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Living at high altitudes is extremely challenging as it entails exposure to hypoxia, low

temperatures, and high levels of UV radiation. However, the Tibetan population has

adapted to such conditions on both a physiological and genetic level over 30,000–40,000

years. It has long been speculated that fetal growth restriction is caused by abnormal

placental development. We previously demonstrated that placentas from high-altitude

Tibetans were protected from oxidative stress induced by labor compared to those of

European descent. However, little is known about how placental mitochondria change

during high-altitude adaptation. In this study, we aimed to uncover the mechanism

of such adaptation by studying the respiratory function of the placental mitochondria

of high-altitude Tibetans, lower-altitude Tibetans, and lower-altitude Chinese Han.

We discovered that mitochondrial respiration was greater in high-altitude than in

lower-altitude Tibetans in terms of OXPHOS via complexes I and I+II, ETSmax capacity,

and non-phosphorylating respiration, whereas non-ETS respiration, LEAK/ETS, and

OXPHOS via complex IV did not differ. Respiration in lower-altitude Tibetans and

Han was similar for all tested respiratory states. Placentas from high-altitude Tibetan

women were protected from acute ischemic/hypoxic insult induced by labor, and

increased mitochondrial respiration may represent an acute response that induces

mitochondrial adaptations.

Keywords: Tibetan, mitochondria respiration, placenta, hypoxia, high altitude adaptation

INTRODUCTION

The oxygen content of the atmosphere is 21% regardless of altitude, while the barometric pressure
decreases as the altitude increases. In medical research, high altitude is defined as ≥2,500m
above sea level (Julian and Moore, 2019). The main challenges at high altitudes are hypoxia, low
temperatures, and high levels of UV radiation (Peacock, 1998; Butaric and Klocke, 2018; Song
et al., 2020). The Tibetan population is considered both physiologically and genetically adapted
to such hypoxic conditions since they have lived and successfully reproduced at high altitudes for
30,000–40,000 years (Zhang et al., 2018; Bhandari and Cavalleri, 2019). Tibetans are protected from
polycythemia, pulmonary hypertension, low birth weight, and other hypoxia-related diseases that
normally result from prolonged exposure to such inhospitable environments (Yang et al., 2017;
Jeong et al., 2018; Bhandari and Cavalleri, 2019; Song et al., 2020). Most research has focused on
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Tibetans living permanently at high altitudes, and there have
been few studies of Tibetans living at relatively low altitudes.
Therefore, we decided to devote a study to the differences
between lower- and high-altitude Tibetans, as well as between
lower-altitude Tibetans and other ethnic groups, such as Chinese
Han, living at the same altitude.

At high altitudes, an insufficient maternal supply of O2 and
nutrients leads to fetal growth restriction (Bailey et al., 2019;
Lorca et al., 2019, 2020; Lane et al., 2020a,b). Fetal growth
restriction is a condition in which the fetus fails to reach its full
growth potential, related to the increased risk of development
of metabolic syndrome in childhood and multiple diseases in
adulthood; therefore, it has received increasing attention (de
Rooij et al., 2007; Veenendaal et al., 2013; Sayama et al.,
2020). The placenta plays an essential role in fetal growth
(Shaw et al., 2018; Sferruzzi-Perri et al., 2019). It has long
been speculated that fetal growth restriction is initially caused
by abnormal placental development and functional deficiency
(Tong and Giussani, 2019; Sangkhae et al., 2020; Turner et al.,
2020). Most Tibetans experience unrestricted fetal growth at
high altitudes and our previous study indicated that placentas
of Tibetans living at high altitudes are protected from labor-
induced oxidative stress compared to those of other high-altitude
residents (Tana et al., 2021). Placental mitochondria are critical
to the healthy development of the fetus; however, little is known
about mitochondrial respiration in populations adapted to high
altitudes. Impaired placental mitochondrial function can have
a detrimental effect on fetal development (Tissot van Patot
et al., 2010). Therefore, etiologic studies of hypoxia-related
pregnancy diseases, such as pre-eclampsia and intrauterine
growth restriction, should include focus on the mitochondria.

The aim of this study was to investigate mitochondrial
respiration in Tibetan women permanently residing at high
altitudes and compare it with those permanently residing at
lower altitudes. We hypothesized that Tibetan placenta possesses
enhanced mitochondria respiration capacity to remedy the
increased energy demand of labor and oxidative stress during
the labor in the oxygen deprived environment. This was done in
the attempt to further our understanding of the mechanism of
adaptation to high altitudes and the risk factors that change the
growth trajectory of the fetus. Ultimately, we strived to identify
opportunities to improve the health of children and reduce the
risk of many adult diseases related to fetal growth restriction.

