showed that the low-frequency admittance of a
mesoscopic capacitor reproduces the one of a classical RC circuit [51–53],

A(ω) = −iωC(1 + iωRqC) +O(ω3) , (31)

in which both the capacitance C and the charge relaxation resistance Rq probe novel coherent dynamical
quantum effects. The capacitance C was originally interpreted as an electro-chemical capacitance 1/C =

1/Cg + 1/Cq, series of a geometric (Cg) and a quantum (Cq) contribution [21,51–53]. The geometric
contribution is classical and depends on the shape of the capacitive contact between gate and quantum
dot. The quantum contribution is a manifestation of the Pauli exclusion principle and was found
proportional to the local density of states in the cavity, see Figure 7. Remarkably, the charge relaxation
resistance Rq = h/2e2 was predicted to be universally equal to half of the resistance quantum in
the case of one conducting channel [20], independently of the transparency of the QPC connecting
cavity and lead. This result is in striking contrast with the resistance measured in DC experiments
and was originally labeled as a Violation of Kirchhoff’s Laws for a Coherent RC Circuit [20]. Reference [21]
extensively reviews the original theoretical predictions and their experimental confirmation, in a
non-interacting and self-consistent setting, which we also review and put in relation with their
Hamiltonian formulation in Appendix B.
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Figure 6. Top—First realization of the mesoscopic capacitor [20]: A two-dimensional electron gas
(2DEG) in the Quantum Hall regime is coupled to a quantum cavity via a gate-controlled QPC.
Bottom—Working principle of a single electron emission [22–26]. A gate potential moves the quantized
levels of the cavity above and below the Fermi surface of the coupled reservoir. Electron/hole emission
in steps 2 and 3 follows from moving occupied/empty orbitals above/below the Fermi surface.

Below, we discuss how the LFL approach challenges and extends the above studies. In particular:

1. The total capacitance C is given by the static charge susceptibility χc = −e2∂ 〈N〉 /∂Vg of the
cavity and does not generally correspond to a series of a geometric and quantum contribution,
proportional to the density of states in the cavity. For instance, in Kondo regimes, the charge
susceptibility of the cavity remains small, because of frozen charge fluctuations, while the density
of states increases below the Kondo temperature [49]. This effect was directly probed in a recent
experiment with a quantum dot device embedded in circuit-QED architecture [145];

2. A LFL low energy behavior implies universality of the charge relaxation resistance in the single
channel case. In particular, the universality of Rq stems from a Korringa–Shiba (KS) relation [146]

Im [χc(ω)]|ω→0 = ωh̄πχ2
c(ω = 0) , (32)

in which χc(ω) is the Fourier transform of the dynamical charge susceptibility (37);
3. The LFL approach shows various non-trivial dissipative effects triggered by strong correlations.

In particular, it predicts a mesoscopic crossover between two universal regimes in which
Rq = h/2e2 → h/e2 [65] by increasing the dot size, also at charge degeneracy, in which the
CBM maps on the Kondo model [101]. It also predicts giant dissipative regimes, described by
giant universal peaks in Rq, triggered by the destruction of the Kondo singlet by a magnetic
field [67,147];

4. In proper out-of-equilibrium regimes, interactions and inelastic effects become unavoidable and
circuit analogies, such as Equation (31), do not capture the dynamic behavior of the mesoscopic
capacitor [148]. We show here how previously published data [25] also show a previously
overlooked signature of non-trivial many-body dynamics induced by interactions.
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4.1. Hamiltonian Description of the Quantum RC Circuit: Differential Capacitance and Korringa–Shiba Relation

Expanding the square in Equation (1) and neglecting constant contributions, Hc renormalizes
the orbital energy εd in Equation (12) and adds a quartic term in the annihilation/creation
operators dl , namely

Hc = −eVg(t)N + EcN2 . (33)

The driving gate voltage Vg couples to the charge occupation of the quantum dot Q = e 〈N〉.
In single-electron emitters, one operates on the time dependent voltage drive Vg(t) to bring occupied
discrete levels above the Fermi surface and then trigger the emission of charge, see Figure 6. The current
of the device is a derivative in time of the charge leaving the quantum dot, the admittance reads then,
in the Fourier frequency representation,

A(ω) = −iω
Q(ω)

Vg(ω)
. (34)

We start by considering small oscillations of amplitude εω of the gate voltage:

Vg(t) = Vg + εω cos(ω t) . (35)

Close to equilibrium, expression (34) is calculated relying on Kubo’s linear response theory [149]

A(ω) = −iωe2χc(ω) , (36)

in which χc(ω) is the Fourier transform of the dynamical charge susceptibility:

χc(t− t′) =
i
h̄

θ(t− t′)
〈[

N(t), N(t′)
]〉

0 . (37)

The notation 〈·〉0 refers to quantum averages performed at equilibrium, i.e., without the driving term
Vg(t) in Equation (33). The low frequency expansion of χc(ω) reads:

A(ω) = −iωe2 {χc + iIm [χc(ω)]}+O(ω2) , (38)

where we relied on the fact that the even/odd part of the response function (37) coincide with its
real/imaginary part, see Appendix C. We also introduce the static charge susceptibility χc = χc(ω = 0).
The expansion (38) matches that of a classical RC circuit (31). Identifying term by term, we find the
expression of the charge relaxation resistance and, in particular, that the capacitance C of the mesoscopic
capacitor is actually given by a differential capacitance C0:

C = C0 = e2χc = −e2 ∂ 〈N〉
∂εd

=
∂Q
∂Vg

, Rq =
1

e2χ2
c

Imχc(ω)

ω

∣∣∣∣
ω→0

. (39)

The differential capacitance is proportional to the density of states of charge excitations on the dot,
which, as mentioned above, generally differs from the local density of states in the presence of strong
correlations. Equation (39) provides also the general condition for the universal quantization of the
charge-relaxation resistance Rq = h/2e2, namely:

Imχc(ω)|ω→0 = h̄πωχ2
c . (40)

Such kind of relation is known as a Korringa–Shiba (KS) relation [146]. The KS relation establishes
that the imaginary part of the dynamic charge susceptibility, describing dissipation in the system,
is controlled by the static charge fluctuations on the dot, χc.

Additionally, we mention that the relation (40) also affects the phase-shift of reflected or transmitted
light through a mesoscopic system in the Kondo LFL regime [150–152]. Such situations have been recently
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realized with quantum-dot devices embedded in circuit-QED architectures [153–159], in which the
driving input signal can be modeled by an AC potential of the form (35).

Figure 7. Physical origin of the quantum capacitance Cq. Pauli exclusion forces electrons entering the
dot to pay an energy price equal to the local level spacing ∆, resulting in a capacitance Cq = e2/∆.
On the right, a one-dimensional representation of the mesoscopic capacitor, with a dot of size `.

4.2. The Origin of the Differential Capacitance as a ‘Quantum’ Capacitance as far as Interactions are Neglected

As far as interactions are neglected, the differential capacitance C0 is a manifestation of the
fermionic statistics of electrons, determined by the Pauli exclusion principle. For this reason it
has been originally labeled as a ‘quantum’ capacitance Cq [51–53]. When an electron is added to
the quantum dot, in which energy levels are spaced by ∆, the Pauli exclusion principle does not
allow one to fill an occupied energy state, but requires to pay a further energy price ∆, see Figure 7.
The capacitance associated to this process is then Cq = δQ/δV. For one electron δQ = e and δV = ∆/e.
Substituting these two expressions, we recover a uniform quantum capacitance:

Cq =
e2

∆
. (41)

This expression establishes that the quantum capacitance is proportional to the density of states in
the quantum dot at the Fermi energy Cq = e2N (EF), with N (EF) = 1/∆, to be distinguished from ν0,
the density of states of the lead electrons.

Additionally, the quantum capacitance is related to the dwell-time spent by electrons in the cavity.
The general relation is derived in Appendix B, but it also results from simple estimates. Considering the
representation of the mesoscopic capacitor of Figure 7, in the open-dot limit, the time spent by an
electron in the cavity coincides with its time of flight τf = `/vF: The ratio between the size of the
cavity ` and its (Fermi) velocity vF. The level spacing ∆ of an isolated cavity of size ` is estimated by
linearizing the spectrum close to the Fermi level. The distance in momentum between subsequent
levels is h/`, corresponding to ∆ = hvF/` = h/τf. Substituting in Equation (41) leads to an equivalent
expression for the quantum capacitance:

Cq =
e2

h
τf . (42)

On the experimental side, the level spacing of the quantum dot can be actually estimated and,
in the experimental conditions of Ref. [20], it was established to be of the order of ∆ ∼ 15 GHz,
corresponding to a quantum capacitance Cq ∼ 1 fF. Experimental measurements of C, reported in
Figure 8, give an estimate also for Cg, showing that Cq � Cg. This implies that the level spacing ∆ was
much larger than the charging energy Ec = e2/2Cg , of the order of fractions of the GHz, apparently
justifying the mean-field approach to describe experimental results, with the limitations that we are
going to discuss in out-of-equilibrium regimes, see Section 5.
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The argument leading to Equation (41) implicitly assumes the perfect transparency of the QPC,
namely that the probability amplitude r for a lead electron to be reflected when passing though the
QPC to enter the cavity is equal to zero (r = 0). In this limit, the density of states on the dot is uniform.
Finite reflection r 6= 0 is responsible for resonant tunneling processes, leading to oscillatory behavior of
the local density (or the dwell-time) of states as a function of the gate potential Vg, in agreement with
the experimental findings reported in Figure 8. In Appendix B, we provide a quantitative analysis
of this effect by explicitly calculating the differential capacitance C0, Equation (39), by neglecting the
term proportional to EcN2 in Equation (33).

Figure 8. Top—Measurement of the universal charge relaxation resistance from Ref. [20]. The resistance
of two different samples (E3 and E1) is given by the real part of their impedance Z = 1/A as a function
of the QPC potential VG, in Figure 6, which also affected the gate potential Vg. Measurements were
carried out for T = 30mK and a magnetic field B = 1.3T polarizing the electrons, resulting in one
conducting channel. Uncertainties are indicated by the hatched areas. Bottom—Measurement of the
total capacitance Cµ = C, through Im(Z) = −1/ωC, for the same samples. The oscillatory behavior is
related to resonances in the density of states of the dot.