MATERIALS AND METHODS

Materials and Sample Collection
All chemical substrates were purchased from Sigma Aldrich,
Australia. This study was approved by the Qinghai University
Affiliated Hospital Ethics Committee. In total, 21 human full-
term (37–40 weeks) placentas were collected after laboring
vaginal delivery, with the written consent of donors after
receiving an explanation from local doctors in their native
language. Placental tissues from high-altitude Tibetan women
(n = 9) were collected at Yushu Bayi Hospital (3780m); those
from lower-altitude Tibetan (n = 7) and Han (n = 5) woman
were collected at the Guide County Hospital (2200m) and

Qinghai University Affiliated Hospital (2261m). The general
characteristics of the pregnancies are provided in Table 1. All
neonates had Apgar scores between 7 and 9.

Each placenta was weighed immediately after delivery and
divided into six sections for random sampling. Samples from the
fetal side of the placenta were biopsied within 15min, placed on
ice and in PBS, and delivered to the laboratory.

High-Resolution Respirometry
In order to most accurately assess the metabolic characteristics of
mitochondrial activity in placentas delivered at high altitude, we
installed a respirometer in a laboratory at the delivery site. The
respirometer was carefully recalibrated for optimal accuracy in
the low-O2 environment.

The samples were washed in ice-cold PBS to remove blood.
The plasma membranes were permeabilized for 40min on ice
and mixed with 50µg/mL saponin in 1mL biopsy preservation
solution containing CaK2EGTA (2.77mM), K2EGTA (7.23mM),
Na2ATP (5.77mM), MgCl2·6H2O (6.56mM), taurine (20mM),
sodium phosphocreatine (15mM), imidazole (20mM),
dithiothreitol (0.5mM), and MES (50mM) at pH 7.1. The
samples were washed twice for 10min on ice in mitochondria
respiration medium (MiR05) containing 0.5mM EGTA, 3mM
MgCl2·6H2O, 60mM K-lactobionate, 20mM taurine, 10mM
KH2PO4, 20mM HEPES, 110mM sucrose, and 1 g/L BSA
(fatty acid free) at pH 7.1, after which the tissue was used
for respirometry.

To measure mitochondrial respiration, 5–10mg wet-weight
tissue was added to the chamber of an Oxygraph-2k respirometer
(Oroboros Instruments, Austria) containing MiR05 at 37◦C,
and a substrate-uncoupler-inhibitor titration protocol was
used, as illustrated in Figure 1 (from a high-altitude Tibetan
sample) (Supplementary Figure 1A for low altitude Tibetan and
Supplementary Figure 1B for low altitude Han).

Glutamate (10mM), malate (5mM), and pyruvate (5mM)
were added to stimulate non-phosphorylating (LEAK)
respiration mediated by complex I (CI). Subsequently, ADP
(5mM) was added to activate the phosphorylation of ADP to
ATP through CI. Cytochrome c (10µM) was added to confirm
the integrity of the outer mitochondrial membrane; Succinate
(10mM) was added to stimulate oxidative phosphorylation
(OXPHOS) through complex II (CII). Carbonyl cyanide m-
chloro phenyl hydrazine (stepwise titration of 1mM) was used to
uncouple OXPHOS and investigate the capacity of the electron
transfer system (ETS). CI was inhibited using rotenone (1mM),
to separately determine the succinate-linked ETS capacity.
Complex III was inhibited using antimycin A (2.5µM) to
determine the residual O2 consumption. Finally, 1-N,1-N,2-N,2-
N-tetramethylbenzene-1,2-diamine; dihydrochloride (0.5mM)
and ascorbate (2mM) were added to measure OXPHOS through
complex IV (CIV).

Thus, the main outcome measures were LEAK respiration
and OXPHOS capacity through CI, CII, ETS maximum capacity,
and CIV. The respiratory control ratio (RCR) was calculated as
OXPHOS capacity with CI substrates and saturating ADP as a
fraction of LEAK respiration with CI substrates.
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TABLE 1 | Maternal and infant characteristics.