4.3. The Physical Origin of the Universal Charge Relaxation Resistance

The universality of Rq was also verified experimentally in Ref. [20], see Figure 8. In the quantum
coherent regime the charge relaxation resistance is universal: It does not depend on the microscopic
details of the circuit (Cg, r, . . .), but only on fundamental constants, namely Planck’s constant h and
the electron charge e. This is surprising. When applying a DC voltage across a QPC connecting two
leads, the QPC behaves as a resistive element of resistance [160,161]:

RDC =
h

e2D
, (43)

where D = 1− |r|2 is the QPC transparency. This quantity depends on the amplitude r for electrons
to be backscattered when arriving at the QPC, which can be tuned by acting on a gate potential.
As we considered spinless electrons, the factor 2 in Rq = h/2e2 cannot be related to spin degeneracy
and D = 1 in Equation (43). It is rather related to the fact that the dot is connected to a single
reservoir, in contrast to the source-drain reservoirs present in DC transport experiments [56,162].
In direct transport, each metallic contact is responsible for a quantized contact resistance Rc = h/2e2,
the Sharvin–Imry resistance [163,164]. In source-drain experiments, Equation (43) could be recast
in the form RQPC + 2Rc, with RQPC = h

e2
1−D

D the resistive contribution proper to the QPC. For the
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case of a mesoscopic capacitor, there is a single reservoir and one would thus expect for the charge
relaxation resistance:

Rexpected
q = RQPC + Rc =

h
2e2 +

h
e2

1− D
D

. (44)

The fact that Rq does not depend on the transparency D, assuming the universal value h/2e2, cannot be
attributed to the laws governing DC quantum transport, and this is the reason why one can speak
about the Violation of Kirchhoff’s Laws for a Coherent RC Circuit [20]. The universality of Rq is rather
a consequence of the fact that Rq, differently from the contact resistance Rc, is related to energy
(Joule) dissipation. As electrons propagate coherently within the cavity, they cannot dissipate energy
inside it, but only once they reach the lead. We will illustrate in Section 4.5 how this phenomenon
is a direct consequence of the possibility to excite particle-hole pairs by driven electrons. At low
frequency, dissipation is thus only possible in the presence of a continuum spectrum, accessible in
the metallic reservoirs. The expected resistance (44) is recovered only if electrons lose their phase
coherence inside the dot [56,162], see also Refs. [165,166], which take Coulomb blockade effects
into account. For instance, in the high temperature limit kBT � ∆, Equation (44) is not recovered.
The reason is that, in scattering theory, temperature is fixed by the reservoirs without affecting the
coherent/phase-preserving propagation in the mesoscopic capacitor.

4.4. The Open-Dot Limit

We address now the role of the charging energy Ec and come back to our initial example of the
open dot limit, considered in Section 2. The possibility to rely on an exact bosonized solution for the
model (1)–(2), made possible the derivation of the admittance A(ω) in linear-response theory for a
fully transparent point contact (r = 0) and a finite-sized cavity [65]:

A(ω) = −iωCg

(
1− iωτc

1− eiωτf

)−1
. (45)

This expression is important as it makes possible to study the interplay between two different
time-scales, namely the time of flight τf of electrons inside the cavity, already present in the previous
discussion, and τc = hCg/e2 the time scale corresponding to the charging energy Ec. We mention that,
interestingly, the admittance (45) was also found to describe the coherent transmission of electrons
through interacting Mach–Zehnder interferometers [167,168].

What is quite remarkable about the admittance (45) is that, to linear order in ω, the two time
scales τf and τc still combine into the universal charge relaxation resistance Rq = h/2e2 and a series of
a geometrical and quantum capacitance Cq = e2τf/h [51–53] (see also Equation (42)):

1
C0

=

[
1

Cg
+

h
e2τf

]
. (46)

The low-frequency behavior of Equation (45) illustrates how interacting systems behave as if
interactions were absent at low energies. What is then also implicit in Equation (45) is that, to observe
separate effects on the charge dynamics, induced by free propagation (τf) or interactions (τc), one has
to consider proper out-of-equilibrium/high-frequency regimes. These regimes will be addressed in
Section 5.

Nevertheless, interactions still matter even in low-frequency regimes. Consider the infinite-size
(metallic) limit for the cavity, τf → ∞. In this limit, also describing the experiment in Figure 2,
one implicitly assumes that the driving frequency ω is larger than the internal level spacing of the
dot ∆,

h̄ω � ∆ . (47)

The discrete spectrum of the dot can thus be treated as a continuum, which allows for energy dissipation
also inside the cavity, see Figure 9. In particular, averaging the admittance (45) over a finite bandwidth
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δω, such that ω � δω � ∆, one exactly recovers the admittance of a classical RC circuit of capacitance
Cg and charge-relaxation resistance Rq = h/e2 [65]:

A(ω) =
−iωCg

1− iωCg
h
e2

. (48)

The mesoscopic crossover Rq = h/2e2 → h/e2 is an exquisite coherent effect triggered by interactions.
This phenomenon has fundamentally the same origin of the elastic electron transfer exemplified by the
correlation function (3), considered at the very beginning of this review.

Remarkably, the universality of the charge-relaxation resistance holds in the presence of
backscattering at the dot entrance, without affecting the mesoscopic crossover Rq = h/2e2 → h/e2 [65].
Nevertheless, the possibility to interpret the differential capacitance as a series of two separate
geometric and quantum term as in Equation (46), is lost. If we locate the entrance of the dot at
x = 0, backscattering corrections to the model (1)–(2) read:

Hr = −h̄rvF

[
ΨR(0)†ΨL(0) + ΨL(0)†ΨR(0)

]
, (49)

and compromise a non-interacting formulation of the problem, even in its bosonized form [65,72,148].
It becomes then important to understand why and to which extent quantities such as the

charge-relaxation resistance show universal coherent behavior even in the presence of interactions.
The extension of the LFL theory in the quasistatic approximation provides the unified framework to
understand the generality of such phenomena.

Figure 9. Mesoscopic crossover in the charge relaxation resistance. Top—In a small dot, the level
spacing ∆ is larger than the driving energy h̄ω and energy levels in the dot are not excited. The universal
resistance Rq = h/2e2 of the equivalent RC circuit is furnished exclusively by the lead electron reservoir.
Bottom—Excitation of energy levels inside the dot are permitted in the large dot limit, which acts as a
further dissipative reservoir in series to the lead.

4.5. The Tunneling Limit and the Quasi-Static Approximation

In Section 3, we showed that a large class of models of the form (4) are effectively described,
in the low-energy limit, by a LFL theory (8), in which the potential scattering coupling constant W
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depends on the orbital energy of the dot εd. The expansion of the charging energy Hamiltonian (33)
made apparent that this energy is renormalized by the gate potential εd → εd − eVg(t). For an AC bias
voltage, we consider then a periodic function of time oscillating at the frequency ω:

εd(t) = ε0
d + εω cos

(
ωt
)

. (50)

The quasi-static approximation consists in substituting Equation (50) directly in Equation (8).
This condition assumes that the low energy Hamiltonian (8), derived for the equilibrium problem,
follows, without any delay, the orbital oscillations expected from the parent, high-energy, model.
The quasi-static approximation is then a statement about a behavior close to adiabaticity.

We consider then the linear response regime and expand the coupling W(εd) in εω. Focusing on
the single channel case, the extension to multiple channels being straightforward, Equation (8) becomes:

H = ∑
k

εkc†
k ck +

[
W(ε0

d) + W ′(ε0
d)εω cos

(
ωt
)]

∑
kk′

c†
k c′k . (51)

We diagonalize the time independent part of this Hamiltonian [104]:

H = ∑
kk′

εka†
k ak +

W ′(ε0
d)

1 +
[
πν0W(ε0

d)
]2 εω cos

(
ωt
)
∑
kk′

a†
k ak′ , (52)

where the operators a and a† describe the new quasi-particles diagonalizing the time independent part
of the Hamiltonian (51). The Friedel sum rule (11) establishes that:

χc =
ν0W ′(ε0

d)

1 +
[
πν0W(ε0

d)
]2 , (53)

and the Hamiltonian (52) can be cast in the more compact and transparent form:

H = ∑
kk′

εka†
k ak +

χc

ν0
εω cos

(
ωt
)
∑
kk′

a†
k ak′ . (54)

This Hamiltonian shows the mechanism responsible for energy dissipation at low energy for the
rich variety of strongly interacting systems satisfying the Friedel sum rule and LFL behavior at low
energy. The time dependent term pumps energy in the system, which is then dissipated by the creation
of particle-hole pairs. Crucially, this term is controlled by the static charge susceptibility χc of the
quantum dot. The non-interacting Hamiltonian (54) explains why non-interacting results also hold for
the universal charge relaxation resistance in the presence of interactions on the quantum dot.

We now illustrate how the Hamiltonian (54) implies the validity of the KS relation and
thus universality of the charge-relaxation resistance Rq. The proof was originally devised for
spin-fluctuations [169] and we extend it here to the case of charge fluctuations. For drives of the
form (50), the power dissipated by the system is proportional to the imaginary part of the dynamic
charge susceptibility, see Appendix C,

P =
1
2

ε2
ωωImχc(ω) . (55)

A direct calculation of Imχc is a difficult task and this is where the low-energy model (54) becomes
useful. Similarly as for Equation (55), the LFL theory (54) predicts the dissipated power:

P =
1
2

ε2
ωωImχA(ω) , (56)
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where the linear response function χA(t− t′) = i
h̄ θ(t− t′) 〈[A(t), A(t′)]〉0 is a correlator at different

times of the potential scattering operator:

A =
χc

ν0
∑
kk′

a†
k ak′ , (57)

responsible for the creation of particle-hole pairs. The Fourier transform of the response function reads:

χA(ω) = −1
h̄

χ2
c

ν2
0

∑
pp′

f (εp)[1− f (εp′)]


 1

ω +
εp−εp′

h̄ + i0+
− 1

ω +
εp′−εp

h̄ + i0+


 , (58)

in which f (εp) = 1/(eβεp + 1) is the Fermi distribution. We consider the electron lifetime as infinite,
i.e., much longer than the typical time scales τc and τf. Taking the imaginary part and the continuum
limit for the spectrum in the wide-band approximation, one finds, at zero temperature,

ImχA(ω) = πh̄ωχ2
c . (59)

The two dissipated powers (55) and (59) have to be identical, implying the Korringa–Shiba relation (32),
enforcing then a universal value for the charge relaxation resistance Rq = h/2e2.

4.6. The LFL Theory of Large Quantum Dots: The Mesoscopic Crossover R q = h/2e2 → h/e2

The above demonstration has to be slightly adapted to show the mesoscopic crossover
Rq = h/2e2 → h/e2. This crossover takes place for the CBM (12), in the infinite-size limit of the dot.
As implicit in the effective description (21) of the CBM, the dot and the lead constitute two separate
Fermi liquids. Sections 2 and 3 illustrated how the energy cost Ec prevents the low-energy transfer of
electrons between the dot and lead [77]. The electrons of both these gases are then only backscattered
at the lead/dot boundary with opposite amplitudes. In the quasi-static approximation, all the steps
carried in the previous discussion apply for the Hamiltonian (21). In this case, the time variation of the
orbital energy εd also drives particle-hole excitations in the dot. The operator responsible for energy
dissipation becomes:

A =
χc

ν0

(
∑
kk′

c†
k ck′ −∑

ll′
d†

l dl′

)
, (60)

in which the operators c†
k and d†

l create lead and dot electrons of energy εk,l respectively. This formulation
of the operator A adds a further contribution to Equation (58), analogous to the contribution of
particle-hole pairs excited in the lead, namely:

− 1
h̄

χ2
c

ν2
0

∑
ll′

f (ε l)[1− f (ε l′)]

[
1

ω +
ε l−ε l′

h̄ + i0+
− 1

ω +
ε l′−ε l

h̄ + i0+

]
. (61)

The limits ω → 0 and ∆→ 0 do not commute in the above expression. This fact has a clear physical
interpretation: If the frequency is sent to zero before the level spacing, energy cannot be dissipated
in the cavity and no additional contribution to Imχc(ω) is found. If the opposite limit is taken,
the condition (47) is met and the Korringa–Shiba relation is then modified by a factor two:

Imχc(ω) = 2πh̄ωχ2
c , (62)

which doubles the universal value of the single-channel charge relaxation resistance Rq = h/e2.
The relation (62) was originally shown by explicit perturbation theory in the tunneling amplitude,
close and away from charge degeneracy points [65]. As summarized in Figure 9, driving at a frequency
higher than the dot level spacing induces the creation of particle/hole pairs inside the dot as well,
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enhancing energy dissipation with respect to the small dot limit h̄ω < ∆. As energy can be coherently
dissipated in two fermionic baths (dot and lead), the dot acts effectively as a further (Joule) resistor in
series with the lead, leading to a doubled and still universal charge relaxation resistance.

4.7. The Multi-Channel Case and Universal Effects Triggered by Kondo Correlations

The above discussion also extends to the M channels case, leading to a generalized KS relation:

Imχc(ω)|ω→0 = h̄πω ∑
σ

χ2
σ , (63)

which corresponds to a non-universal expression for the charge relaxation resistance [68,69]

Rq =
h

2e2
∑σ χ2

σ

(∑σ χσ)
2 . (64)

This expression is analogous to the one obtained by Nigg and Büttiker [54]. In their derivation leading
to Equation (A48), the densities of states, or dwell-times τσ, of the σ channel in the dot, replace the
susceptibilities χσ. The single channel case is remarkable in that the numerator simplifies with the
denominator in Equation (64), leading to the universal value h/(2e2), which is thus physically robust.
Otherwise, in the fine-tuned case that all the channel susceptibilities are equal, one finds Rq = h/2e2M.

Spinful systems in the presence of a magnetic field are the simplest ones to study how the
charge-relaxation resistance is affected by breaking the symmetry between different conduction
channels. Indeed, lifting the orbital level degeneracy by a magnetic field breaks the channel symmetry
and the charge relaxation resistance is no longer universal, as it was originally realized in studies of
the AIM (13) relying on the Hartree–Fock approximation [54].

Nevertheless, the self-consistent approach misses important and sizable effects triggered by strong
Kondo correlations. These were originally observed relying on the Numerical Renormalization Group
(NRG) [147]. The numerical results, reported in Figure 10, showed that, for Zeeman splittings of the
order of the Kondo temperature TK, the charge relaxation resistance can reach up to 100 times the
universal value of Rq = h/(4e2), which would be expected in the two-fold spin degenerate case.
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Figure 10. Left—Dependence of Rq on the Zeeman splitting ∆Z in the Kondo regime from Ref. [147].
These results have been obtained by Numerical Renormalization Group (NRG) calculations with
Γ = 0.02 and Ec = 0.2 (both quantities are measured in units of the contact bandwidth D and the
definition of the hybridization energy Γ is provided in Appendix A.3). They show that, for Zeeman
energies of the order of the Kondo temperature, a giant non-universal peak appears in the charge
relaxation resistance. Right—Comparison of Rq as a function of the magnetic field between NRG
calculations (dots) (extracted from Ref. [147]) and our Bethe ansatz results (solid lines) for different
εd/U and U/Γ = 20, showing excellent agreement [67,68].
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The LFL approach allows the analytical quantification and physical interpretation of such giant
dissipative phenomenon [67,68]. For two spin channels, the total charge on the dot is the sum of the
two spin occupation 〈N〉 = 〈N↑〉+ 〈N↓〉. Equation (64) can then be recast in the useful form:

Rq =
h

4e2

(
1 +

χ2
m

χ2
c

)
, (65)

in which we introduce the usual charge susceptibility: χc = −∂〈N〉/∂εd and the charge-magneto
susceptibility

χm = −2
∂ 〈m〉
∂εd

. (66)

This quantity is twice the derivative of the dot magnetization 〈m〉 = (
〈

N↑
〉
−
〈

N↓
〉
)/2, with respect

to the orbital energy εd. The charge-magneto susceptibility is an atypical object to study quantum
dot systems, where the magnetic susceptibility χH = −∂ 〈m〉 /∂H is rather considered to study the
sensitivity of the local moment of the quantum dot to variations of the magnetic field H. Equation (65)
shows that the susceptibility of the magnetization of the dot, and not its charge, is responsible for the
departure from the universal quantization h/(4e2) of the charge relaxation resistance. Equation (65)
also separates explicitly charge and spin degrees of freedom of the electrons in the quantum dot.
They can display very different behaviors in correlated systems, as illustrated in Figure 11 in the
Kondo regime, defined for one charge blocked on the dot and Zeeman energies below the Kondo
temperature (26).

In particular, Kondo correlations strongly affect the dot magnetization, but not its occupation.
The points where χm differs from χc correspond to non-universal charge relaxation resistances.
In Figure 10, the values derived with the LFL approach (65) are compared to those obtained
with NRG [147], showing excellent agreement. Additionally, the LFL approach also allows to
derive an exact analytical description of this peak, showing a genuinely giant dissipation regime:
Simultaneous breaking of the SU(2) (H 6= 0) and particle-hole symmetry (εd 6= −U/2) trigger a peak in
Rq which scales as the 4th(!) power of U/Γ and has its maximum for Zeeman splittings of the order of
the Kondo temperature. This effect is caused by the fact that breaking the Kondo singlet by a magnetic
field activates spin-flip processes, which dissipate energy through creation of particle-hole pairs [147].

We conclude by discussing the deviations of the differential capacitance C0 from the local density
of states of the cavity, which is clearly apparent in Kondo regimes. The spin/charge separation arising
in the AIM allows to observe important physical effects on the differential capacitance of strongly
interacting systems. Charge and spin on the dot are carried by different excitations: Holons and
spinons. We report in Figure 12 the density of states of these excitations in the particle-hole symmetric
case εd = −U/2. In the absence of interactions (U/Γ = 0), they have the same shape, but they start
to strongly differ as the interaction parameter U/Γ is increased. They develop well pronounced
peaks, but at different energies, signaling the appearance of separated charge and spin states. In the
case of holons, the excited charge state appears close to ε = U/2, the energy required to change the
dot occupation at particle-hole symmetry. In Ref. [170], it is shown that the density of states of the
holons equals the static charge susceptibility χc, coinciding then with the differential capacitance C0.
At particle-hole symmetry, this quantity scales to zero as 8Γ/πU2, see Equation (29). Instead, the spinon
density of states develops a sharp peak at zero energy, known as the Abrikosov–Suhl resonance [118],
signaling the emergence of the strongly correlated Kondo singlet. The differential capacitance C0 is
completely insensitive to this resonance, which dominates the total density of states on the dot. Such an
effect was distinctly observed in carbon nanotube devices coupled to high-quality-factor microwave
cavities [145]. These systems efficiently probe the admittance (30) also in quantum dots with more than
two internal degrees of freedom [150,152], such as extensions of the AIM to SU(4) regimes, relevant for
quantum dots realized with carbon nanotubes [68,171–177].
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Figure 11. From Ref. [68]. Top—Charge occupation and magnetization of the dot for U/Γ = 20
as function of the orbital energy εd and magnetic field H. The insets show the same quantities on
a logarithmic scale. The light green lines in the linear plots correspond to H = 2εd, and separate
regions with different charge occupations, while the dark green lines in the insets correspond
to TK, Equation (26), and separate regions with different magnetization. The charge is not
sensitive to the formation of the Kondo singlet for Zeeman energies below the Kondo temperature
(green line), while the magnetization becomes zero. Bottom—Corresponding charge susceptibility and
charge-magneto susceptibility. The susceptibilities are in units of 1/Γ. In the insets the same quantities
are plotted on a logarithmic scale and the zone of appearance of the giant peak of the charge relaxation
resistance can be appreciated. It is the region, following TK, in which χc is close to zero, while χm

acquires important values because of the formation of the Kondo singlet.