Tibetan Chinese Han P-values

3780 m 2200 m 2200 m Altitude Nationality

Maternal characteristics

n 9 7 5

Age (years) 28.2 ± 2.4 26.6 ± 1.8 28.6 ± 2.1 NS NS

Parity 3.3 ± 0.7 1.7 ± 0.3 1.8 ± 0.4 NS NS

Height (cm) 161 ± 2 167 ± 1 165 ± 2 <0.05 NS

Non-pregnant weight (kg) 55 ± 3 54 ± 2 61 ± 4 NS NS

Non-pregnant body mass index (kg m−2 ) 34 ± 2 33 ± 1 37 ± 3 NS NS

Weight gain with pregnancy (kg) 13 ± 1 13 ± 2 14 ± 2 NS NS

Systolic BP (mmHg) 111 ± 2 108 ± 2 103 ± 5 NS NS

Diastolic BP (mmHg) 72 ± 2 66 ± 2 66 ± 3 NS NS

Infant characteristics

Birth weight (g) 3318 ± 125 3253 ± 150 3423 ± 186 NS NS

Birth/Placental weight ratio 5.5 ± 0.2 5.6 ± 0.3 5.7 ± 0.4 NS NS

Apgar score 8.778 ± 0.443 8.857 ± 0.35 8.8 ± 0.4 NS NS

All values are either numbers or means ± standard errors of the mean. BP, blood pressure.

FIGURE 1 | Substrate-uncoupler-inhibitor titration (SUIT) protocol. Representative oxygraph traces of oxygen flux relative to tissue mass. The vertical lines show the

introduction of various substrates or inhibitors. LEAK refers to non-phosphorylating respiration; OXPHOS CI, CII, and CIV represent oxidative phosphorylation through

mitochondrial complexes I, II, and IV, respectively; ETSmax represents electron transfer system maximum capacity; ROX represents non-ETS respiration; PMG

represents pyruvate, glutamate, and malate; CYC represents cytochrome c; ROT represents rotenone; SCC represents succinate; CCCP represents the uncoupler,

2-[(3-chlorophenyl)hydrazinylidene]propanedinitrile (CCCP); AMA represents antimycin A; TA represents 1-N,1-N,2-N,2-N-tetramethylbenzene-1,2-diamine;dihy

drochloride and ascorbate.

Statistical Analysis
GraphPad Prism version 8 (GraphPad Software, San Diego,
California, USA)1 was used for statistical analyses. Values are
expressed as means ± standard errors of the mean. Data
were analyzed using the D’Agostino-Pearson omnibus normality
test, and Student’s t-tests were used to evaluate the differences
between two groups at a time. Statistical significance was
defined as p < 0.05.

1www.graphpad.com.

RESULTS

Respiration of Placental Mitochondria at
Different Altitudes
As illustrated in Figure 2A, the mitochondrial respiration
capacity in the high-altitude Tibetan group was greater
than that in the lower-altitude Tibetan group in terms of
OXPHOS with substrates for CI and CI+II, as well as
for ETS maximum capacity and LEAK. Non-ETS respiration
and OXPHOS with substrates for CIV, however, remained
stable across different altitude Tibetan groups. As displayed
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FIGURE 2 | Respiration in high- vs. lower-altitude Tibetan groups. (A) Oxidative phosphorylation (OXPHOS) through mitochondrial complex I, complex I+II,

non-phosphorylating (LEAK) respiration, and electron transfer system (ETS) maximum capacity respiration were statistically significantly increased in high-altitude

Tibetan group compared to lower-altitude Tibetan group. Non-ETS respiration (ROX) and OXPHOS through mitochondrial complex IV did not change with altitude. (B)

The respiratory control ration (RCR) was statistically significantly increased in the high-altitude Tibetan group compared to the lower-altitude Tibetan group. But the

LEAK/ETS was not significant change. ns: p ≥ 0.05; **p < 0.01; ****p < 0.0001. Statistical significance was determined via Student’s t-test. Columns represent

means and error bars present standard errors of the mean.

in Figure 2B, the RCR in the high-altitude Tibetan group
was higher than that in the lower-altitude Tibetan group,
LEAK/ETS was not change, which suggests stronger coupling of
mitochondrial respiration and ATP synthesis in the high-altitude
Tibetan group.

Respiration of Placental Mitochondria in
Different Nationality
Respiration in the lower-altitude Tibetan and Han groups
was similar for all measured respiratory states (Figure 3). The
respiratory function of mitochondria in Tibetan and Han women
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FIGURE 3 | Respiration in lower-altitude Tibetan vs. Han groups. (A) Oxidative phosphorylation (OXPHOS) with substrates for mitochondrial complexes I (CI), C I+II,

and CIV; non-phosphorylating respiration (LEAK); ETS maximum capacity respiration; and non-ETS respiration (ROX) were not statistically significantly different

between the lower-altitude Tibetan and Han groups. ns: p ≥ 0.05. (B) The respiratory control ration (RCR) and LEAK/ETS was not statistically significantly different

between the lower-altitude Tibetan and Han groups.

at the same altitude and mode of delivery was similar. We
observed a low RCR in lower-altitude Tibetan (RCR: 1.4) and
Han (RCR: 1.5) mitochondria using substrates for CI, suggesting
that these mitochondria have impaired respiratory efficiency.