Figure 12. From Ref. [170]. (Left)—Density of states of local holons on the dot Nh(ε). ε is the excitation
energy. A Coulomb peak emerges increasing the interaction parameter U/Γ and vanishes at zero
energy as 8Γ/πU2. This quantity coincides with χc, plotted in Figure 11. (Right)—Density of states
of local spinons Ns(ε). It behaves as the holonic one for U/Γ = 0 and develops the Abrikosov–Suhl
resonance at zero energy, the signature of the formation of the strongly correlated Kondo singlet state.
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The above discussion completes the review of the application of the LFL theory to study the
low-energy dynamics of quantum impurity driven systems. Further applications could be envisioned
to describe various correlation effects on different aspects of weakly driven interacting quantum-dot
systems, as long as they can be described by an effective theory of the form (8). An important case
involves the driving of the coupling term Hres−dot → Hres−dot(t) in the Hamiltonian (4), which has
been implemented experimentally, with important metrologic applications [27–32]. Another interesting
perspective concerns the application of the LFL theory to energy transfer [178–180], or coupling
quantum-dot systems to mechanical degrees of freedom [181–187], which are described by similar
models as quantum-dot devices embedded in circuit-QED devices [150,153–158].

Deviations from universal and coherent behaviors are expected in non-LFL regimes, arising when
the reservoirs are Luttinger Liquids [188,189] or in over-screened Kondo impurities, in which the
internal degrees of freedom of the bath surpass those of the impurity [85,190].

We have thus illustrated how a coherent and effectively non-interacting LFL theory accounts for
strong correlation effects in the dynamics of quantum dot devices. It has to be clarified how interaction
are supposed to affect proper out-of-equilibrium regimes. As a direct example, consider again the
admittance (45). Its expansion to low-frequencies completely reproduces the self-consistent predictions
of Refs. [51–53], but it ‘hides’ the qualitative difference between the two time scales τc and τf, associated
to interactions and free-coherent propagation respectively. Higher-frequency driving will inevitably
unveil this important difference, as we are going to demonstrate by giving a new twist to past
experimental data in the next conclusive section.

5. What about Out-Of-Equilibrium Regimes? A New Twist on Experiments

We conclude this review by showing how interaction inevitably dominate proper out-of-
equilibrium or fastly-driven regimes. We will focus, also in this case, on the mesoscopic capacitor.
In particular, we will show that past experimental measurements, showing fractionalization effects in
out-of-equilibrium charge emission from a driven mesoscopic capacitor [25], also manifest previously
overlooked signatures of non-trivial many-body dynamics induced by interactions in the cavity.

As a preliminary remark, notice that the circuit analogy (31) does not apply for a non-linear
response to a gate voltage change or to fast (high-frequency) drives. An important example is a large
step-like change in the gate voltage Vg(t) = Vgθ(t), θ(t) being the Heaviside step function, which is
relevant to achieve triggered emission of quantized charge [24]. Such a non-linear high-frequency
response has been considered extensively for non-interacting cavities [22,24,191–195], where the
current response to a gate voltage step at time t = 0 was found to be of the form of simple exponential
relaxation [22,191,193,195]:

I(t) ∝ e−t/τR θ(t). (67)

For a cavity in the quantum Hall regime the relaxation time τR = τf/(1− |r|2), where τf is the time
of flight around the edge state of the cavity, see Figures 6 and 7, and r the reflection amplitude of the
point contact.

There have been relatively few studies of the out-of-equilibrium behavior of the mesoscopic
capacitor in the presence of interactions. The charging energy leads to an additional time scale
τc = 2πh̄Cg/e2 for charge relaxation. The limit 1− |r|2 � 1 of a cavity weakly coupled to the lead,
such that it can effectively be described by a single level, was addressed in Refs. [196–201].

The full characterization of the out-of-equilibrium dynamics behavior of the mesoscopic capacitor,
with a close-to-transparent point contact, was carried out in Ref. [148], extending the analysis of
Ref. [65] to a non-linear response in the gate voltage Vg. A main result, spectacular in its simplicity,
is that for a fully transparent contact (r = 0) the linear-response admittance (45) also describes
the non-linear response, i.e., the correction terms in Equation (30) vanish for an ideal point contact
connecting cavity and lead [136,202–204]. The Fourier transform of the admittance (45) describes the
real-time evolution of the charge Q(t) after a step change in the gate voltage.
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Figure 13 illustrates that initially, for times up to τf, Q(t) relaxes exponentially with time τc,
whereas at time t = τf the capacitor abruptly enters a regime of exponentially damped oscillations,
the period and the exponential decay, controlled by a complex function of τf and τc, which does not
correspond to any time scale extracted from low-frequency circuit analogies. This behavior is not
captured by Equation (67), derived in the non-interacting limit. These oscillations correspond to the
emission of initially sharp charge density pulses, which are damped and become increasingly wider
after every charge oscillation. Such complex dynamics is exquisitely coherent, but totally governed
by interactions.
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Figure 13. From Ref. [148]. Time-evolution of the current/charge density following a sudden gate
voltage shift at time t = 0 for large interaction strength, τf = 20τc. Top—Charge response ∆Q(t) as
a function of time t. Bottom—Series of snapshots of the current/charge density j(x, t) at different
times. In the inset of panel (a), the real-space representation (reproducing the one adopted in Figure 7
with the dot site ` = L) of the mesoscopic capacitor with the profiles of the emitted charge pulses is
given. The times at which the snapshots are taken are indicated by vertical dashed lines in the top
panel. Notice that the scale changes along the vertical axis in the different panels. At time t = 0,
two charge pulses of width ∼ vFτc and opposite sign emerge from the point contact (a,b), one pulse
entering the cavity and one pulse entering the chiral edge of the bulk two-dimensional electron gas.
Both pulses have a net charge approaching Cg∆Vg. The pulse that is emitted into the cavity returns
to the point contact at time t = τf. As that pulse leaves the cavity, a second pulse-antipulse pair is
generated (c), partially canceling the original charge pulse that leaves the cavity at t = τf. The resulting
pulse exiting the cavity is the sum of the dashed profiles. The repetition of this mechanism leads to
the widening and lowering of successive pulses (d,e) (notice the change of scale between snapshots).
Finally, the asymptotic configuration is attained with a charge C∆Vg uniformly distributed along the
cavity edge (f).

Additionally, it is also interesting to consider the effect of a small reflection amplitude r in the
point contact. In this case, the charge Qr acquires nonlinear terms in the gate voltage Vg,

Qr(t) = Q(t)− er̃
πC

∫
dt′A(t− t′) sin[2πQ(t′)/e], (68)
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in which A(t) and Q(t) are the Fourier transform of the admittance and charge for the case of a point
contact with perfect transparency, r = 0, see Equations (30) and (45). The parameter r̃ involves both
the (weak) backscattering amplitude r and temperature T, details can be found in Ref. [148].

Experimental Signatures of the Effects of Interaction in Quantum Cavities Driven out of Equilibrium

The prediction that, in the open dot limit, interactions trigger the emission of a series of subsequent
charge density pulses led to the possible explanation of additional effects that relate to a, so far not
satisfactorily explained, part of the Hong-Ou-Mandel current noise measurements at the LPA [25,205].
The experimental setup is the solid state realization of the Hong-Ou-Mandel experiment, see the left
panel in Figure 14: When two electrons collided at the same time on the QPC from different sources
(states 1 and 2), they could not occupy the same state because of Pauli’s exclusion principle and their
probability to end up in different leads (states 3 and 4) was increased. As a consequence, the current
noise was suppressed [132], see the right panels in Figure 14. More generally, ∆q(τ) measures the
cross-correlation (or overlap) in time of the two incoming currents at the level of the QPC. If the two
incoming currents are identical in each input, one should get ∆q(τ = 0) = 0 and the rest of the curve
will reflect on the time trace of the current. However, because of small asymmetries in the two electronic
paths and the two electron sources, the noise suppression is not perfect [205]. In Ref. [25], the current
noise ∆q as a function of the time delay τ with which electrons arrived at the QPC from different
sources was measured in more detail for the outer and inner edge of the filling factor ν = 2 (central and
right panel in Figure 14). The current in the inner edge channel was induced by inter-edge Coulomb
interactions and could be computed with a plasmon-scattering formalism [25,206]. In addition to what
this plasmon scattering model predicted, unexpected oscillations as a function of τ were observed.
These could be satisfactorily explained by our prediction [148] of further charge emission triggered
by interactions in the electron sources [205]. From independent calibration measurements, the total
RC time constant of the source could be measured to set the constrain (τ−1

f + τ−1
c )−1/2 = τRC =

21 ps. Combining Equation (30) and (45) with the plasmon scattering formalism one could compute
the current noise in the ouput of the Hong-Ou-Mandel interferometer ∆q(τ) with only one fitting
parameter: The ratio τf/τc. The minimization procedure gave the most-likely result: τf = 136 ps.
The comparison is shown on the right panels of Figure 14, where the model for τf = 2τRC [τc → ∞,
i.e., no interaction within the dot] described the fractionalization process due to interedge Coulomb
interactions but not the interactions within the dot itself. This provides a reasonable qualitative and
quantitative agreement with the experimental data reported in Ref. [25]. On the bottom-left panel in
Figure 14 we compared, for τf = 136 ps, the charge exiting the dot Q(t) with the applied square pulse
sequence on the top-gate V(t) which had a finite rise time of 30 ps. In particular, it could explain the
appearance of extra rebounds in ∆q for time delays τ between 70 and 450 ps which was not possible
with a non-interacting dot (τf = 0). This was directly due to the additional effects coming from
the interactions within the dot itself and could not be explained by the fractionalization mechanism.
Indeed, relying exclusively on the model describing fractionalization, we could not reproduce the
pronounced additional rebound for |τ| = 200 ps for τf < 100 ps. This highlights the relevance of
Coulomb interactions in the open dot dynamics.
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Figure 14. Top-Left—Hong-Ou-Mandel experiment from Ref. [25]: Two single electron sources, as that
shown in Figure 6, inject single electron towards the same QPC, which works as a beamsplitter.
Bottom-left—Simulation based on Ref. [148] of the charge exiting the open dot when applying a
square pulse sequence V(t) with a rise time of 30 ps, one clearly sees the additional pulses coming
from interactions. Top-Right—Normalized Hong-Ou-Mandel current noise ∆q of the outer edge as a
function of the time delay τ with which charge arrives on the QPC from different sources. Noise is
suppressed for τ = 0 because of anti-bunching effects, but additional oscillations were observed for
τ 6= 0, which the theory in Ref. [148] contributed to explain. The points are the experimental data
while the solid and dashed lines are theoretical curves with different fittings for the time of flight τf for
electrons in the cavity. Bottom-Right—Same as in the central panel but for the inner edge.

6. Conclusions

This review addressed the importance of interactions for the investigation and control of
dynamical quantum coherent phenomena in mesoscopic quantum-dot devices.

In Section 2, we discussed how interactions are the essential ingredient allowing long-range
quantum state transfer in mesoscopic devices. Notice that the same phenomenon has been suggested to
enforce nonlocal phase-coherent electron transfer in wires supporting topologically protected Majorana
modes at their edges [207,208]. Such an effect is currently being considered in various Majorana
network models for stabilizer measurements in corresponding implementations of topological
quantum error correction codes [209–211].

The local Fermi liquid approach, discussed in Section 3, provides the unifying theoretical
framework to describe the low-energy dynamics of such various mesoscopic devices. Its application
to the various experimental setups mentioned in the Introduction, will be definitively useful to
bring further understanding in the complex and rich field of out-of-equilibrium many-body systems.
The insight given on universal quantum dissipation phenomena, discussed for the mesoscopic capacitor
in Section 4, and, in particular, the novel interaction effects, unveiled in the experiment discussed in
Section 5, give two clear examples of the utility of this approach.
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Beyond the already mentioned potential for quantum dot devices coupled to microwave
cavities [150–159] and to energy transfer [178–180], important extensions of the LFL approach
should be envisioned for understanding the properties of mesoscopic devices involving non-Fermi
liquids at the place of normal metallic leads. The most important cases would involve
superconductors [18,19,212–217] or fractional Quantum Hall edges states, in which quantum noise
measurements have been crucial to address and unveil the dynamics of fractionally charged
excitations [218–235]. Additionally, the recent realization of noiseless levitons [8–12] paves the way
to interesting perspectives to investigate flying anyons [13,220,236] and novel interesting dynamical
effects [188,189,237].
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Abbreviations

The following abbreviations are used in this manuscript:

QPC quantum point contact
LFL local Fermi liquid
CBM Coulomb blockade model
AIM Anderson impurity model
SW Schrieffer–Wolff
DC direct current
2DEG two-dimensional electron gas
KS Korringa–Shiba
AC alternate current
NRG numerical renormalization group

Appendix A. Scattering Theory, Phase-Shifts and the Friedel Sum Rule

In this Appendix we review some useful results from scattering theory. In Appendix A.1,
we provide the definition of the S- and T-matrix in scattering theory. In Appendix A.2, we derive
the Friedel sum rule for a non-interacting electron gas with an elastic impurity. In Appendix A.3,
we illustrate these concepts on the simple case of a chiral edge state tunnel coupled to a single resonant
level. In Appendix A.4, we derive the phase-shift induced on lead electrons by the scattering potential
of the LFL, Equation (8).

Appendix A.1. General Definitions

We aim at describing the general situation of Figure A1, which is reproduced by mesoscopic
settings, such as a single resonant level coupled to a chiral edge state, which also describes the
mesoscopic capacitor in the non-interacting limit, see also Figure 7 in the main text. Consider a wave
packet emitted and detected in the distant past and future, namely t = −∞ and t = +∞, and which
enters a scattering region at time t = 0. Close to detection and emission, it is assumed that the wave
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packet does not feel the presence of the scatterer, whose interaction range is delimited inside the
dashed line in Figure A1. The system is described by a single-particle Hamiltonian of the form:

H = H0 + V , (A1)

in whichH0 describes the free propagation of a wave-packet and V the scatterer. The T-matrix describes
the effects of a scatterer on the propagation of a free particle. It is an improper self-energy for the
resolvent of the lead electrons, which appears in a modified form of Dyson’s equation:

G(z) = G0(z) + G0(z)T(z)G0(z) , G(z) =
1

z−H , (A2)

in which z is a complex number. G0 is the free resolvent describing free electrons:

G0
kk′(z) = 〈k|G

0(z)
∣∣k′
〉
=

δkk′

z− εk
, (A3)

the |k〉 states being the single particle eigenvectors of the unperturbed Hamiltonian H0. One can
readily show that the T-matrix reads:

T(z) = V(I− G0(z)V)−1 . (A4)

The general definition of the phase-shift, a key quantity within scattering theory [238,239], reads:

δε = arg
[
T(ε + i0+)

]
. (A5)

Figure A1. Top—Illustration of the physical situation described by the scattering formalism. Electron
wave packets are emitted in the IN-State

∣∣Ψ+
〉

and then measured in the OUT-state
∣∣Ψ−

〉
once they

have passed through the scattering region. Bottom—Realization of the scattering setup with a quantum
Hall chiral edge state tunnel coupled (in a region of size 2η) with a resonant level of energy εd.

We define the IN and OUT states |Ψ±〉 as the eigenvectors of energy ε of the Hamiltonian of the
whole system, including the scattering region, as the states coinciding asymptotically with free plane
waves in the past and in the future respectively. The scattering matrix S gives the overlap between
these two states:

Skk′(ε) = 〈Ψ−k |Ψ
+
k′ 〉 , (A6)
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where k/k′ are the momenta of the OUT/IN states. The T- and S-matrix are related by the
relation [238,239]:

Skk′ = δkk′ − 2πiδ(εk − εk′)Tkk′ , (A7)

or equivalently, in the energy representation,

S(ε) = I− 2πiν0T(ε) . (A8)

The S-matrix is unitary and in the single channel case it is completely defined by a phase
S(ε) = e2iδε . The phase δε is the phase-shift caused by scattering and in general the condition S(ε) = e2iδε

is always verified if we take the definition of the phase-shift directly from the T-matrix:

T(ε) = − 1
πν0

sin δεeiδε . (A9)

There is an interesting connection with the Kondo regime. In Section 3.3.2, we illustrated how
particle-hole symmetry enforces that the phase-shift is given by δ = δK = π/2. The scattering matrix
thus equals the identity. This case is also known as the unitary limit of the Kondo model, in which the
transmission probability through a Kondo correlated dot is unity.

Appendix A.2. The Friedel Sum Rule

We show here the Friedel sum rule for non-interacting electrons scattering on an elastic impurity.
We first consider the total electron occupation 〈N 〉 of an electron gas, which reads:

〈N 〉 = ∑
α

∫ ∞

−∞
dωAα(ω) f (ω) , (A10)

the sum on the label α running over all the eigenstates of the Hamiltonian (A1). Aα(ω) is the spectral
function of the state α, defined as:

Aα(ω) = − 1
π

ImGαα(ω + i0+) = − 1
π

Im〈α|G(ω + i0+)|α〉 , (A11)

Gαα being the retarded Green’s function associated to the state α defined in Equation (A2). In the
absence of the scatterer, Gkk(ω + i0+) = G0(ω + i0+) = (ω + i0+ − εk)

−1 and Equation (A10) reduces
to a sum over the Fermi function ∑k f (εk) giving the total number of electrons 〈N 〉 in the system.
If the chemical potential is fixed, the introduction of the scatterer modifies the total average number
of electrons. The difference with the initial one gives the amount of electrons 〈N〉 displaced by the
scatterer. In the case of a single channel, one obtains:

〈N 〉with scatterer − 〈N 〉without scatterer = 〈N〉 = −
1
π

Im
∫ ∞

−∞
dωTr[G(ω)− G0(ω)] f (ω) . (A12)

Using Equation (A4) and the fact that d
dε Tr log[A(ε)] = Tr

[
A−1(ε) d

dε A(ε)
]
, one finds:

〈N〉 = − i
2π

∫ ∞

−∞
dω f (ω)

d
dω

log det[I− 2πiν0 T(ω + i0+)]

= − i
2π

∫ ∞

−∞
dω f (ω)

d
dω

log det S(ω + i0+) ,
(A13)
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in which we applied the definition (A8) of the S-matrix. This is the general form of the Friedel sum
rule. For S(ε) = e2iδε and zero temperature it gives a direct relation between the charge displaced by
the impurity and the phase-shift at the Fermi energy EF:

〈N〉 =
δEF

π
. (A14)

The extension to M channels requires to add an overall sum over the channel label σ and leads to
Equation (10) in the main text.

Appendix A.3. Illustration on the Resonant Level Model

We illustrate now the above concepts on a simple situation, sketched in Figure A1, in which the
scatterer is a single resonant level tunnel coupled to chiral electrons propagating on an edge state.
Such a situation is an effective representation of the mesoscopic capacitor, see Figures 7 and A2, and it
is described by the Coulomb Blockade Model (CBM) (12), that we remind here to the reader:

HCBM = ∑
k

εkc†
k ck + t ∑

k,l

[
c†

k dl + d†
l ck

]
+ ∑

l
(εd + ε l)d†

l dl + Ec

(
N −Ng

)2
. (A15)

In this section, we neglect the last term, corresponding to interactions, and, for simplicity, we retain only
a single fermionic level (annihilated by the fermion operator d) for the cavity, with ε l = 0. One thus
obtains the Hamiltonian of a resonant level:

HRes = ∑
k

εkc†
k ck + t ∑

k

(
c†

k d + d†ck

)
+ εdd†d . (A16)

We first calculate the occupation of the cavity by calculating the retarded Green’s functions, defined as
Gdk(t − t′) = −iθ(t − t′)

〈
{d(t), c†

k(t
′)}
〉
. They are derived by solving the equations of motion in

frequency space:

(ω− εd)Gdd(ω) = 1 + t ∑
k

Gkd(ω) , (ω− εk)Gkk′(ω) = δkk′ + tGdk′(ω) , (A17)

(ω− εk)Gkd(ω) = tGdd(ω) , (ω− εd)Gdk = t ∑
k′

Gk′k(ω) . (A18)

Solving the system, the Green’s function for the lead electrons reads:

Gkk′(ω) =
δkk′

ω− εk
+

1
ω− εk

t2Gdd(ω)
1

ω− εk′
. (A19)

Writing Equation (A19) in the form G = G0 + G0TG0, the T-matrix is found to be:

T(ω + i0+) = t2Gdd(ω + i0+) =
t2

√
(ω− εd)2 + Γ2

eiδω , δω =
π

2
− arctan

(
εd −ω

Γ

)
(A20)

in which we introduced the hybridization constant:

Γ = t2 ∑
k
(ω + i0+ − εk)

−1 ∼ πν0t2 , (A21)

which corresponds to the width acquired by the resonant level by coupling to the lead and which
depends on the density of states of the lead electrons at the Fermi energy ν0.