DISCUSSION

Our study provides evidence that significant differences

in human placental mitochondrial respiration exist
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between Tibetan women living at high and those at
lower altitudes. Specifically, through the utilization of
mitochondrial complexes.

The energy metabolism of cardiac and skeletal muscles is
altered at high altitudes. Hypoxic rats (13% O2, 2 weeks)
exhibited a loss of fatty acid oxidation capacity, complex I-
supported respiration, and ATP levels in the left ventricle,
and experienced increased oxidative stress (Ashmore et al.,
2014). Further investigations have been carried out on the
metabolic response of human skeletal muscle at high altitudes.
At moderately high altitudes, respiratory capacity of fatty acid
oxidation decreased without changes in mitochondrial volume
density (Murray, 2016). In high altitude residents, pregnant
women had increased O2 demand and blood O2 saturation
compared to pregnant women at sea level. However, the decrease
in arterial blood oxygen content during high-altitude pregnancies
may lead to physiologic anemia due to the expansion of
circulating plasma volume in the second trimester, which is also
related to an insufficient increase in cardiac output. Interestingly,
it was observed that women who lived on the Tibetan plateau
for less than three generations had less hemoglobin and arterial
blood O2 content during pregnancy, compared with those who
live in a multi generations there (McAuliffe et al., 2001). Tibetan
women at high altitudes also have a greater uterine artery
blood flow than women at low altitude, providing more O2

and nutrients to the fetus (Moore, 1990). There is evidence
to suggest that they may also have an increased mitochondrial
activity and a larger RCR to use O2 more efficiently, ensuring
sufficient growth of the fetus and a higher birth weight (Moore,
1990).

Our results suggest that mitochondrial respiration was higher
in all tested states, except for non-ETS and CIV-mediated
respiration, in the high- compared to the lower-altitude Tibetan
group. The RCR was also greater in the high- as compared
with the lower-altitude Tibetan group, suggesting improved
coupling to ATP production and/or less oxidative damage. A
decrease in the RCR often coincides with elevated oxidative
stress. These findings are consistent with those of Bustamante
et al. (2014). The respiratory function of mitochondria at
lower altitudes was less than that in high-altitude Tibetans.
This may be related to the oxidative stress experienced by
mitochondria in response to labor-induced placental ischemia
and reperfusion. However, previous studies have indicated a
decrease in placental ATP (Bloxam and Bobinski, 1984) and
an increase in placental oxidative stress markers during vaginal
delivery (Diamant et al., 1980; Cindrova-Davies et al., 2007).
The placental mitochondria of high-altitude Tibetans appear
to make more efficient use of O2 than do those of lower-
altitude Tibetans when there is oxygen shortage at higher altitude,
which may be the outcome of adaptation to high altitudes.
Mitochondria in the skeletal muscles have been demonstrated
to adapt to strength and endurance training (Zoll et al., 2002;
Pesta et al., 2011). Changes in placental mitochondria have
been reported for several disease states (Mandò et al., 2014;
Mele et al., 2014; Holland et al., 2017), many of which are
thought to include hypoxia/reperfusion injury (Holland et al.,
2017). Our data indicate that mitochondrial respiration is

less robust in Tibetans residing at an altitude of 2,200m as
compared with those living at 3780m. Sufficient O2 supply,
a high partial pressure of arterial O2, and sufficient uterine
artery blood flow maintain the physiological needs of the fetus
without increasing the activity of mitochondria. Additionally,
our previous study suggested that placentas from Tibetan
women living at high altitudes were better protected from labor-
induced oxidative stress than were high-altitude residents of
European descent (Tana et al., 2021). The reproductive success
of Tibetans is therefore likely to be, at least in part, due to
cardiac-related traits and placental adaptation, via increased
mitochondrial respiration (Burton et al., 2016; Jeong et al.,
2018).

Our data suggests that the result might be of genetic
selection. We intend to examine the correlation between gene
variants, fetal birth weight and placental function. Limited by
the interrelatedness of the geographical location, environment
surroundings and one’s ethnic cultural background, very few
Han women are known to live at high altitude during their
pregnancy so that collecting appropriate placental specimens
and data of the high plateau Han women became extremely
difficult for us. Meanwhile our study is also restricted by
the fact that as majority of Tibetan women are permanent
residents at an altitude above 2000m, the chance of them
living at sea level was rare, therefore recruiting sea level
Tibetan pregnant women for our research had been impossible
for years. That being said, our study still provides strong
evidence that the adaptation of mitochondrial respiration in high
altitude Tibetans is likely to contribute to reproductive success
at plateau.
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