We can now determine the number of displaced charges 〈N〉 as given by Equation (A22) and show
the validity of the Friedel sum rule (A14) in this example. In the wide-band limit, the contribution
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from the second term in Equation (A19) can be neglected. The number of displaced electrons is given
solely by the quantum dot Green’s function Gdd:

〈N 〉with dot − 〈N 〉without dot = 〈N〉 = −
1
π

Im
∫ ∞

−∞
dωGdd(ω) f (ω) =

1
2
− 1

π
arctan

( εd
Γ

)
, (A22)

which is consistent with the Friedel sum rule (A14) with the phase-shift (A20). Equation (A22) is
also meaningful because: i) It shows that, in the wide-band approximation, the number of displaced
electrons 〈N〉 is given by the local Green’s function Gdd, which can be interpreted as the charge
occupation of the quantum dot and ii) the number of displaced electrons depends on the orbital energy
εd. As a consequence, a time-dependent variation of εd drives a current in the system by displacing
electrons in the leads.

As an additional illustration, clarifying how the scattering phase-shift appears on single particle
wave-functions, we also solve explicitly the same problem in its real-space formulation. We consider
chiral fermions Ψ(x) which tunnel on the resonant level of energy εd (and wave-function amplitude Ψd),
from a region of size 2η centered around x = 0, useful to properly regularize the calculation and to
be sent to zero at the end [240]. For lead electrons at the Fermi energy, that we set to zero (ω = 0 in
Equation (A20)), the Schrödinger equation reads (for x ∈ [−η, η]):

0 = −ih̄vF∂xΨ(x) +
t

2η
Ψd , 0 = εdΨd +

t
2η

∫ η

−η
dx′Ψ(x′) . (A23)

By integrating the first equation in the interval [−η, x < η] and inserting the result for Ψ(x) in the
second one, one finds:

Ψ(x) = Ψ(−η) +
t

2ηih̄v
(x + η)Ψd , Ψd =

−t
εd − iΓ

Ψ(−η) . (A24)

Notice that η does not appear on the last equality and can be sent safely to zero. We consider,
as boundary condition for Ψ(x), incoming scattering states of the form Ψ(x < 0) = eikx/

√
2πh̄vF =√

ν0eikx. One thus finds:

|Ψd|2 =
1
π

Γ
ε2

d + Γ2
, Ψ(0+) =

√
ν0e2iδ0 , δ0 =

π

2
− arctan

( εd
Γ

)
, (A25)

in agreement with Equation (A20). This short calculation illustrates how, just after scattering with the
resonant level, the electron wave-packet at the Fermi energy acquires a phase e2iδ0 which is fixed by
the resonant level occupation via the Friedel sum rule. Notice that, at the resonance condition for the
orbital energy (εd = 0), δ0 = π/2 and Ψ(0+) + Ψ(0−) = 0, as for the unitary limit in the Kondo model,
in which δK = π/2, see also the discussion in Section 3.3.2.

Appendix A.4. T-Matrix in the Potential Scattering Hamiltonian

We derive now the phase-shift caused by the potential scattering term on lead electrons in a local
Fermi liquid (LFL). It is useful to recall here the LFL Hamiltonian (8):

HLFL = ∑
kσ

εkc†
kσckσ + W(εd, Ec, . . .) ∑

k 6=k′σ
c†

kσck′σ . (A26)

We focus on the the single-channel case for simplicity (M = 1). The generalization to σ = 1, . . . M
channels is straightforward. The Hamiltonian (A26) is quadratic and the Green’s function of the lead
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electrons can be readily obtained relying on the path integral formalism [79]. The partition function
corresponding to Equation (A26) reads:

Z =
∫
D
[
c, c†

]
e−SLFL[c,c†] , (A27)

where SLFL
[
c, c†] is the action of the system, which reads:

SLFL =
∫ β

0
dτ

{
−∑

k
c†

k(τ)G
−1
k (τ)ck(τ) + W ∑

k 6=k′
c†

k(τ)ck′(τ)

}
, (A28)

where we introduced the free propagator G−1
k (τ) = −∂τ − εk and in which ck is a Grassmann

variable. It is practical to switch to the frequency representation ckσ(τ) = 1
β ∑iωn e−iωnτckσ(iωn),

where we defined the fermionic Matsubara frequencies iωn = (2n + 1)π/β, n ∈ Z. They satisfy the
anti-periodicity property c(β) = −c(0) and lead to:

SLFL = ∑
iωn

{
−∑

k
c†

k(iωn)G−1
k (iωn)ck(iωn) + W ∑

k 6=k′
c†

k(iωn)ck′(iωn)

}
, (A29)

with G−1
k (iωn) = iωn − εk, which recovers the usual retarded/advanced Green’s functions

by performing the analytical continuation iωn → ω ± i0+. The full Green’s function
Gkk′(iωn) = −

〈
ck(iωn)c†

k(iωn)
〉

is derived by expanding the partition function (A27) in the coupling
W and by applying Wick’s theorem [83]. The pertubation expansion of Gkk′(iωn) has the simple form:

Gkk′(iωn) =
δkk′

iωn − εk
+

1
iωn − εk

1
iωn − εk′

W
[
1 + Σ(iωn) + Σ2(iωn) + Σ3(iωn) + . . .

]
, (A30)

in which we introduced the self-energy:

Σ(iωn) = ∑
p

W(εd)

iωn − εp
. (A31)

Using the definition (A2), the T-matrix thus reads:

T(z) =
W

1− Σ(z)
. (A32)

Making the analytical continuation iωn → ω + i0+ and considering a constant density of states ν0 for
the lead electrons, we obtain:

T(ω + i0+) =
W(εd)

1 + iπν0W
=

W(εd)√
1 + [πν0W(εd)]2

eiδW , (A33)

in which we introduced the phase-shift:

δW = − arctan (πν0W) . (A34)

Applying the definition of the phase-shift given in Equation (A5), one finds Equation (9) in the main
text. As a consistency check, substituting Equation (A33) in Equation (A8), we find that the scattering
matrix reads S = e2iδ.
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Appendix B. Self-Consistent Description- of a 2DEG Quantum RC Circuit

In Appendix B.1, we shortly review the self-consistent scattering theory of the mesoscopic
capacitor and, in Appendix B.2, we show how equivalent results can be derived with a Hamiltonian
formulation.

Appendix B.1. Self-Consistent Theory

In this section, we shortly review the description of the mesoscopic capacitor in the seminal
works by Büttiker, Thomas, and Prêtre [21,51–53], based on a self-consistent extension of the
Landauer–Büttiker scattering formalism [45–47]. The following discussion is also inspired from
Refs. [20,241,242].

Figure A2 illustrates the intuition behind the interpretation of the mesoscopic capacitor as a
quantum analog of a classical RC circuit. The top metallic gate (a classical metal) and the quantum dot
cannot exchange electrons. These two components make up the two plates of a capacitor on which
electrons accumulate according to variations of the gate potential Vg. The value of the capacitance
depends on the geometry of the contact and, in the experiment of Ref. [20], the geometrical capacitance Cg

was estimated ∼10–100 fF. This capacitance is in series with a quantum point contact. As mentioned
in the main text, direct transport measurements [160,161] consider QPCs as resistive elements of
resistance RDC = h/e2D, where D is the QPC transparency. The above considerations suggest the
interpretation of the device in Figure A2 as an RC circuit. The admittance of a classical RC circuit reads:

A(ω) =
−iωC

1− iωRC
= −iωC

(
1 + iωCR

)
+ O

(
ω3) . (A35)

The admittance (A35) can be calculated with the scattering formalism [45–47], which requires to
be adapted to describe the mesoscopic capacitor in Figure A2. The main problem is the “mixed”
nature of the quantum RC device: The mesoscopic capacitor is composed of a phase-coherent part
(two-dimensional electron gas + quantum dot) in contact to an incoherent top metallic gate. As these
constituents do not exchange electrons, preventing a direct current, electron transport is only possible
by driving the system. We focus on the case of a gate potential oscillating periodically, as Equation (35)
in the main text,

Vg(t) = Vg + εω cos(ω t) . (A36)

For small oscillation amplitudes εω, the Landauer–Büttiker formalism allows to derive the circuit
admittance within linear response theory. In the case of a single conduction mode, the admittance
reads [51]:

a(ω) =
e2

h

∫
dεTr

[
1− S†(ε)S(ε + h̄ω)

]
· f (ε)− f (ε + h̄ω)

h̄ω
, (A37)

in which f (ε) is the Fermi distribution function, in which we fix to zero the value of the Fermi energy.
For one channel, the elastic scattering assumption implies that the matrix S(ε) reduces to a pure phase
S(ε) = e2iδε , as electrons entering the dot return to the lead with unit probability. The phase-shift δε is
related to the dot electron occupation, via the Friedel sum rule (A14). Additionally, this phase is also
related to the dwell-time that electrons spend in the quantum dot, or Wigner–Smith delay time [89,243]:

τ(ε)

h
=

1
2πi

S†(ε)
dS(ε)

dε
=

1
π

dδε

dε
. (A38)

The interpretation of τ as a dwell-time is illustrated in Section 4.2. In the limits T → 0 and h̄ω → 0,
Equation (A37) becomes:

a(ω) = −iω
e2

h

[
τ +

1
2

iωτ2 + O
(
ω2)

]
. (A39)
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The dwell-time τ = τ(0) is considered at the Fermi energy. Notice that this expression has the same
frequency expansion as Equation (A35). Matching term by term, one finds:

Cq =
e2

h
τ , Rq =

h
2e2 . (A40)

Such relation between time-delays and circuit elements comes from the fact that electrons arriving
on the dot at different times are differently phase-shifted, because of the variations in time of the
gate potential Vg. This effect causes a local accumulation of charges, which is responsible for the
emergence of quantum capacitive effects, corresponding to Cq. The time delay of the electron phase
δ with respect to the driving potential U(t) is responsible for energy dissipation, controlled by Rq.
The characteristic time that an electron spends in the quantum dot is given by τ = 2RqCq, twice the
RC time because it includes the charging and relaxation time of the RC circuit. Notice the emergence of
a universally quantized relaxation resistance, regardless of any microscopic detail of the quantum RC
circuit, in contrast with the resistance RDC = h/e2D, sensitive to the transparency D of the QPC and
which would be measured in a DC experiment, see also Equation (43) in the main text.

Figure A2. (a,b) Schematic representation of the quantum RC circuit. Electrons in the edge states of a
two-dimensional electron gas (2DEG) in the integer quantum Hall regime tunnel inside a quantum
dot through a QPC. The dot is driven by a top metallic gate. The dot and the gate are separated by
an insulator and cannot exchange electrons, thus forming the two plates of a capacitor C. The QPC
is a resistive element of resistance R. These two circuit elements are in series and define a quantum
coherent RC circuit. (c,d) The blue region of the two-dimensional gas is phase coherent. The top
metallic gate is an incoherent metal, driven by a time-dependent gate potential Vg(t), which induces
an unknown uniform potential U(t) on the dot. The classical circuit analogy in (d) is made possible by
shifting all energies by −U(t). The whole device behaves as a charge relaxation resistance Rq in series
to a total capacitance C: series of a quantum and geometrical capacitance Cq and Cg.
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Notice that the geometrical capacitance Cg does not appear in the previous discussion.
The admittance Equation (A37) has been derived by applying linear response theory for the driving
potential U(t) in the quantum dot, see Figure A2. The potential U(t) does not coincide with the actual
driving gate-potential Vg(t). The situation is pictured in Figure A2: The geometric capacitance Cg

leads to a potential drop between gate and dot. In a mean-field/Hartree–Fock treatment, the potential
U(t) on the dot is assumed to be uniform for each electron. This assumption is equivalent to a Random
Phase Approximation (RPA), valid for weak interactions or to leading order in a 1/M expansion,
with M the number of channels connected to the dot [78]. The potential U can then be determined
self-consistently from the constraint of charge/current conservation in the whole device. The current
Idev flowing in the coherent part of the device has to equal the current Igate flowing in the incoherent
metallic gate:

I = Idev = Igate . (A41)

As all potentials are defined with respect to an arbitrary energy, they can be shifted by −eU(t),
setting the potential to zero in the quantum dot. Thus, the currents in the device and in the metallic
gate read:

Idev = −U(ω)g(ω) , Igate = −iCgω
[
U(ω)−Vg(ω)

]
. (A42)

Applying the current conservation condition (A41), the potential U can be eliminated, and the
admittance of the total device is derived:

A(ω) = − I
Vg

=
1

1
a(ω)

+ 1
−iωCg

. (A43)

Recalling the low frequency behavior of a(ω) in Equation (A39), the above expression shows that the
whole device behaves as a RC circuit. Albeit with two capacitances in series, Equation (A43) still gives
a universally quantized Rq = h/2e2. The series of Cq and Cg gives the total capacitance C, originally
denoted as electro-chemical capacitance [21,51–53].

We can consider a simple model for the mesoscopic capacitor to estimate the behavior of the
dwell-times τ setting the quantum capacitance (A40). We consider the case of Figure A2, in which
electrons propagate in the integer quantum Hall edges inside the quantum dot, see also Figure 7 in
the main text. We label ` the length of the edge state in the quantum dot and vF the Fermi velocity
of the electron. The dwell-time for electrons of velocity vF inside the dot is τf = `/vF. An electric
wave of energy ε acquires a phase φ(ε) = (ε− eU)τf/h̄, when making a tour of the dot. Notice that
we had to shift the energy ε of the electron by −eU because of the potential shift schematized in
Figure A2. The chiral nature of the edge states allows for a one-dimensional representation of the
problem, pictured in the right-top of Figure 7. For a quantum well of size `/2, close to the Fermi energy,
the level spacing ∆ = hvF/` is constant. Thus τf = h/∆ and, substituting in Equation (A40), leads to
the uniform quantum capacitance Cq = e2τf/h, derived heuristically in the main text, see Equation (41).
If the reflection amplitude at the entrance of the dot is r and D = 1− |r|2 the transmission probability,
the dot can be viewed as a Fabry–Perot cavity and the phase of the out-coming electron is:

S(ε) = r− Deiφ(ε)
∞

∑
q=0

rqeiqφ(ε) =
r− eiφ(ε)

1− reiφ(ε)
= ei2δε . (A44)

Applying Equation (A38) we obtain the local density of states:

N (ε) =
τf
h

1− r2

1− 2r cos
[ 2π

h
(
ε− eU

)
τf
]
+ r2

. (A45)
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This quantity is plotted in Figure A3 and reproduces the oscillatory behavior of the capacitance in
Figure 8. In the limit of small transmission (D � 1 and r ≈ 1), Equation (A45) reduces to a sum of
Lorentzian peaks of width h̄γ, γ = D/τf:

N (ε) =
2

πh̄γ ∑
n

1

1 +
(

ε−eU−n∆
h̄γ/2

)2 . (A46)

These peaks are the discrete spectrum of the dot energy levels.
The above arguments can be readily generalized to the case with M channels in the lead and in

the cavity. In this case, every single channel σ can be considered independently. The admittance (A39)
can be then cast in the form:

a(ω) = −iω
e2

h

M

∑
σ=1

[
τσ +

1
2

iωτ2
σ + O

(
ω2)

]
. (A47)

The low-frequency expansion of the RC circuit admittance (A35) is then recovered by defining:

Cq =
e2

h

M

∑
σ=1

τσ , Rq =
h

2e2
∑σ τ2

σ

(∑σ τσ)
2 , (A48)

in which τσ are the dwell-times in the quantum dot of electrons in the σ-th mode.

Appendix B.2. Hamiltonian Description of the Quantum RC Circuit with a Resonant Level Model

In this appendix, we study the resonant level model (A16) as a RC circuit. The generalization of
the following calculations to the many-channel case is straightforward and, in particular, we extend
to the multi-level case. We thus recover the self-consistent scattering theory analysis discussed in
Appendix B.1, corresponding to the limit Cg → ∞ (non-interacting limit). Our aim is the calculation of
the dynamical charge susceptibility:

χc(t− t′) =
i
h̄

θ(t− t′)
〈[

N(t), N(t′)
]〉

0 , (A49)

which leads to the admittance of the circuit A(ω) = −iωe2χc(ω), see also Equation (36) in the
main text. We make use of the path integral formalism as in Appendix A.4. The partition function
corresponding to Equation (A16) reads:

Z =
∫
D
[
c, c†, d, d†

]
e−SRes[c,c† ,d,d†] , (A50)

where S
[
c, c†, d, d†] is the action of the system, which reads

SRes =
∫ β

0
dτ

{
−∑

k
c†

k(τ)G
−1
k (τ)ck(τ)− d†(τ)D−1(τ)d(τ) + t ∑

k

[
c†

k(τ)d(τ) + c.c.
]}

, (A51)

with the free propagators:

G−1
k (τ) = −∂τ − εk , D−1(τ) = −∂τ − εd , (A52)

in which ck and dl are Grassmann variables. It is practical to switch to the Matsubara frequency
representation, which leads to:
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SRes = ∑
iωn

{
−∑

k
c†

k(iωn)G−1
k (iωn)ck(iωn)− d†(iωn)D−1(iωn)d(iωn)

+t ∑
k

[
c†

k(iωn)d(iωn) + d†(iωn)ck(iωn)
]}

, (A53)

with G−1
k (iωn) = iωn− εk and D−1(iωn) = iωn− εd. Reestablishing dimensions, the Fourier transform

of Equation (A49) reads:

χc(iνn) =
1
h̄

∫ h̄β

0
d(τ − τ′)eiνn(τ−τ′) 〈N(τ)N(τ′)

〉
0 , (A54)

and χc(ω) is recovered by performing the analytical continuation iν → ω + i0+. This function is
periodic in imaginary time and its Fourier transform is a function of the bosonic Matsubara frequencies
iνn = 2nπ/β. N(τ) = d†(τ)d(τ) counts the number of charges on the dot. The cyclic invariance
property of the trace implies that 〈N(τ)N(τ′)〉0 = f (τ − τ′), allowing us to recast (A54) in the form:

χc(iνn) =
1
β ∑

iω1,2

〈
d†(iω1)d(iω1 + iνn)d†(iω2)d(iω2 − iνn)

〉
. (A55)

To calculate this expression, we first perform the Gaussian integral of the lead modes in Equation (A53),
leading to the effective action S ′Res of the resonant level model:

S ′Res = −∑
iωn

d†(iωn)D(iωn)d(iωn) , D−1(iωn) = iωn − εd − t2 ∑
k

Gk(iωn) . (A56)

In the wide-band approximation the propagator can be written as D−1(iωn) = iωn − εd + iΓsgn(ωn),
where we introduced the hybridization constant Γ = πν0t2. The action (A56) is quadratic and the
application of Wick’s theorem [83] in Equation (A55) leads to:

χc(iνn) = −
1
β ∑

iωn

D(iωn)D(iωn + iνn)→ −
1

πΓ

∫ ∞

−∞
dx f (Γx + εd)

2x
(x2 + 1)[x2 − (ω/Γ + i)2]

, (A57)

where the analytical continuation iν→ ω + i0+ has been performed. At zero temperature, the integral
can be calculated analytically, leading to:

χc(ω) =
1

πΓ
1

ω
Γ
(

ω
Γ + 2i

) ln
ε2

d + Γ2

ε2
d − (ω + iΓ)2

. (A58)

The low frequency expansion of this expression matches the one of a classical RC circuit (A35).
Reestablishing correct dimensions ω → h̄ω, the result recovers Equation (A40) obtained within
scattering theory:

C0 =
e2

h
ν(εd) , Rq =

h
2e2 , (A59)

where ν(εd) is the density of states associated to the single orbital εd

ν(εd) =
1
π

Γ
ε2

d + Γ2
. (A60)
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The extension to M channels is straightforward. One can consider a Hamiltonian of the form:

HRes−Mch = ∑
kσ

εkc†
kσckσ + t ∑

kσ

(
c†

kσdσ + d†
σckσ

)
+ ∑

σ

εσd†
σdσ , (A61)

with σ = 1, . . . , M the number of channels. In this model, each channel can be treated independently
and one finds a a generalization of Equation (A58):

χc(ω) =
M

∑
σ=1

1
πΓ

1
ω
Γ
(

ω
Γ + 2i

) ln
ε2

σ + Γ2

ε2
σ − (ω + iΓ)2

. (A62)

This expression, when expanded to low frequency, has also the form (A47), where the dwell-times are
substituted by the density of states of the channels (A60): τσ → νσ = ν(εσ). One thus finds expressions
for the differential capacitance and the charge relaxation resistance analog to Equation (A48):

C0 =
e2

h

M

∑
σ=1

νσ , Rq =
h

2e2
∑σ ν2

σ

(∑σ νσ)
2 . (A63)

0

0.5

1

1.5

2

2.5

3

3.5

4

-4 -2 0 2 4 6

eVg/∆

∆N (EF)

0

0.1

0.3

0.6

Figure A3. Peaked structure of the local density of states N (ε) on the dot as a function of the orbital
energy shift controlled by the gate potential eVg from Equation (A45). N (EF) is plotted for different
values of the backscattering amplitude r. The progressive opening of the dot drives a transition from a
Lorentzian to an oscillatory behavior of Cq, coherent with the experimental measurements illustrated
in Figure 8. For a completely transparent dot (r = 0) the density of states is uniform, which implies
C0 = e2/∆.

Multi-Level Case

In this section we carry out the calculation of the quantum dot density of states in the case of a
single channel and an infinite number of equally spaced levels in the quantum dot. The action reads:

S = ∑
iωn

{
−∑

k
c†

k G−1
k (iωn)ck −∑

l
d†

l D−1
l (iωn)dl + t ∑

kl

[
c†

k dl + d†
l ck

]}
, (A64)
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with G−1
k (iωn) = iωn − εk and D−1

l (iωn) = iωn − ε l . The Gaussian integration of the lead electron
modes leads to the effective action:

S ′ = ∑
iωn

{
−∑

l
d†

l (iωn)D−1
l (iωn)dl(iωn) + t2 ∑

k
Gk(iωn)∑

ll′
d†

l (iωn)dl′(iωn)

}
. (A65)

Applying Wick’s theorem [83] the full propagator of the dot electrons is readily obtained:

Dll′(iωn) = δll′Dl(iωn) + Dl(iωn)Dl′(iωn)
γ(iωn)

1− γ(iωn)Θ(iωn)
, (A66)

where we defined:

γ(iωn) = t2 ∑
k

Gk(iωn) , Θ(iωn) = ∑
l

Dl(iωn) . (A67)

In the wide band limit γ(iωn) = −iΓsgn(iωn). The charge 〈Q〉 = e ∑l
〈
d†

l dl
〉

on the dot is given by:

〈Q〉 = e
β ∑

l,iωn

eiωn0+Dll(iωn) =
e

2πi ∑
l

∫ ∞

−∞
dε f (ε)

[
Dll(ε + i0+)−Dll(ε− i0+)

]
. (A68)

We write the energy spectrum on the dot as ε l = −eVg + l∆, with l ∈ Z and ∆ the level spacing.
Equation (A66) is then a function of ε + eVg. Shifting all energies by eVg, the differential capacitance
C0 = −∂ 〈Q〉 /∂Vg is readily obtained at zero temperature:

C0 =
e2

2πi ∑
l

[
Dll(eVg + i0+)−Dll(eVg − i0+)

]
, (A69)

with

Dll(eVg ± i0+) =
1

eVg − l∆
∓ 1

(eVg − l∆)2
iΓ

1± iΓ
[
∑p

1
eVg−p∆

]

=
1
∆

{
1

x + l
∓ iΓ/∆

(x + l)2
1

1± iπ Γ
∆ coth(πx)

}
,

(A70)

where x = eVg/∆ and we exploited the fact that ∑l
1

x+l = Ψ0(1− x)−Ψ0(x) = π coth(πx), in which
Ψ0(x) is the digamma function. Substituting this expression in Equation (A69), the sum over levels
can be also carried out, leading to:

C0 = e2 πΓ
2∆2

1

sin2
(

π
eVg
∆

)


 1

1 + iπ Γ
∆ coth

(
π

eVg
∆

) +
1

1− iπ Γ
∆ coth

(
π

eVg
∆

)


 , (A71)

where we relied on the identity: ∑l
1

(l+x)2 = Ψ1(1− x) − Ψ1(x) = π2

sin2(πx)
, in which Ψn(x) is the

polygamma function. Some algebra leads to:

C0 =
e2

∆
2

∆
πΓ + πΓ

∆ − ( ∆
πΓ −

πΓ
∆ ) cos

(
2πeVg

∆

) . (A72)

This quantity is plotted in Figure A3 as a function of the gate potential Vg and reproduces the
oscillations of the capacitance observed in Figure 8, in the main text. As we did not consider
any many-body interaction to derive C0, this quantity corresponds to the quantum capacitance
Cq = e2N (EF) corresponding to the density of states at the Fermi level, see also discussion in
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Section 4.2. Such density of states was also derived within scattering theory in Appendix B.1. Indeed,
Equations (A45) and (A72) coincide if one makes the identification (It is useful to recall here that
τf = h/∆)

πΓ
∆

=
(1− r)2

1− r2 =
1− r
1 + r

⇔ r =
1− πΓ

∆

1 + πΓ
∆

. (A73)

Notice that the fully transparent limit coincides with πΓ/∆ = 1, corresponding to a change of sign
of the reflection amplitude r (remind that we assumed r to be a real number). Additionally, if we
consider the tunneling limit πΓ/∆� 1, we can write r =

√
1− D and, in the low-transparency limit

D � 1 one recovers πΓ/∆ = D/4, which is consistent with the expectation D ∝ t2 in the tunneling
limit of the Hamiltonian (A16). Notice also that the relation (A73) implies r = −1 in the Γ→ ∞ limit,
which can be explained by the formation of bonding and anti-bonding states at the junction between
electrons in the lead and in the dot, suppressing tunneling in the dot [240]. For a single level and one
channel, we recover the universal charge relaxation resistance Rq = h/2e2.

Appendix C. Useful Results of Linear Response Theory

In this appendix we remind some useful properties of linear response theory following Ref. [244].
In Appendix C.1, we show that the real/imaginary parts of the dynamical charge susceptibility (A49)
are respectively even/odd functions of the frequency, leading to:

A(ω) = −iωe2 {χc + iIm [χc(ω)]}+O(ω2) , (A74)

that is Equation (38) in the main text. In Appendix C.2, we demonstrate that the power dissipated by
the quantum RC circuit in the linear response regime is given by:

P =
1
2

ε2
ωωImχc(ω) , (A75)

that is Equation (55) in the main text.

Appendix C.1. Parity of the Dynamical Charge Susceptibility

The Lehman representation [97] of the dynamical charge susceptibility χc(ω) (A49) makes explicit
its real and imaginary parts. This is obtained from the Fourier transform of Equation (A49):

χc(ω) =
i
h̄

∫ ∞

−∞
d(t− t′)ei(ω+i0+)(t−t′)θ(t− t′)

〈[
N(t), N(t′)

]〉
0 , (A76)

where the factor i0+ is inserted to regularize retarded functions. Inserting the closure relation with the
eigenstates |n〉 of energy En of the time independent HamiltonianH0, the average can be written as:

〈
N(t)N(t′)

〉
0 = ∑

n,m
pneiωnm(t−t′)NnmNmn , (A77)

where pn = e−βEn /Z is the Boltzmann weight, h̄ωnm = En − Em and Nnm = 〈n|N |m〉 the matrix
elements of the dot occupation. In this representation, the Fourier transform (A76) reads:

χc(ω) = −1
h̄ ∑

nm
pnNnmNmn

(
1

ω + i0+ + ωnm
− 1

ω + i0+ −ωnm

)
. (A78)
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Applying the relation 1
x±i0+ = P

[
1
x

]
∓ iπδ(x), with P[ f (x)] the principal value of the function f (x),

the real and imaginary part of χc(ω) are readily obtained:

Re [χc(ω)] = −1
h̄ ∑

nm
pnNnmNmn

{
P
[

1
ω + ωnm

]
− P

[
1

ω−ωnm

]}
, (A79)

Im [χc(ω)] =
iπ
h̄ ∑

nm
pnNnmNmn

{
δ
(
ω + ωnm

)
− δ
(
ω−ωnm

)}
, (A80)

which are respectively an even and odd function of ω. As a consequence, in the low frequency
expansion of the dynamical charge susceptibility χc(ω) = χc(0) + ω∂ωχc(ω)|ω=0 +O(ω2), the linear
term in ω has to coincide with the imaginary part of Im[χc(ω)], leading to Equation (A74).

Appendix C.2. Energy Dissipation in the Linear Response Regime

In the situation addressed in Section 4, the time dependence of orbital energies in the dot is given
by εd(t) = ε0

d + εω cos(ωt). In the time unit, the systems dissipates the energy:

δW = δ 〈N〉 εω cos
(
ωt
)

. (A81)

In the stationary regime, the average power P dissipated by the system during the time period T reads:

P =
εω

T

∫ T

0
dt

d 〈N(t)〉
dt

cos(ωt) . (A82)

Neglecting constant contributions, 〈N(t)〉 is given by the dynamical charge susceptibility (A49):

〈N(t)〉 = εω

∫ ∞

−∞
dt′χc(t− t′) cos(ωt) . (A83)

Substituting this expression in Equation (A82), we obtain:

P = −iω
ε2

ω

4
[χc(ω)− χc(−ω)] + iω

ε2
ω

T

∫ T

0
dt

χc(−ω)e2iωt − χc(ω)e−2iωt

4
. (A84)

Expressing χc(ω) = Re [χc(ω)] + iIm [χc(ω)] as the sum of its real and imaginary part and applying
the parity properties demonstrated in Appendix C.1, the first term recovers Equation (A75) for the
dissipated power:

P =
1
2

ε2
ωωIm [χc(ω)] , (A85)

while the second term in Equation (A84) reduces to vanishing integrals of sin(2ωt) and cos(2ωt) over
their period. In the case of Section 4.5, describing the energy dissipated by the LFL effective low-energy
theory, we can apply the same considerations by replacing δ 〈N〉 in Equation (A81) with the average of
the operator A, defined in Equation (57). One thus derives Equation (56) in the main text.
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